
ADVANCED AND EVER ADVANCINGMITSUBISHI ELECTRIC

MITSUBISHI 16-BIT SINGLE-CHIP MICROCOMPUTER
M16C FAMILY

M16C/60
M16C/20
SERIES

<C language>

MITSUBISHI
ELECTRIC

Programming Manual

keep safety first in your circuit designs !

❥ Mitsubishi Electric Corporation puts the maximum effort into making semiconductor
products better and more reliable, but there is always the possibility that trouble
may occur with them. Trouble with semiconductors may lead to personal injury,
fire or property damage. Remember to give due consideration to safety when
making your circuit designs, with appropriate measures such as (i) placement
of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention
against any malfunction or mishap.

Notes regarding these materials

❥ These materials are intended as a reference to assist our customers in the
selection of the Mitsubishi semiconductor product best suited to the customer’s
application; they do not convey any license under any intellectual property rights,
or any other rights, belonging to Mitsubishi Electric Corporation or a third party.

❥ Mitsubishi Electric Corporation assumes no responsibility for any damage, or
infringement of any third-party’s rights, originating in the use of any product
data, diagrams, charts or circuit application examples contained in these materials.

❥ All information contained in these materials, including product data, diagrams
and charts, represent information on products at the time of publication of these
materials, and are subject to change by Mitsubishi Electric Corporation without
notice due to product improvements or other reasons. It is therefore recommended
that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for the latest product information before
purchasing a product listed herein.

❥ Mitsubishi Electric Corporation semiconductors are not designed or manufactured
for use in a device or system that is used under circumstances in which human
life is potentially at stake. Please contact Mitsubishi Electric Corporation or an
authorized Mitsubishi Semiconductor product distributor when considering the
use of a product contained herein for any specific purposes, such as apparatus
or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea
repeater use.

❥ The prior written approval of Mitsubishi Electric Corporation is necessary to
reprint or reproduce in whole or in part these materials.

❥ If these products or technologies are subject to the Japanese export control
restrictions, they must be exported under a license from the Japanese government
and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of
JAPAN and/or the country of destination is prohibited.

❥ Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for further details on these materials or the
products contained therein.

Preface

This programming manual is written about
the M16C/60, M16C/20 series of Mitsubishi
CMOS 16-bit microcomputers explaining
the basics of the C language and describing
how to put your program into ROM and how
to use the real-time OS (MR30) while using
NC30, the C compiler for the M16C/60,
M16C/20 series. This manual will prove
helpful to you as a guide to the C language,
as well as a textbook to be referenced when
creating a C language program.
For details about hardware and
development support tools available for
each type of microcomputer in the M16C/
60, M16C/20 series, please refer to the
user's manual and instruction or reference
manuals supplied with your microcomputer.

Chapter 1 Introduction to C Language 11

Chapter 2 ROM'ing Technology 22

Chapter 3 Using Real-time OS (MR30) 33

Appendices AppendicesAppendices

Guide to Using This Manual

This manual is a programming manual for NC30, the C compiler for the M16C/60, M16C/20
series.
Knowledge of the M16C/60, M16C/20 series microcomputer architecture and the assembly
language is required before using this manual.
This manual consists of three chapters. The following provides an approximate guide to using
this manual:

• Those who learn the C language for the first time → Begin with Chapter 1.
• Those who wish to know NC30 extended functions → Begin with Chapter 2.
• Those who use the real-time OS, MR30 → Begin with Chapter 3.

Furthermore, appendices are included at the end of this manual: "Functional Comparison
between NC30 and NC77", "nc30 Command Reference", and "Q & A".

M16C Family-related document list

Usages

(Microcomputer development flow)

Outline design
of system

Selection of
microcomputer

Detail design
of system

Hard-
ware
devel-
opment

System
evaluation

Soft-
ware
devel-
opment

Contents

Hardware specifications (pin assignment,
memory map, specifications of peripheral
functions, electrical characteristics, timing
charts)

Detailed description about hardware specifi-
cations, operation, and application examples
(connection with peripherals, relationship
with software)

Method for creating programs using assem-
bly and C languages

Detailed description about operation of each
instruction (assembly language)

H
ar

dw
ar

e

Type of document

Data sheet and
data book

User’s manual

Programming
manual

Software manual

S
of

tw
ar

e

M16C Family M16C/80 Series M16C/80 Group

M16C/60 Series M16C/60 Group

M16C/61 Group

M16C/62 Group

M16C/20 Series M16C/20 Group

M16C/21 Group

M16C Family Line-up

Table of contents

Chapter 1 Introduction to C Language

1.1 Programming in C Language3

1.1.1 Assembly Language and C Language .. 3

1.1.2 Program Development Procedure ...4

1.1.3 Easily Understandable Program ... 6

1.2 Data Types10

1.2.1 "Constants" Handleable in C Language ...10

1.2.2 Variables ..12

1.2.3 Data Characteristics ...14

1.3 Operators16

1.3.1 Operators of NC30 .. 16

1.3.2 Operators for Numeric Calculations .. 17

1.3.3 Operators for Processing Data ... 20

1.3.4 Operators for Examining Condition ..23

1.3.5 Other Operators .. 24

1.3.6 Priorities of Operators ... 26

1.4 Control Statements27

1.4.1 Structuring of Program ...27

1.4.2 Branching Processing Depending on Condition (branch processing)28

1.4.3 Repetition of Same Processing (repeat processing) ... 32

1.4.4 Suspending Processing ...35

1.5 Functions37

1.5.1 Functions and Subroutines ..37

1.5.2 Creating Functions .. 38

1.5.3 Exchanging Data between Functions ..40

1.6 Storage Classes41

1.6.1 Effective Range of Variables and Functions ..41

1.6.2 Storage Classes of Variables ...42

1.6.3 Storage Classes of Functions ... 44

1.7 Arrays and Pointers 46

1.7.1 Arrays .. 46

1.7.2 Creating an Array .. 47

1.7.3 Pointers ..49

1.7.4 Using Pointers ..51

1.7.5 Placing Pointers into an Array ... 53

1.7.6 Table Jump Using Function Pointer .. 55

1.8 Struct and Union 57

1.8.1 Struct and Union ..57

1.8.2 Creating New Data Types .. 58

1.9 Preprocess Commands62

1.9.1 Preprocess Commands of NC30 ...62

1.9.2 Taking in A File ...63

1.9.3 Macro Definition .. 64

1.9.4 Conditional Compile ...66

Chapter 2 ROM'ing Technology

2.1 Memory Mapping71

2.1.1 Types of Code and Data ..71

2.1.2 Sections Managed by NC30 ..72

2.1.3 Control of Memory Mapping .. 74

2.1.4 Controlling Memory Mapping of Struct .. 76

2.2 Startup Program78

2.2.1 Roles of Startup Program ..78

2.2.2 Estimating Stack Sizes Used ...80

2.2.3 Creating Startup Program ..83

2.3 Extended Functions for ROM'ing Purposes ... 90

2.3.1 Efficient Addressing ...90

2.3.2 Handling of Bits ..94

2.3.3 Control of I/O Interface...96

2.3.4 When Cannot Be Written in C Language ...98

2.4 Linkage with Assembly Language .. 100

2.4.1 Interface between Functions ... 100

2.4.2 Calling Assembly Language from C Language ... 105

2.4.3 Calling C Language from Assembly Language .. 111

2.5 Interrupt Processing 112

2.5.1 Writing Interrupt Processing Functions .. 112

2.5.2 Registering Interrupt Processing Functions ... 115

2.5.3 Example for Writing Interrupt Processing Function.. 116

Chapter 3 Using Real-time OS (MR30)

3.1 Basics of Real-time OS 121

3.1.1 Real-time OS and Task ... 121

3.1.2 Functions of Real-time OS .. 124

3.1.3 Interrupt Management ... 127

3.1.4 Special Handlers ... 130

3.2 Method for Using System Calls 131

3.2.1 MR30's System Calls .. 131

3.2.2 Writing a System Call.. 132

3.3 Development Pro cedures Using MR30 ... 135

3.3.1 Files Required during Development .. 135

3.3.2 Flow of Development Using MR30 ... 140

3.4 Building MR30 into Program Using NC30 .. 141

3.4.1 Writing Program Using NC30.. 141

3.4.2 Writing Tasks using NC30 ... 143

3.4.3 Writing Interrupt Handler ... 147

3.4.4 Writing Cyclic and Alarm Handlers .. 151

Appendices

Appendix A. Functional Comparison between NC30 and NC77 Appendix-3

Appendix B. NC30 Command Reference .. Appendix-6

Appendix C. Questions & Answers ... Appendix-12

Table of contents for example

Chapter 1 Introduction to C Language

1.1 Programming in C Language

1.2 Data Types

1.3 Operators

1.4 Control Statements27

Example 1.4.1 Count Up (if-else statement) .. 28

Example 1.4.2 Switchover of Arithmetic Operations-1 (else-if statement)29

Example 1.4.3 Switchover of Arithmetic Operations-2 (switch-case statement)30

Example 1.4.4 Finding Sum Total -1 (while statement) ...32

Example 1.4.5 Finding Sum Total -2 (for statement) .. 33

Example 1.4.6 Finding Sum Total -3 (do-while statement) ...34

1.5 Functions37

Example 1.5.1 Finding Sum of Integers (example for writing a function) ..40

1.6 Storage Classes

1.7 Arrays and Pointers 46

Example 1.7.1 Finding Total Age of a Family -1 ... 46

Example 1.7.2 Finding Total Age of a Family -2 ... 47

Example 1.7.3 Switching Arithmetic Operations Using Table Jump... 56

1.8 Struct and Union

1.9 Preprocess Commands

Chapter 2 ROM'ing Technology

2.1 Memory Mapping

2.2 Startup Program

2.3 Extended Functions for ROM'ing Purposes ... 90

Example 2.3.1 Defining SFR Area Using "#pragma ADDRESS" ..97

2.4 Linkage with Assembly Language .. 100

Example 2.4.1 Calling Subroutine .. 107

Example 2.4.2 Calling a Subroutine by Table Jump .. 109

Example 2.4.3 A Little Different Way to Use Table Jump .. 110

2.5 Interrupt Processing

Chapter 3 Using Real-time OS (MR30)

3.1 Basics of Real-time OS

3.2 Method for Using System Calls

3.3 Development Procedures Using MR30

3.4 Building MR30 into Program Using NC30

Appendices

Appendix A. Functional Comparison between NC30 and NC77

Appendix B. NC30 Command Reference

Appendix C. Questions & Answers

Chapter 1
Introduction to C Language

1.1 Programming in C Language
1.2 Data Types
1.3 Operators
1.4 Control Statements
1.5 Functions
1.6 Storage Classes
1.7 Arrays and Pointers
1.8 Struct and Union
1.9 Preprocess Commands

This chapter explains for those who learn the C language for the
first time the basics of the C language that are required when
creating a built-in program.

2

1
Introduction to C Language

1.1 Programming in C Language

3

1
Introduction to C Language

1.1 Programming in C Language

1.1 Programming in C Language

1.1.1 Assembly Language and C Language

As the scale of microcomputer-based systems increased in recent years, a program's productivity
and maintainability became to attract the attention of the people concerned. At the same time,
more and more programs have become to be developed in the C language, instead of using the
conventional assembly language.
The following explains the main features of the C language and describes how to write a program
in the C language.

Features of the C language

(1) An easily traceable program can be written.
The basics of structured programming, i.e., "sequential processing", "branch
processing", and "repeat processing", can all be written in a control statement. For this
reason, it is possible to write a program whose flow of processing can easily be traced.

(2) A program can easily be divided into modules.
A program written in the C language consists of basic units called "functions". Since
functions have their parameters highly independent of others, a program can easily be
made into parts and can easily be reused. Furthermore, modules written in the
assembly language can be incorporated into a C language program directly without
modification.

(3) An easily maintainable program can be written.
For reasons (1) and (2) above, the program after being put into operation can easily be
maintained. Furthermore, since the C language is based on standard specifications
(ANSI standard(Note)), a program written in the C language can be ported into other
types of microcomputers after only a minor modification of the source program.

Comparison between C and assembly languages

Table 1.1.1 outlines the differences between the C and assembly languages with respect to
the method for writing a source program.

Table 1.1.1 Comparison between C and Assembly Languages

C language Assembly language

 Basic unit of
program (Method of

description)
 Function (Function name () { }) Subroutine (Subroutine name:)

Format Free format 1 instruction in 1 line

Discrimination
between uppercase

and lowercase

Uppercase and lowercase are
discriminated (Normally written
in lowercase)

Not discriminated

Allocation of data
area

Specified by "data type"
Specified by a number of bytes
(using pseudo-instruction)

Input/output
instruction

No input/output instructions
available

Input/output instructions
available (However, it depends
on hardware and software.)

Note: This refers to standard specifications stipulated for the C language by the American National Standards Institute (ANSI)
to maintain the portability of C language programs.

4

1
Introduction to C Language

1.1 Programming in C Language

1.1.2 Program Development Procedure

An operation to translate a source program written in the C language into a machine language
program is referred to as "compiling". The software provided for performing this operation is
called a "compiler".
This section explains the procedure for developing a program by using NC30, the C compiler for
the M16C/60, M16C/20 series of Mitsubishi single-chip microcomputers.

NC30 product list

Figure 1.1.1 lists the products included in NC30, the C compiler for the M16C/60, M16C/20
series of Mitsubishi single-chip microcomputers.

Standard libraries

NC30
product
package

 Compile driver
 (nc30)

 Preprocessor
(cpp30)

Compiler main unit
(ccom30)

Stack size calculating utility
(stk30)

Sample startup program
(ncrt0.a30/sect30.inc)

Standard library source files

 It starts up the compiler, assembler, or linker.

It converts C language source files into assembly
language source files.

It processes macro and conditional compiling.

It calculates the amount of
stacks used.

Figure 1.1.1 NC30 product list

5

1
Introduction to C Language

1.1 Programming in C Language

Creating machine language file from source file

Creation of a machine language file requires startup programs written in the assembly
language, in addition to the source file that contains a C language program.
Figure 1.1.2 shows a tool chain necessary to create a machine language file from a C
language source file.

C language
source file

Stack usage
information

file

Assembly
language
source file

Stack usage
calculation result

display file

Libraries

Relocatable assembler as30
Stack size

calculating utility
stk30

 Linkage editor ln30

Assembly
language
source file

Relocatable
file

Startup programs

sect30.inc

ncrt0.a30

Load module converter lmc30

To ROM

Compile driver nc30

Preprocessor ccp30

Compiler main unit ccom30

Software

Software

 File name

Files generated by NC30

Software included in NC30
product package

Relocatable
file

 File name

Files prepared by the
user (including libraries)

Machine
language file

Software included in AS30
product package

:

:

:

:

Figure 1.1.2 Creating machine language file from C language source file

6

1
Introduction to C Language

1.1 Programming in C Language

1.1.3 Easily Understandable Program

Since there is no specific format for C language programs, they can be written in any desired way
only providing that some rules stipulated for the C language are followed. However, a program
must be easily readable and must be easy to maintain. Therefore, a program must be written in
such a way that everyone, not just the one who developed the program, can understand it.
This section explains some points to be noted when writing an "easily understandable" program.

Rules on C language

The following lists the six items that need to be observed when writing a C language
program:
(1) As a rule, use lowercase English letters to write a program.
(2) Separate executable statements in a program with a semicolon ";".
(3) Enclose execution units of functions or control statements with brackets "{" and "}"
(4) Functions and variables require type declaration.
(5) Reserved words cannot be used in identifiers (e.g., function names and variable

names).
(6) Write comments between "/∗" and "∗/".

Configuration of C language source file

Figure 1.1.3 schematically shows a configuration of a general C language source file. For
each item in this file, refer to the section indicated with an arrow.

Refer to 1.9, "Preprocess Commands".

Refer to 1.5, "Functions".

Refer to 1.9, "Preprocess Commands".

Refer to 1.2, "Date Types" and 1.6,
"Storage Classes".

Refer to 1.5, "Functions".

Refer to 1.2, "Date Types" and 1.6,
"Storage Classes".

Refer to 1.3, "Operators" and 1.4,
"Control Statements".

Reading header file

Type declaration of functions used;

Macro definition

Declaration of external variables

Type function name (dummy argument, ...)
 {
 Declaration of internal variables;

 Executable statement;

}

•••

Figure 1.1.3 Configuration of C language source file

7

1
Introduction to C Language

1.1 Programming in C Language

Programming style

To increase the maintainability of a program, it is necessary that a template for program list
is determined by consultation between those who develop the program. By sharing this
template as a "programming style" among the developers, it is made possible to write a
source program that can be understood and maintained by anyone. Figure 1.1.4 shows an
example of a programming style.

(1) Create a function separately for each functionality of the program.
(2) Limit processing within one function unless specifically necessary. (A size not larger

than 50 lines or so is recommended.)
(3) Do not write multiple executable statements in one line.
(4) Indent each processing block successively (normally 4 tab stops).
(5) Clarify the program flow by writing comment statements as appropriate.
(6) When creating a program from multiple source files, place the common part of the

program in an independent separate file and share it.

/∗ Test program ∗/

unsigned int ram1;

main()
{

char a;

 while(1){

 if(a==ram1) {
break ;

 }
 else{

a=ram1;
 }
}

}

 Indentation

Indentation

Enclose a set of processing

with brackets "{" and "}"

 'main' processing

'while' processing

Enclose a comment statement with "/∗" and "∗/ ".

Figure 1.1.4 Example of programming style of C language program

8

1
Introduction to C Language

1.1 Programming in C Language

Method for writing a comment statement

The method for writing a comment statement constitutes an important point in writing an
easily readable program. Program flow can be clarified by, for example, indicating the
functionality of a file or that of a function as the header.

/∗ ""FILE COMMENT"" ∗∗
 ∗SystemName : Test program
 ∗ FileName : TEST.C
 ∗ Version : 1.00
 ∗ CPU : M30600M8-XXXFP
 ∗ Compiler : NC30 (Ver.1.00)
 ∗ OS : Unused
 ∗ Programmer : XXXX
 ∗∗∗
 ∗ Copyright, XXXX xxxxxxxxxxxxxxxxx CORPORATION
 ∗∗∗
 ∗ History : XXXX.XX.XX : Start

 ∗ ""FILE COMMENT END"" ∗∗/

/∗ ""Prototype declaration"" ∗∗∗/
void main (void) ;
void key_in (void) ;
void key_out (void) ;

/∗ ""FUNC COMMENT"" ∗∗
 ∗ Function name : main()
 ∗ ---
 ∗ Declaration : void main (void)
 ∗ ---
 ∗ Functionality : Overall control
 ∗ ---
 ∗ Argument : void
 ∗ ---
 ∗ Return value : void
 ∗ ---
 ∗ Functions used : voidkey_in (void) ; Input function
 ∗ : voidkey_out (void) ; Output function
 ∗ ""FUNC COMMENT END"" ∗∗∗/
void main (void)
{

while(1){ /∗ Endless loop ∗/

key_in() ; /∗ Input processing ∗/

key_out(); /∗ Output processing ∗/
 }
}

Example of file header

Example of function header

Figure 1.1.5 Example for using comments

9

1
Introduction to C Language

1.1 Programming in C Language

Column Reserved words of NC30

The words listed in Table 1.1.2 are reserved for NC30. Therefore, these words cannot be
used in variable or function names.

Table 1.1.2 Reserved Words of NC30

_asm const far register switch

_far continue float return typedef

_near default for short union

asm do goto signed unsigned

auto double if sizeof void

break else int static volatile

case enum long struct while

char extern near

10

1
Introduction to C Language

1.2 Data Types

1.2 Data Types

1.2.1 "Constants" Handleable in C Language

Four types of constants can be handled in the C language: "integer", "real", "single character",
and "character string".
This section explains the method of description and the precautions to be noted when using each
of these constants.

Integer constants

Integer constants can be written using one of three methods of numeric representation:
decimal, hexadecimal, and octal. Table 1.2.1 shows each method for writing integer
constants. Constant data are not discriminated between uppercase and lowercase.

Table 1.2.1 Method for Writing Integer Constants

Numeration Method of writing Example

Decimal Normal mathematical notation (nothing added) 127 , +127 , –56

Hexadecimal Numerals are preceded by 0x or 0X (zero eks). 0x3b , 0X3B

Octal Numerals are preceded by 0 (zero). 07 , 041

Real constants (Floating-point constants)

Floating-point constants refer to signed real numbers that are expressed in decimal. These
numbers can be written by usual method of writing using the decimal point or by
exponential notation using "e" or "E".
• Usual method of writing Example: 175.5, -0.007
• Exponential notation Example: 1.755e2, -7.0E-3

Single-character constants

Single-character constants must be enclosed with single quotations ('). In addition to
alphanumeric characters, control codes can be handled as single-character constants.
Inside the microcomputer, all of these constants are handled as ASCII code, as shown in
Figure 1.2.1.

0x011 '1' 0x31

Integer
constant

Single-character
constant

Memory
 Integer ASCII code

Memory

Figure 1.2.1 Difference between 1 and '1'

11

1
Introduction to C Language

1.2 Data Types

Character string constants

A row of alphanumeric characters or control codes enclosed with double quotations (") can
be handled as a character string constant. Character string constants have the null
character "\0" automatically added at the end of data to denote the end of the character
string.
 Example: "abc", "012\n", "Hello!"

'a'

'b'

?

{ 'a' , 'b' } "ab" 'a'

'b'

'\0'

Memory
Memory

A set of single-
character
constants

Character
string
constant

2 bytes of
data area
are used.

3 bytes of
data area
are used.

Null code

Figure 1.2.2 Difference between {'a', 'b'} and "ab"

Column List of control codes (escape sequence)

The following shows control codes (escape sequence) that are frequently used in the C
language.

Table 1.2.2 Escape Sequence in C Language

Notation Content Notation Content

\f Form feed (FF) \' Single quotation

\n New line (NL) \" Double quotation

\r Carriage return (CR)
\x constant

value
Hexadecimal

\t Horizontal tab (HT)
\ constant

value
Octal

\\ \ symbol \0 Null code

12

1
Introduction to C Language

1.2 Data Types

1.2.2 Variables

Before a variable can be used in a C language program, its "data type" must first be declared in
the program. The data type of a variable is determined based on the memory size allocated for
the variable and the range of values handled.
This section explains the data types of variables that can be handled by NC30 and how to declare
the data types.

Basic data types of NC30

Table 1.2.3 lists the data types that can be handled in NC30. Descriptions enclosed with () in
the table below can be omitted when declaring the data type.

Table 1.2.3 Basic Data Types of NC30

Data type Bit length
Range of values that can be

expressed

(unsigned) char 8 bits 0 to 255

singned char –128 to 127

unsigned short (int) 16 bits 0 to 65535

Integer (signed) short (int) – 32768 to 32767

unsigned int 16 bits 0 to 65535

(signed) int – 32768 to 32767

unsigned long (int) 32 bits 0 to 4294967295

(signed) long (int) – 2147483648 to 2147483647

float 32 bits Number of significant digits: 9

 Real
double 64 bits Number of significant digits: 17

long double 64 bits Number of significant digits: 17

13

1
Introduction to C Language

1.2 Data Types

Declaration of variables

Variables are declared using a format that consists of a "data type ∆ variable name;".
Example: To declare a variable a as char type

char a;
By writing "data type ∆ variable name = initial value;", a variable can have its initial value
set simultaneously when it is declared.

Example: To set 'A' to variable a of char type as its initial value
char a = 'A';

Furthermore, by separating an enumeration of multiple variables with a comma (,),
variables of the same type can be declared simultaneously.

Example: int i, j;
Example: inti = 1, j = 2;

void main (void)

{

char a ;

char b = 'A' ;

int i ;

unsigned int k = 500 ;

long n = 0x10000L ;

 XX

'A'

 XX

500

 0x10000L

8 bits

a

b

i

k

nDenotes that this is the
long type of data.

 XX: Indeterminate

8 bits

Figure 1.2.3 Declaration of variables

14

1
Introduction to C Language

1.2 Data Types

1.2.3 Data Characteristics

When declaring a variable or constant, NC30 allows its data characteristic to be written along with
the data type. The specifier used for this purpose is called the "type qualifier".
This section explains the data characteristics handled by NC30 and how to specify a data
characteristic.

Specifying that the variable or constant is singed or unsigned data (singed/
unsigned qualifier)

Write the type qualifier "signed" when the variable or constant to be declared is signed data
or "unsigned" when it is unsigned data. If neither of these type specifiers is written when
declaring a variable or constant, NC30 assumes that it is signed data for only the data type
char, or unsigned data for all other data types.

void main (void)
{

char a ;
signed char s_a ;

int b ;
unsigned int u_b ;

}

Synonymous with "signed int b";

Synonymous with "unsigned char a";

•••

Figure 1.2.4 Example for writing type qualifiers "signed" and "unsigned"

Specifying that the variable or constant is constant data (const qualifier)

Write the type qualifier "const" when the variable or constant to be declared is the data
whose value does not change at all even when the program is executed. If a description is
found in the program that causes this constant data to change, NC30 outputs a warning.

void main (void)
{

char a = 10 ;
constcharc_a = 20 ;

a = 5 ;
c_a = 5 ;

}

Warning is generated.

Figure 1.2.5 Example for writing the type qualifier "const"

15

1
Introduction to C Language

1.2 Data Types

Inhibiting optimization by compiler (volatile qualifier)

NC30 optimizes the instructions that do not have any effect in program processing, thus
preventing unnecessary instruction code from being generated. However, there are some
data that are changed by an interrupt or input from a port irrespective of program
processing. Write the type qualifier "volatile" when declaring such data. NC30 does not
optimize the data that is accompanied by this type qualifier and outputs instruction code for
it.

void main (void)
{

char port1 ;
volatile char port2 ;

port1 ;

port2 ;
}

Optimized and no code is output
because it is only read.

Code is output without optimizing.

Figure 1.2.6 Example for writing the type qualifier "volatile"

Column Syntax of declaration

When declaring data, write data characteristics using various specifiers or qualifiers along
with the data type. Figure 1.2.7 shows the syntax of a declaration.

Declaration specifier

Declarator
(data name)

Storage class
specifier

(described later)

Type
qualifier

Type
specifier

static
register

auto
extern

unsigned
signed
const

volatile

int
char
float
struct
union

dataname

Figure 1.2.7 Syntax of declaration

16

1
Introduction to C Language

1.3 Operators

1.3 Operators

1.3.1 Operators of NC30

NC30 has various operators available for writing a program.
This section describes how to use these operators for each specific purpose of use (not including
address and pointer operators(Note)) and the precautions to be noted when using them.

Operators usable in NC30

Table 1.3.1 lists the operators that can be used in NC30.

Table 1.3.1 Operators Usable in NC30

Monadic arithmetic operators ++ – – –

Binary arithmetic operators + – * / %

Shift operators << >>

Bitwise operators & | ^ ~

Relational operators > < >= <= == !=

Logical operators && || !

Assignment operators = += -= *= /= %= <<= >>= &= |= ^=

Conditional operator ? :

sizeof operator sizeof()

Cast operator (type)

Address operator &

Pointer operator *

Comma operator ,

Note: For address and pointer operators, refer to Section 1.7, "Arrays and Pointers".

∗

∗

∗

17

1
Introduction to C Language

1.3 Operators

1.3.2 Operators for Numeric Calculations

The primary operators used for numeric calculations consist of the "arithmetic operators" to
perform calculations and the "assignment operators" to store the results in memory.
This section explains these arithmetic and assignment operators.

Monadic arithmetic operators

Monadic arithmetic operators return one answer for one variable.

Table 1.3.2 Monadic Arithmetic Operators

Operator Description format Content

++
++ variable (prefix type)

variable ++ (postfix type)
 Increments the value of an expression.

--
-- variable (prefix type)

variable -- (postfix type)
Decrements the value of an expression.

- - expression
Returns the value of an expression after

inverting its sign.

When using the increment operator (++) or decrement operator (--) in combination with a
assignment or relational operator, note that the result of operation may vary depending on
which type, prefix or postfix, is used when writing the operator.
<Examples>
Prefix type: The value is incremented or decremented before assignment.

b = ++a; → a = a + 1; b = a;
Postfix type: The value is incremented or decremented after assignment.

b = a++; → b = a; a = a + 1;

Binary arithmetic operators

In addition to ordinary arithmetic operations, these operators make it possible to obtain the
remainder of an "integer divided by integer" operation.

Table 1.3.3 Binary Arithmetic Operators

Operator Description format Content

+ expression 1 + expression 2
Returns the sum of expression 1 and

expression 2 after adding their values.

− expression 1 - expression 2
Returns the difference between expressions 1

and 2 after subtracting their values.

∗ expression 1 expression 2
Returns the product of expressions 1 and 2

after multiplying their values.

/ expression 1 / expression 2
Returns the quotient of expression 1 after diving

its value by that of expression 2.

% expression 1 % expression 2
Returns the remainder of expression 1 after

dividing its value by that of expression 2.

∗ ∗

18

1
Introduction to C Language

1.3 Operators

Assignment operators

The operation of "expression 1 = expression 2" assigns the value of expression 2 for
expression 1. The assignment operator '=' can be used in combination with arithmetic
operators described above or bitwise or shift operators that will be described later. (This is
called a compound assignment operator.) In this case, the assignment operator '=' must
always be written on the right side of the equation.

Table 1.3.4 Substitute Operators

Operator Description format Content

= expression 1 = expression 2 Substitutes the value of expression 2 for expression 1.

+= expression 1 += expression 2
Adds the values of expressions 1 and 2, and

substitutes the sum for expression 1.

−= expression 1 -= expression 2

Subtracts the value of expression 2 from that of

expression 1, and substitutes the difference for

expression 1.

∗= expression 1 = expression 2
Multiplies the values of expressions 1 and 2, and

substitutes the product for expression 1.

/= expression 1 /= expression 2

Divides the value of expression 1 by that of

expression 2, and substitutes the quotient for

expression 1.

%= expression 1 %= expression 2

Divides the value of expression 1 by that of

expression 2, and substitutes the remainder for

expression 1.

<<= expression 1 <<= expression 2

Shifts the value of expression 1 left by the amount

equal to the value of expression 2, and substitutes the

result for expression 1.

>>= expression 1 >>= expression 2

Shifts the value of expression 1 right by the amount

equal to the value of expression 2, and substitutes the

result for expression 1.

&= expression 1 &= expression 2
ANDs the bits representing the values of expressions

1 and 2, and substitutes the result for expression 1.

|= expression 1 |= expression 2
ORs the bits representing the values of expressions 1

and 2, and substitutes the result for expression 1.

^= expression 1 ^= expression 2
XORs the bits representing the values of expressions

1 and 2, and substitutes the result for expression 1.

∗ ∗

19

1
Introduction to C Language

1.3 Operators

Column Implicit type conversion

When performing arithmetic or logic operation on different types of data, NC30 converts the
data types following the rules shown below. This is called "implicit type conversion".
• Data types are adjusted to the data type whose bit length is greater than the other before

performing operation.
• When substituting, data types are adjusted to the data type located on the left side of the

equation.

char byte = 0x12 ;
int word = 0x3456 ;

word = byte ;
/∗ int ← char ∗/

560x0x 00 12

0x00 is extended

byte = word ;
/∗ char ← int ∗/

0x 34 56120x

Upper 1 byte is cut

When ...

Figure 1.3.1 Assign different types of data

20

1
Introduction to C Language

1.3 Operators

1.3.3 Operators for Processing Data

The operators frequently used to process data are "bitwise operators" and "shift operators".
This section explains these bitwise and shift operators.

Bitwise operators

Use of bitwise operators makes it possible to mask data and perform active conversion.

Table 1.3.5 Bitwise Operators

Operator Description format Content

& expression 1 & expression 2
Returns the logical product of the values of

expressions 1 and 2 after ANDing each bit.

| expression 1 | expression 2
Returns the logical sum of the values of

expressions 1 and 2 after ORing each bit.

^ expression 1 ^ expression 2
Returns the exclusive logical sum of the values

of expressions 1 and 2 after XORing each bit.

˜ ˜expression
Returns the value of the expression after

inverting its bits.

Shift Operators

In addition to shift operation, shift operators can be used in simple multiply and divide
operations. (For details, refer to Column, "Multiply and divide operations using shift
operators".)

Table 1.3.6 Shift Operators

Operator Description format Content

<< expression 1 << expression 2

Shifts the value of expression 1 left by the

amount equal to the value of expression 2,

and returns the result.

>> expression 1 >> expression 2

Shifts the value of expression 1 right by the

amount equal to the value of expression 2,

and returns the result.

21

1
Introduction to C Language

1.3 Operators

Comparison between arithmetic and logical shifts

When executing "shift right", note that the shift operation varies depending on whether the
data to be operated on is singed or unsigned.
• When unsigned → Logical shift: A logic 0 is inserted into the most significant bit.
• When signed → Arithmetic shift: Shift operation is performed so as to retain the sign.

Namely, if the data is a positive number, a logic 0 is inserted into the
most significant bit; if a negative number, a logic 1 is inserted into the
most significant bit.

signed int i = 0xFC18
 (i = -1000)

unsigned int i = 0xFC18
 (i = 64520)

1111 1100 0001 1000

i >> 1

i >> 2

i >> 3

1111 1110 0000 1100

1111 1111 0000 0110

1111 1111 1000 0011

1111 1100 0001 1000

0111 1110 0000 1100

0011 1111 0000 0110

0001 1111 1000 0011

(-500)

(-250)

(-125)

Arithmetic shift
(positive or negative sign is retained)

Logical shift

signed int i = 0x03E8
 (i = +1000)

0000 0011 1110 1000

0000 0001 1111 0100

1111 1111 0000 0110

0000 0000 0111 1101

(+500)

(+250)

(+125)

0000 0000 1111 1010

<Unsigned> <Positive number><Negative number>

Figure 1.3.2 Arithmetic and logical shifts

22

1
Introduction to C Language

1.3 Operators

Column Multiply and divide operations using shift operators

Shift operators can be used to perform simple multiply and divide operations. In this case,
operations are performed faster than when using ordinary multiply or divide operators.
Considering this advantage, NC30 generates shift instructions, instead of multiply
instructions, for such operations as "∗2", "∗4", and "∗8".

• Multiplication: Shift operation is performed in combination with add operation.
a∗2→ a<<1
a∗3→ (a<<1) +a
a∗4→ a<<2
a∗7→ (a<<2)+(a<<1) +a
a∗8→ a<<3
a∗20→ (a<<4) + (a<<2)

• Division: The data pushed out of the least significant bit makes it possible to know the
remainder.

a/4→ a>>2
a/8→ a>>3
a/16→ a>>4

23

1
Introduction to C Language

1.3 Operators

1.3.4 Operators for Examining Condition

Used to examine a condition in a control statement are "relational operators" and "logical
operators". Either operator returns a logic 1 when a condition is met and a logic 0 when a
condition is not met.
This section explains these relational and logical operators.

Relational operators

These operators examine two expressions to see which is larger or smaller than the other.
If the result is true, they return a logic 1; if false, they return a logic 0.

Table 1.3.7 Relational Operators

Operator Description format Content

< expression 1 < expression 2
True if the value of expression 1 is smaller than

that of expression 2; otherwise, false.

<= expression 1 <= expression 2
True if the value of expression 1 is smaller than or

equal to that of expression 2; otherwise, false.

> expression 1 > expression 2
True if the value of expression 1 is larger than that

of expression 2; otherwise, false.

>= expression 1 >= expression 2
True if the value of expression 1 is larger than or

equal to that of expression 2; otherwise, false.

== expression 1 == expression 2
True if the value of expression 1 is equal to that of

expression 2; otherwise, false.

!= expression 1 != expression 2
True if the value of expression 1 is not equal to

that of expression 2; otherwise, false.

Logical operators

These operators are used along with relational operators to examine the combinatorial
condition of multiple condition expressions.

Table 1.3.8 Logical Operators

Operator Description format Content

&& expression 1 && expression 2
True if both expressions 1 and 2 are true;

otherwise, false.

|| expression 1 || expression 2
False if both expressions 1 and 2 are false;

otherwise, true.

! ! expression
False if the expression is true, or true if the

expression is false.

24

1
Introduction to C Language

1.3 Operators

1.3.5 Other Operators

This section explains four types of operators which are unique in the C language.

Conditional operator

This operator executes expression 1 if a condition expression is true or expression 2 if the
condition expression is false. If this operator is used when the condition expression and
expressions 1 and 2 both are short in processing description, coding of conditional
branches can be simplified. Table 1.3.9 lists this conditional operator. Figure 1.3.3 shows
an example for using this operator.

Table 1.3.9 Conditional Operator

Operator Description format Content

? :

Condition expression ?

expression 1 :

expression 2

Executes expression 1 if the condition expression

is true or expression 2 if the condition expression

is false.

 • Value whichever larger is selected.

 • Absolute value is found.

c = a > b ? a : b ;

c = a > 0 ? a : - a ;

if (a > b){
c = a ;

}
else{

c = b ;
}

if(a > 0){
c = a ;

}
else{

c = - a ;
}

Figure 1.3.3 Example for using conditional operator

sizeof operator

Use this operator when it is necessary to know the number of memory bytes used by a
given data type or expression.

Table 1.3.10 sizeof Operator

Operator Description format Content

sizeof()
sizeof expression

sizeof (data type)

Returns the amount of memory used by the

expression or data type in units of bytes.

25

1
Introduction to C Language

1.3 Operators

Cast operator

When operation is performed on data whose types differ from each other, the data used in
that operation are implicitly converted into the data type that is largest in the expression.
However, since this could cause an unexpected fault, a cast operator is used to perform
type conversions explicitly.

Table 1.3.11 Cast Operator

Operator Description format Content

() (new data type) variable
Converts the data type of the variable to

the new data type.

Comma operator

This operator executes expression 1 and expression 2 sequentially from left to right. This
operator, therefore, is used when enumerating processing of short descriptions.

Table 1.3.12 Comma operator

Operator Description format Content

, expression 1, expression 2
Executes expression 1 and expression 2

sequentially from left to right.

26

1
Introduction to C Language

1.3 Operators

1.3.6 Priorities of Operators

The operators used in the C language are subject to "priority resolution" and "rules of
combination" as are the operators used in mathematics.
This section explains priorities of the operators and the rules of combination they must follow:

Priority resolution and rules of combination

When multiple operators are included in one expression, operation is always performed in
order of operator priorities beginning with the highest priority operator. When multiple
operators of the same priority exist, the rules of combination specify which operator, left or
right, be executed first.

Table 1.3.13 Operator Priorities

 Type of operator Operator
Rules of

combination

High Expression () [] . -> →

Monadic arithmetic operators, etc.
 ! ˜ ++ – – – &

sizeof() (type)
←

Multiply/divide operators / % →

Add/subtract operators + – →

Shift operator << >> →

 Relational operator (comparison) < <= > >= →

Relational operator (equivalent) == != →
Bitwise operator (AND) & →

Bitwise operator (EOR) ^ →

 Bitwise operator (OR) | →

Logical operator (AND) && →

Logical operator (OR) || →
Conditional operator ?: ←

Assignment operator
 = += –= = /= %=

<<= >>= &= ^= |=
←

Low Comma operator , →

Note 1: The dot '·' denotes a member operator that specifies struct and union members.
Note 2: The asterisk '＊ ' denotes a pointer operator that indicates a pointer variable.
Note 3: The ampersand '&' denotes an address operator that indicates the address of a variable.

Note 4: The asterisk '＊ ' denotes a multiply operator that indicates multiplication.

(Note 1)

(Note 3)(Note 2)

(Note 4)

＊

∗

∗

∗

27

1
Introduction to C Language

1.4 Control Statements

1.4 Control Statements

1.4.1 Structuring of Program

The C language allows all of "sequential processing", "branch processing", and "repeat
processing"--the basics of structured programming--to be written using control statements.
Consequently, all programs written in the C language are structured. This is why the flow of
processing in C language programs are easy to understand.
This section describes how to write these control statements and shows some examples of
usage.

Structuring of program

The most important point in making a program easy to understand is how the program flow
can be made easily readable. This requires preventing the program flow from being
directed freely as one wishes. Thus, a move arose to limit it to the three primary forms:
"sequential processing", "branch processing", and "repeat processing". The result is the
technique known as "structured programming".
Table 1.4.1 shows the three basic forms of structured programming.

Table 1.4.1 The three basic forms of structured programming

Processing A

Processing A Processing B

True

Condition P
False

Sequential
processing

Executed top down, from
top to bottom.

Branch
processing

Branched to processing A
or processing B
depending on whether
condition P is true or
false.

Repeat
processing

Processing A is repeated
as long as condition P is
met.

Processing B

Condition P

True

False

Processing A

28

1
Introduction to C Language

1.4 Control Statements

1.4.2 Branching Processing Depending on Condition (branch processing)

Control statements used to write branch processing include "if-else", "else-if", and "switch-case"
statements.
This section explains how to write these control statements and shows some examples of usage.

if-else statement

This statement executes the next block if the given condition is true or the "else" block if the
condition is false. Specification of an "else" block can be omitted.

Is condition
expression

true?

Execution
statement A

True

False {

}

else{

}

 {

}

• If the else statement is omitted

Execution
statement B

Execution statement A

Execution statement B

Is condition
expression

true?

Execution
statement A

True

False

Execution statement A

if (condition
expression)

if (condition
expression)

Figure 1.4.1 Example for if-else statement

Example 1.4.1 Count Up (if-else statement)

In this example, the program counts up a seconds counter "second" and a minutes counter
"minute". When this program module is called up every 1 second, it functions as a clock.

If less than 59 seconds,

 the module counts up "second".

If greater than 59 seconds,
 the module resets "second" and
 counts up "minute".

void count_up(void) ;

unsigned int second = 0 ;
unsigned int minute = 0 ;

void count_up(void)
{

if(second >= 59){
second = 0 ;
minute ++ ;

}
else{
second ++ ;

}
}

Declares "count_up" function. (Refer to Section 1.5,
"Functions".)

Declares variables for "second" (seconds counter)
and "minute" (m inutes counter).

Defines "count_up" function.

Example 1.4.1 Count up (if-else statement)

29

1
Introduction to C Language

1.4 Control Statements

else-if statement

Use this statement when it is necessary to divide program flow into three or more flows of
processing depending on multiple conditions. Write the processing that must be executed
when each condition is true in the immediately following block. Write the processing that
must be executed when none of conditions holds true in the last "else" block.

True

False

 {

}

else {

}

else {

}

else{

}

Is condition
expression 1

true?

Is condition
expression 2

true?

Is condition
expression 3

true?

True

True

False

False

Execution
statement D

Execution
statement C

Execution
statement B

Execution
statement A

Execution statement A

Execution statement B

Execution statement C

Execution statement D

if (condition expression 1)

if (condition expression 2)

if (condition expression 3)

 Figure 1.4.2 Example for else-if statement

Example 1.4.2 Switchover of Arithmetic Operations-1 (else-if statement)

In this example, the program switches over the operation to be executed depending on the
content of the input data "sw".

Declares "select" function.
(Refer to Section 1.5, "Functions".)

Declares the variables used.

Defines "select" function.

If the content of "sw" is 1,

the program subtracts data.

If the content of "sw" is 2,

the program multiplies data.

If the content of "sw" is 4 or greater,

the program performs error

processing.

If the content of "sw" is 3,

If the content of "sw" is 0,

the program adds data.

void select(void);

int a = 29 , b = 40 ;
long int ans ;
char sw ;

void select(void)
{
 if(sw == 0){

ans = a + b ;
}
else if(sw == 1){

ans = a - b ;
}
else if(sw == 2){

ans = a∗b ;
}

 else if(sw == 3){
ans = a / b ;

}
else{

error();
}

}

the program divides data.

Example 1.4.2 Switchover of arithmetic operations -1 (else-if statement)

30

1
Introduction to C Language

1.4 Control Statements

switch-case statement

This statement causes program flow to branch to one of multiple processing depending on
the result of a given expression. Since the result of an expression is handled as a constant
when making decision, no relational operators, etc. can be used in this statement.

switch(expression){

case constant 1:

break;

 case constant 2:

break;

case constant 3:

break;

 default:

break;

}

Constant 1 Others

Execution
statement A

Determination
of expression

Constant 2 Constant 3

Execution
statement B

Execution
statement C

Execution
statement D

execution statement A

execution statement B

execution statement C

execution statement D

Figure 1.4.3 Example for switch-case statement

Example 1.4.3 Switchover of Arithmetic Operations-2 (switch-case statement)

In this example, the program switches over the operation to be executed depending on the
content of the input data "sw".

void select(void);

int a = 29 , b = 40 ;
long int ans ;
char sw ;

void select(void)
{

switch(sw){

case 0 : ans = a + b ;
break ;

case 1 : ans = a - b ;
break ;

case 2 : ans = a∗b ;
break ;

case 3 : ans = a / b ;
break ;

default : error();
break ;

}
}

Declares "select" function.
(Refer to Section 1.5, "Functions".)

Declares the variables used.

Defines "select" function.

If the content of "sw" is 0, the program
adds data.

If the content of "sw" is 1, the program
subtracts data.

If the content of "sw" is 2, the program
multiplies data.

If the content of "sw" is 4 or greater, the
program performs error processing.

If the content of "sw" is 3, the program
divides data.

 Determines the content of "sw".

Example 1.4.3 Switchover of arithmetic operations -2 (switch-case statement)

31

1
Introduction to C Language

1.4 Control Statements

Column Switch-case statement without break

A switch-case statement normally has a break statement entered at the end of each of its
execution statements.
If a block that is not accompanied by a break statement is encountered, the program
executes the next block after terminating that block. In this way, blocks are executed
sequentially from above. Therefore, this allows the start position of processing to be
changed depending on the value of an expression.

Constant 1Others

Execution
statement A

Determination
of expression

Constant 2Constant 3

Execution
statement B

Execution
statement C

Execution
statement D

switch(expression){

case constant 1:

 case constant 2:

case constant 3:

 default:

}

execution statement A

execution statement B

execution statement C

execution statement D

Figure 1.4.4 switch-case statement without break

32

1
Introduction to C Language

1.4 Control Statements

1.4.3 Repetition of Same Processing (repeat processing)

Control statements used to write repeat processing include "while", "for", and "do-while"
statements.
This section explains how to write these control statements and shows some examples of usage.

while statement

This statement executes processing in a block repeatedly as long as the given condition
expression is met. An endless loop can be implemented by writing a constant other than 0
in the condition expression, because the condition expression in this case is always "true".

 {

}

Is condition
expression

true?

Execution
statement A

True

False

Execution statement A

while
(condition expression)

Figure 1.4.5 Example for while statement

Example 1.4.4 Finding Sum Total -1 (while statement)

In this example, the program finds the sum of integers from 1 to 100.

void sum(void) ;

unsigned int total = 0 ;

void sum(void)
{

unsigned int i = 1 ;

while(i <= 100){
total += i ;
i ++ ;

}
}

Declares "sum" function. (Refer to Section 1.5,
"Functions".)

Declares the variables used.

Defines "sum" function.

 Defines and initializes counter variables.

Loops until the counter content reaches 100.

Changes the counter content.

Example 1.4.4 Finding sum total -1 (while statement)

33

1
Introduction to C Language

1.4 Control Statements

for statement

The repeat processing that is performed by using a counter like in Example 1.4.4 always
requires operations to "initialize" and "change" the counter content, in addition to
determining the given condition. A for statement makes it possible to write these
operations along with a condition expression. (See Figure 1.4.6.) Initialization (expression
1), condition expression (expression 2), and processing (expression 3) each can be
omitted. However, when any of these expressions is omitted, make sure the semicolons (;)
placed between expressions are left in. This for statement and the while statement
described above can always be rewritten.

for (expression 1; expression 2; expression 3){

Execution statement

}

Expression 1

Execution
statement

True

FalseIs expression 2
true?

Expression 3

Figure 1.4.6 Example for "for" statement

Example 1.4.5 Finding Sum Total -2 (for statement)

In this example, the program finds the sum of integers from 1 to 100.

void sum(void) ;

unsigned int total = 0 ;

void sum(void)
{

unsigned int i ;

for(i = 1 ; i <= 100 ; i++){
total += i ;

}
}

Declares "sum" function.
(Refer to Section 1.5, "Functions".)

Declares the variables used.

Defines "sum" function.

Defines counter variables.

Loops until the counter content
increments from 1 to 100.

Example 1.4.5 Finding sum total -2 (for statement)

34

1
Introduction to C Language

1.4 Control Statements

do-while statement

Unlike the for and while statements, this statement determines whether a condition is true
or false after executing processing (post-execution determination). Although there could be
some processing in the for or while statements that is never once executed, all processing
in a do-while statement is executed at least once.

Execution
statement A

do{

} Is condition
expression

true?

True

False

Execution statement

while (condition expression);

Figure 1.4.7 Example for do-while statement

Example 1.4.6 Finding Sum Total -3 (do-while statement)

In this example, the program finds the sum of integers from 1 to 100.

Declares "sum" function. (Refer to
Section 1.5, "Functions".)

Declares the variables used.

Defines "sum" function.

Defines and initializes counter variables.

Loops until the counter content increments from 1 to 100.

void sum(void) ;

unsigned int total = 0 ;

void sum(void)
{

unsigned int i = 0 ;

do{
i ++ ;
total += i ;

}while(i < 100) ;
}

Example 1.4.6 Finding sum total -3 (do-while statement)

35

1
Introduction to C Language

1.4 Control Statements

1.4.4 Suspending Processing

There are control statements (auxiliary control statements) such as break, continue, and goto
statements that make it possible to suspend processing and quit.
This section explains how to write these control statements and shows some examples of usage.

break statement

Use this statement in repeat processing or in a switch-case statement. When "break;" is
executed, the program suspends processing and exits only one block.

Execution statement
- - - - -
- - - - -
break;
- - - - -

Execution statement
- - - - -
break;
- - - - -

Is expression 2
true?

Expression 1

Expression 3

• When used in a while statement • When used in a for statement

Is condition
expression

true?

True

False

True

False

Figure 1.4.8 Example for break statement

continue statement

Use this statement in repeat processing. When "continue;" is executed, the program
suspends processing. After being suspended, the program returns to condition
determination when continue is used in a while statement or executes expression 3 before
returning to condition determination when used in a for statement.

Execution statement
- - - - - -
- - - - - -

continue;
- - - - - -

Execution statement
- - - - - -

continue;
- - - - - -

Expression 3

• When used in a while statement • When used in a for statement

Is expression 2
true?

Expression 1

Is condition
expression

true?

True

False

True

False

Figure 1.4.9 Example for continue statement

36

1
Introduction to C Language

1.4 Control Statements

goto statement

When a goto statement is executed, the program unconditionally branches to the label
written after the goto statement. Unlike break and continue statements, this statement
makes it possible to exit multiple blocks collectively and branch to any desired location in
the function. (See Figure 1.4.10.) However, since this operation is contrary to structured
programming, it is recommended that a goto statement be used in only exceptional cases
as in error processing.
Note also that the label indicating a jump address must always be followed by an
execution statement. If no operation need to be performed, write a dummy statement
(only a semicolon ';') after the label.

void main(void)
{

while(1){
 ····

while(···){
if(···){

goto err;
}

}
}
err: errorf();

} Entering a label
label: execution statement;

If no operation need to be performed,
label: ; (dummy statement)

Figure 1.4.10 Working of goto statement

37

1
Introduction to C Language

1.5 Functions

1.5 Functions

1.5.1 Functions and Subroutines

As subroutines are the basic units of program in the assembly language, so are the "functions" in
the C language.
This section explains how to write functions in NC30.

Arguments and return values

Data exchanges between functions are accomplished by using "arguments", equivalent to
input variables in a subroutine, and "return values", equivalent to output variables in a
subroutine.
In the assembly language, no restrictions are imposed on the number of input or output
variables. In the C language, however, there is a rule that one return value per function is
accepted, and a "return statement" is used to return the value. No restrictions are imposed
on arguments. (Note)

• "Subroutine" in assembly language

• "Function" in C language

Main routine

Subroutine

Main function (calling function)
Function (called function)

Argument 1
Argument 2

Return value
(One value per

function)
 return
}

SUB:

SUB_END:
 RTS

func(···)
{

JSR SUB

func(···) ;

return value;

Input variable 1
Input variable 2

Output variable 1
Output variable 2

•••

•••

Figure 1.5.1 "Subroutine" vs. "function"

Note: In some compilers designed for writing a finished program into ROM, the number of arguments is limited.

38

1
Introduction to C Language

1.5 Functions

1.5.2 Creating Functions

Three procedures are required before a function can be used. These are "function declaration"
(prototype declaration), "function definition", and "function call".
This section explains how to write these procedures.

Function declaration (prototype declaration)

Before a function can be used in the C language, function declaration (prototype
declaration) must be entered first. The type of function refers to the data types of the
arguments and the returned value of a function.
The following shows the format of function declaration (prototype declaration):

 data type of returned value function name (list of data types of arguments)

If there is no returned value and argument, write the type called "void" that means null.

Function definition

In the function proper, define the data types and the names of "dummy arguments" that are
required for receiving arguments. Use the "return statement'' to return the value for the
argument.
The following shows the format of function definition:

 data type of return value function name (data type of dummy argument 1 dummy
 { argument 1, ...)

return return value;
 }

Function call

When calling a function, write the argument for that function. Use a assignment operator to
receive a return value from the called function.

function name (argument 1, ...);

When there is a return value

variable = function name (argument 1, ...);

•••

39

1
Introduction to C Language

1.5 Functions

Example for a function

In this example, we will write three functions that are interrelated as shown below.

Main function
main

No argument No return value

Function 1
func 1

int type char type

/∗ Prototype declaration ∗/
void main (void) ;
int func1 (int) ;
void func2 (int , char) ;

/∗ Main function ∗/
void main()
{
 int a = 40 , b = 29 ;
 int ans ;
 char c = 0xFF ;

 ans = func1 (a) ;
 func2 (b , c) ;
}

/∗ Definition function 1 ∗/
int func1 (int x)
{
 int z ;

 return z ;
}
/∗ Definition function 2 ∗/
void func2 (int y , char m)
{

}

Calls function 1 ("func1") using a as argument.
Return value is substituted for "ans".

Returns a value for the argument
using a "return statement".

Calls function 2 ("func2") using b, c as arguments.
There is no return value.

int type

int type No return value

Function 2
func 2

•••

•••

Figure 1.5.2 Example for a function

40

1
Introduction to C Language

1.5 Functions

1.5.3 Exchanging Data between Functions

In the C language, exchanges of arguments and return values between functions are
accomplished by copying the value of each variable as it is passed to the receiver ("Call by
Value"). Consequently, the name of the argument used when calling a function and the name of
the argument (dummy argument) received by the called function do not need to coincide.
Since processing in the called function is performed using copied dummy arguments, there is no
possibility of damaging the argument proper in the calling function.
For these reasons, functions in the C language are independent of each other, making it possible
to reuse the functions easily.
This section explains how data are exchanged between functions.

Example 1.5.1 Finding Sum of Integers (example for a function)

In this example, using two arbitrary integers in the range of -32,768 to 32,767 as
arguments, we will create a function "add" to find a sum of those integers and call it from
the main function.

/∗ Prototype declaration ∗/
void main (void) ;
long add (int , int) ;

/∗ Main function ∗/
void main (void)
{
 long int answer ;
 int a = 29 , b = 40 ;

 answer = add (a , b) ;
}

/∗ Add function ∗/
long add (int x , int y)
{
 long int z ;

 z = (long int) x + y ;
 return z ;
}

(1) Calls the add function.

(2) Executes addition.

(3) Returns a value
 for the argument.

<Flow of data>

Main function

Add function

a b

x

answer29 40

(1) copy

z
(2)

(3) copy

dummy
argument y+ dummy

argument

Example 1.5.1 Finding sum of integers (a function)

41

1
Introduction to C Language

1.6 Storage Classes

1.6 Storage Classes

1.6.1 Effective Range of Variables and Functions

Variables and functions have different effective ranges depending on their nature, e.g., whether
they are used in the entire program or in only one function. These effective ranges of variables
and functions are called "storage classes (or scope)".
This section explains the types of storage classes of variables and functions and how to specify
them.

Effective range of variables and functions

A C language program consists of multiple source files. Furthermore, each of these source
files consists of multiple functions. Therefore, a C language program is hierarchically
structured as shown in Figure 1.6.1.

There are following three storage classes for a variable:
(1) Effective in only a function
(2) Effective in only a file
(3) Effective in the entire program

There are following two storage classes for a function:
(1) Effective in only a file
(2) Effective in the entire program

In the C language, these storage classes can be specified for each variable and each
function. Effective utilization of these storage classes makes it possible to protect the
variables or functions that have been created or conversely share them among the
members of a team.

Program

Storage classes of functionStorage classes of variable

(1)

(2)

(3)

(1)

(2)

Effective
range

Effective
rangeFile File

Function Function Function Function Function Function

Figure 1.6.1 Hierarchical structure and storage classes of C language program

42

1
Introduction to C Language

1.6 Storage Classes

1.6.2 Storage Classes of Variables

The storage class of a variable is specified when writing type declaration. There are following two
points in this:
(1) External and internal variables (→ location where type declaration is entered)
(2) Storage class specifier (→ specifier is added to type declaration)
This section explains how to specify storage classes for variables.

External and internal variables

This is the simplest method to specify the effective range of a variable. The variable
effective range is determined by a location where its type declaration is entered. Variables
declared outside a function are called "external variables" and those declared inside a
function are called "internal variables". External variables are global variables that can be
referenced from any function following the declaration. Conversely, internal variables are
local variables that can be effective in only the function where they are declared following
the declaration.

int main(void) ;
int func(void) ;

int tmp ;

int main(void)
{
 int a ;

}

int func(void)
{
 int b ;

}

External to function

Effective range of a

Effective range of b

Effective range
of tmp

External to function

Internal to function

Internal to function

Figure 1.6.2 External and internal variables

Storage class specifiers

The storage class specifiers that can be used for variables are auto, static, register, and
extern. These storage class specifiers function differently when they are used for external
variables or internal variables. The following shows the format of a storage class specifier.

storage class specifier ∆ data type ∆ variable name;

43

1
Introduction to C Language

1.6 Storage Classes

Storage classes of external variable

If no storage class specifier is added for an external variable when declaring it, the variable
is assumed to be a global variable that is effective in the entire program. On the other
hand, if an external variable is specified of its storage class by writing "static" when
declaring it, the variable is assumed to be a local variable that is effective in only the file
where it is declared.
Write the specifier "extern" when using an external variable that is defined in another file
like "mode" in source file 2 of Figure 1.6.3.

char mode ;
static int count ;

void func1(void)
{
 mode = STOP ;
 count = 0 ;

extern char mode ;
static int count ;

void func2(void)
{
 mode = BACK ;
 count = 100 ;

Source file 1 Source file 2
Memory space

Common mode

count of source
file 1

count of source
file 2

Stack area

Data area

Program
area

•••

•••

•••

•••

Figure 1.6.3 Storage classes of external variable

Storage classes of internal variable

An internal variable declared without adding any storage class specifier has its area
allocated in a stack. Therefore, such a variable is initialized each time the function is
called. On the other hand, an internal variable whose storage class is specified to be
"static" is allocated in a data area. In this case, therefore, the variable is initialized only
once when starting up the program.

void func1(void)
{
 char flag = 0 ;
 static int count = 0 ;

 flag = SET ;
 count = count + 1 ;
 func2() ;

}
void func2(void)
{
 char flag = 0 ;
 static int count = 0 ;

 flag = SET ;
 count = count + 1 ;

}

Source file

Memory space

count of func1

count of func2

Stack area

Data area

Program
area

Return
address

flag of func2

flag of func1

•••

•••

•••

•••

•••

•••

•••

•••

•••

Figure 1.6.4 Storage classes of internal variable

44

1
Introduction to C Language

1.6 Storage Classes

1.6.3 Storage Classes of Functions

The storage class of a function is specified on both function defining and function calling sides.
The storage class specifiers that can be used here are static and extern.
This section explains how to specify the storage class of a function.

Global and local functions

(1) If no storage class is specified for a function when defining it
This function is assumed to be a global function that can be called and used from any
other source file.

(2) If a function is declared to be "static" when defining it
This function is assumed to be a local function that cannot be called from any other
source file.

(3) If a function is declared to be "extern" in its type declaration
This storage class specifier indicates that the declared function is not included in the
source file where functions are declared, and that the function in some other source file
be called. However, only if a function has its type declared--even though it may not be
specified to be "extern", if the function is not found in the source file, the function in
some other source file is automatically called in the same way as when explicitly
specified to be "extern".

Source file 1

void func1(void) ;
extern void func2(void) ;
void func3(void) ;

void main(void)
{
 func1() ;
 func2() ;
 func3() ;
}

void func1(void)
{
 ···
}

void func2(void)
{
 ···
}

static void func3(void)
{
 ···
}

Can be called

Can be called

Can be called

Source file 2

Figure 1.6.5 Storage classes of function

45

1
Introduction to C Language

1.6 Storage Classes

Summary of storage classes

Storage classes of variables are summarized in Table 1.6.1. Storage classes of functions
are summarized in Table 1.6.2.

Table 1.6.1 Storage Classes of Variables

Storage

class
External variable Internal variable

Storage

class

specifiers

omitted

Global variables that can also be

referenced from other source files.

[Allocated in a data area]

Variables that are effective in only the

function [Allocated in a stack when

executing the function]

auto

Variables that are effective in only the

function [Allocated in a stack when

executing the function]

static

Local variables that cannot be

referenced from other source files

[Allocated in a data area]

Variables that are effective in only the

function [Allocated in a data area]

register

Variables that are effective in only the

function [Allocated in a register when

executing the function]

However, they do not have any effect

in NC30 (ignored when compiled).

extern

Variables that reference variables in

other source files

[Not allocated in memory]

Variables that reference variables in

other source files (cannot be

referenced from other functions)

[Not allocated in memory]

Table 1.6.2 Storage Classes of Functions

Storage class Types of functions

Storage class

specifiers

omitted

Global functions that can be called and executed from other source files

[Specified on function defining side]

static
Local functions that can not be called and executed from other source files

[Specified on function defining side]

extern Calls a function in other source files [Specified on function calling side]

46

1
Introduction to C Language

1.7 Arrays and Pointers

1.7 Arrays and Pointers

1.7.1 Arrays

Arrays and pointers are the characteristic features of the C language.
This section describes how to use arrays and explains pointers that provide an important means
of handling the array.

What is an array?

The following explains the functionality of an array by using a program to find the total age
of family members as an example. The family consists of parents (father = 29 years old,
mother = 24 years old), and a child (boy = 4 years old). (See Example 1.7.1.)
In this program, the number of variable names increases as the family grows. To cope with
this problem, the C language uses a concept called an "array". An array is such that data
of the same type (int type) are handled as one set. In this example, father's age (father),
mother's age (mother), and child's age (boy) all are not handled as separate variables, but
are handled as an aggregate as family age (age). Each data constitutes an "element" of
the aggregate. Namely, the 0'th element is father, the 1st element is mother, and the 2nd
element is the boy.

father

mother

age
29

24

boy

4
29
24

4

Multiple
variables of the
same data type

Array

0'th element (= papa)

1st element (= mama)

Figure 1.7.1 Concept of an array

Example 1.7.1 Finding Total Age of a Family -1

In this example, we will find the total age of family members (father, mother, and boy).

void main(void)
{
 int father = 29 ;
 int mother = 24 ;
 int boy = 4 ;
 int total ;

 total = father + mother + boy ;
}

void main(void)
{
 int father = 29 ;
 int mother = 24 ;
 int boy = 4 ;
 int sister 1 = 1 ;
 int sister 2 = 1 ;

int total ;

 total = father + mother + boy + sister 1 + sister 2 + ···;
}

As the family grows, so do the type declaration of
variables and the execution statements to be initialized.

Example 1.7.1 Finding total age of a family -1

47

1
Introduction to C Language

1.7 Arrays and Pointers

1.7.2 Creating an Array

There are two types of arrays handled in the C language: "one-dimensional array" and "two-
dimensional array".
This section describes how to create and reference each type of array.

One-dimensional array

A one-dimensional array has a one-dimensional (linear) expanse. The following shows the
declaration format of a one-dimensional array.

Data type array name [number of elements];

When the above declaration is made, an area is allocated in memory for the number of
elements, with the array name used as the beginning label.
To reference a one-dimensional array, add element numbers to the array name as
subscript. However, since element numbers begin with 0, the last element number is 1 less
than the number of elements.

char buff1[3] ;
int buff2[3] ;

buff1[0]

buff1[1]

buff2[0]

buff2[1]

buff1[2]

buff2[2]

8 bits

char buff1[] = {
 'a' , 'b' , 'c'
} ;

int buff2[] = {
 10 , 20 , 30
} ;

'a'

'b'

10

20

'c'

30

8 bits

buff 1→

buff 2→

buff 1→

buff 2→

• Declaration of one-dimensional array • Declaration and initialization of one-dimensional array

Figure 1.7.2 Declaration of one-dimensional array and memory mapping

Example 1.7.2 Finding Total Age of a Family -2

In this example, we will find the total age of family members by using an array.

#define MAX 3 (Note)

void main(void)
{
 int age[MAX] ;
 int total = 0 ;
 int i ;

 age[0] = 29 ;
 age[1] = 24 ;
 age[2] = 4 ;

 for(i = 0 ; i < MAX ; i++) {
 total += age[i] ;
 }

#define MAX 3

void main(void)
{
 int age[] = {
 29 , 24 , 4
 };

 int total = 0 ;
 int i ;

 for(i = 0 ; i < MAX ; i++) {
 total += age[i] ;
 }
}

(Note): #define MAX 3: Synonym defined as MAX = 3.
 (Refer to Section 1.9, Preprocess Commands".)

or Initialized simultaneously
when declared.

By using an array, it is
possible to utilize a
repeat statement where
the number of elements
are used as variables.

Example 1.7.2 Finding total age of a family -2

48

1
Introduction to C Language

1.7 Arrays and Pointers

Two-dimensional array

A two-dimensional array has a planar expanse comprised of "columns" and "rows". Or it
can be considered to be an array of one-dimensional arrays. The following shows the
declaration format of a two-dimensional array.

Data type array name [number of rows] [number of columns];

To reference a two-dimensional array, add "row numbers" and "column numbers" to the
array name as subscript. Since both row and column numbers begin with 0, the last row
(or column) number is 1 less than the number of rows (or columns).

Row 0
column 0

Row 1
column 0

Columns→

char buff 1[2][3] ;
buff 1[0][0]

buff 1[0][1]

buff 1[0][2]

buff 1[1][0]

buff 1[1][1]

buff 1[1][2]

buff 1[0]→

buff 1[1]→

char buff 1[2][3] = {
 { 'a' , 'b' , 'c' } ,
 { 'd' , 'e' , 'f' } ,
} ;

'a'

'b'

'c'

'd'

'e'

'f'

buff 1[0]→

buff 1[1]→

int buff 2[2][3] ; buff 2[0][0]

buff 2[0][1]

buff 2[0][2]

buff 2[1][0]

buff 2[1][1]

buff 2[1][2]

buff 2[0]→

buff2[1]→

int buff 2[][3] = {
 10 , 20 , 30 , 40 , 50 , 60
} ;

10

20

30

40

50

60

buff 2[0]→

buff 2[1]→

• Concept of two-dimensional array

• Declaration and initialization of two-
 dimensional array

• Declaration and initialization of two-dimensional array

When initializing a two-
dimensional array
simultaneously with
declaration,
specification of the
number of rows can be
omitted. (Number of
columns cannot be
omitted.)

Rows Row 0
column 1

Row 0
column 2

Row 0
column 3

Row 1
column 1

Row 1
column 2

Row 1
column 3

Row 2
column 0

Row 2
column 1

Row 2
column 2

Row 2
column 3

↓

Figure 1.7.3 Declaration of two-dimensional array and memory mapping

49

1
Introduction to C Language

1.7 Arrays and Pointers

1.7.3 Pointers

A pointer is one that points to data; i.e., it indicates an address.
A "pointer variable" which will be described here handles the "address" at which data is stored as
a variable. This is equivalent to one that is referred to as "indirect addressing" in the assembly
language.
This section explains how to declare and reference a pointer variable.

Declaring a pointer variable

The format show below is used to declare a pointer variable.

Pointed data type ∗ pointer variable name;

However, it is only an area to store an address that is allocated in memory by the above
declaration. For the data proper to be assigned an area, it is necessary to write type
declaration separately.

char ∗p ; int ∗p ; char ∗∗p ;

p

int type
data

p

char type
data

p
 Address

char type
data

• Pointer variable declaration

No area is allocated.

∗p∗p ∗p

∗∗p

 Address

 Address

 Address

Figure 1.7.4 Pointer variable declaration and memory mapping

50

1
Introduction to C Language

1.7 Arrays and Pointers

Relationship between pointers and variables

The following explains the relationship between pointer variables and variables by using a
method for substituting constant '5' by using pointer variable 'p' for variable of int type 'a' as
an example.

void main(void)
{
 int a ;
 int ∗p ;

 p = &a ;
 ∗p = 5 ;
}

This "&a" indicates the address of
variable 'a'.
This "∗p" indicates the content of
variable 'a'.

Address modifier
 ↓

Figure 1.7.5 Relationship between pointer variables and variables

Column Data length of pointer variable

The data length of variables in C language programs are determined by the data type. For
a pointer variable, since its content is an address, the data length provided for it is
sufficiently large to represent the entire address space that can be accessed by the
microprocessor used.
Pointer variables in NC30 are two or four bytes in data length depending on the location
(near or far area) where the corresponding data is stored. For details about this, refer to
Section 2.1, "Memory Mapping".

51

1
Introduction to C Language

1.7 Arrays and Pointers

1.7.4 Using Pointers

This section shows some examples for effectively using a pointer.

Pointer variables and one-dimensional array

When an array is declared by using subscripts to indicate its element numbers, it is
encoded as "index addressing". In this case, therefore, address calculations to determine
each address "as reckoned from the start address" are required whenever accessing the
array.
On the other hand, if an array is declared by using pointer variables, it can be accessed in
indirect addressing.

void main(void)
{
 char str[] = "ab" ;
 char ∗p ;
 char t ;

 p = str ;
 t = ∗(p + 1) ;

str
'a'

'b'

'\0'

'b'

p

str[0] or ∗p

str[1] or ∗(p+1)

str[1] or ∗(p+2)

t

The start address of a one-dimensional array can be obtained by "str".
(Address modifier '&' is unnecessary.)

Figure 1.7.6 Pointer variables and one-dimensional array

Pointer variables and two-dimensional array

As in the case of a one-dimensional array, a two- dimensional array can also be accessed
by using pointer variables.

void main(void)
{
 char mtx[2][3] = {
 "ab" , "cd"
 } ;
 char ∗p ;
 char t ;

 p = mtx[1];
 t = ∗(p + 1) ;

mtx[0]
'a'

'b'

'\0'

'd'

p

mtx[1][0] or ∗p

mtx[1][1] or ∗(p+1)

mtx[1][2] or ∗(p+2)

t

The start address of the first row of a two-dimensional array
"mtx" can be obtained by "mtx[1]". ('&' is unnecessary.)

'c'

'd'

'\0'

mtx[1]

mtx[0][0]
mtx[0][1]

mtx[0][2]

•••

Figure 1.7.7 Pointer variables and two-dimensional array

52

1
Introduction to C Language

1.7 Arrays and Pointers

Passing addresses between functions

The basic method of passing data to and from C language functions is referred to as "Call
by Value". With this method, however, arrays and character strings cannot be passed
between functions as arguments or returned values.
Used to solve this problem is a method, known as "Call by Reference", which uses a
pointer variable. In addition to passing the addresses of arrays or character strings
between functions, this method can be used when it is necessary to pass multiple data as a
returned value.
Unlike the Call by Value method, this method has a drawback in that the independency of
each function is reduced, because the data in the calling function is rewritten directly.
Figure 1.7.8 shows an example where an array is passed between functions using the Call
by Reference method.

#define MAX 5
void cls_str (char ∗) ;

void main (void)
{
 char str [MAX] ;

 cls_str (str) ;

}

void cls_str (char ∗p)
{
 int i ;

 for (i = 0 ; i < MAX ; i ++){
 ∗(p + i) = 0 ;
 }
}

str

p

str [0]

str [1]

The array's start
address is passed
as argument.

Received as pointer variable

The array body is
operated on.

<Calling function> <Called function>

∗p

•••

•••

=
•••

•••

Figure 1.7.8 Example of Call by Reference for passing an array

Column Passing data between functions at high speed

In addition to the Call by Value and the Call by Reference methods, there is another
method to pass data to and from functions. With this method, the data to be passed is
turned into an external variable.
This method results in loosing the independency of functions and, hence, is not
recommended for use in C language programs. Yet, it has the advantage that functions
can be called at high speed because entry and exit processing (argument and return value
transfers) normally required when calling a function are unnecessary. Therefore, this
method is frequently used in ROM'ed programs where general-purpose capability is not an
important requirement and the primary concern is high-speed processing.

53

1
Introduction to C Language

1.7 Arrays and Pointers

1.7.5 Placing Pointers into an Array

This section explains a "pointer array" where pointer variables are arranged in an array.

Pointer array declaration

The following shows how to declare a pointer array.

Data type far(Note) ∗ array name [number of elements];

• Pointer array declaration

char far ∗ptr1[3] ;
int far ∗ptr2[3] ;

ptr1 → ptr1[0]

ptr1[1]

ptr1[2]

ptr2[0]

ptr2[1]

ptr2[2]

ptr2 →

char type data

char type data

char type data

int type data

int type data

int type data

• Pointer array initialization

char far ∗ptbl[4] = {
 "STOP",
 "START",
 "RESET",
 "RESTART"
} ;

ptbl →

'S' 'T' 'O' 'P' '\0'

'S' 'T' 'A' 'R' '\0''T'

'R' 'E' 'S' 'E' '\0''T'

'R' 'E' '\0''S' 'T' 'A' 'R' 'T'

ptbl[0]

ptbl[1]

ptbl[2]

ptbl[3]

Address of 'S'

Address of 'S'

Address of 'R'

Address of 'R'

Each character string's start address is stored here.

Figure 1.7.9 Pointer array declaration and initialization

Note: In NC30, the body data of a pointer array is located in the far area. Consequently, be sure to write "far" for the pointer. (For
details, refer to Section 2.3.1, "Efficient Addressing".)

54

1
Introduction to C Language

1.7 Arrays and Pointers

Pointer array and two-dimensional array

The following explains the difference between a pointer array and a two-dimensional array.
When multiple character strings each consisting of a different number of characters are
declared in a two-dimensional array, the free spaces are filled with null code "\0". If the
same is declared in a pointer array, there is no free space in memory. For this reason, a
pointer array is a more effective method than the other type of array when a large amount
of character strings need to be operated on or it is necessary to reduce memory
requirements to a possible minimum.

char name[][7] ={
 "Norita" ,
 "Rumi" ,
 "Ryo-ma"
} ;

char far ∗name[3] = {
 "Norita" ,
 "Rumi" ,
 "Ryo-ma"
} ;

'N' 'o' 'r' 't''i' 'a' '\0'

'R' 'u' 'm' 'i'

'R' 'y' 'o' '-' 'm' 'a'

'\0' '\0' '\0'

'\0'

'N' 'o' 'r' 't''i' 'a' '\0'

'R' 'u' 'm' 'i' '\0'

'R' 'y' 'o' '-' 'm' 'a' '\0'

name[0]

name[1]

name[2]

• Two-dimensional array

• Pointer array

Address of 'N'

Address of 'R'

Address of 'R'

Filled with null code.

Figure 1.7.10 Difference between two-dimensional array and pointer array

55

1
Introduction to C Language

1.7 Arrays and Pointers

1.7.6 Table Jump Using Function Pointer

In assembly language programs, "table jump" is used when switching processing load increases
depending on the contents of some data. The same effect as this can be obtained in C language
programs also by using the pointer array described above.
This section explains how to write a table jump using a "function pointer".

What does a function pointer mean?

A "function pointer" is one that points to the start address of a function in the same way as
the pointer described above. When this pointer is used, a called function can be turned
into a parameter. The following shows the declaration and reference formats for this
pointer.

<Declaration format> Type of return value (∗ function pointer name) (data type of argument);

<Reference format> Variable in which to store return value = (∗ function pointer name) (argument);

56

1
Introduction to C Language

1.7 Arrays and Pointers

Example 1.7.3 Switching Arithmetic Operations Using Table Jump

The method of calculation is switched over depending on the content of variable "num".

/∗ Prototype declaration∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
int calc_f (int , int , int) ;
int add_f (int , int) , sub_f (int , int) ;
int mul_f (int , int) , div_f (int , int) ;

/∗ Jump table ∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
int (∗const jmptbl[]) (int , int) = {
 add_f , sub_f , mul_f , div_f
} ;

void main (void)
{
 int x = 10 , y = 2 ;
 int num , val ;

 num = 2 ;
 if (num < 4) {
 val = calc_f (num , x , y) ;
 }
}

int calc_f (int m , int x , int y)
{
 int z ;
 int (∗p) (int , int) ;

 p = jmptbl [m] ;
 z = (∗p) (x , y) ;
 return z ;
}

Setting of jump address

Function call using a function pointer

Start address
of "add_f"

Start address
of "sub_f"

Start address
of "mul_f"

Start address
of "div_f"

jmptbl[0]

jmptbl[1]

jmptbl[2]

jmptbl[3]

Function pointers arranged in an array

Example 1.7.3 Switching arithmetic operations using table jump

57

1
Introduction to C Language

1.8 Struct and Union

1.8 Struct and Union

1.8.1 Struct and Union

The data types discussed hereto (e.g., char, signed int, and unsigned log int types) are called the
"basic data types" stipulated in compiler specifications.
The C language allows the user to create new data types based on these basic data types.
These are "struct" and "union".
The following explains how to declare and reference structs and unions.

From basic data types to structs

Structs and unions allows the user to create more sophisticated data types based on the
basic data types according to the purposes of use. Furthermore, the newly created data
types can be referenced and arranged in an array in the same way as the basic data types.

Names

Addresses

Telephone
numbers

Dates of
birth

Names
Addresses
Telephone
numbers
Dates of birth

Basic data types
(elements of struct)

More sophisticated
data types (structs)

Collectively
managed

Figure 1.8.1 From basic data types to structs

58

1
Introduction to C Language

1.8 Struct and Union

1.8.2 Creating New Data Types

The elements that constitute a new data type are called "members". To create a new data type,
define the members that constitute it. This definition makes it possible to declare a data type to
allocate a memory area and reference it as necessary in the same way as the variables
described earlier.
This section describes how to define and reference structs and unions, respectively.

Difference between struct and union

When allocating a memory area, members are located differently for structs and unions.
(1) Struct: Members are sequentially located.
(2) Union: Members are located in the same address.

 (Multiple members share the same memory area.)

Definition and declaration of struct

To define a struct, write "struct".

struct struct tag {
 member 1;
 member 2;

•
•
•

};

The above description creates a data type "struct struct tag". Declaration of a struct with
this data type allocates a memory area for it in the same way as for an ordinary variable.

struct ∆ struct tag ∆ struct variable name;

59

1
Introduction to C Language

1.8 Struct and Union

Referencing struct

To refer to each member of a struct, use a period '.' that is a struct member operator.

struct variable name.member name

To initialize a struct variable, list each member's initialization data in the order they are
declared, with the types matched.

struct person{
 char ∗name ;
 long number ;
 char section[5] ;
 int work_year ;
} ;

void main(void)
{
 struct person a , b ;

a

name

number

section[0]
section[1]

section[2]
section[3]
section[4]

work_year

a.name

a.number

a.section[0]

a.section[4]

a.work_year

to

If the area that contains name is a near area, "struct person" becomes a 13-byte type; if a far
area, it becomes a 15-byte type.

struct person a = {
 "SATOH" , 10025 , "T511" , 25
} ;

b

Address
of 's'

10025

'T'
'5'

'1'
'1'
'\0'

25

a.name

a.number

a.section[0]

a.section[4]

a.work_year

to

∗ Initialization of struct variable

•••

•••

•••

•••

•••

•••

•••

•••

Figure 1.8.2 Struct declaration and memory mapping

60

1
Introduction to C Language

1.8 Struct and Union

Example for referencing members using a pointer

To refer to each member of a struct using a pointer, use an arrow '->'.

Pointer -> member name

struct person{
 char far ∗name ;
 long number ;
 char section[5] ;
 int work_year ;
} ;
struct person a = {
 "SATOH" , 10025 , "T511" , 25
} ;

void main(void)
{
 struct person ∗p ;
 p = &a ;

a or ∗p

p

Address
of 'S'

10025

'T'
'5'
'1'
'1'
'\0'

25

p->name

p->number

p->section[0]

p->section[4]

p->work_year

to

&a

•••

•••

•••

•••

Figure 1.8.3 Example for referencing members using a pointer

61

1
Introduction to C Language

1.8 Struct and Union

Unions

Unions are characteristic in that an allocated memory area is shared by all members.
Therefore, it is possible to save on memory usage by using unions for multiple entries of
such data that will never exist simultaneously. Unions also will prove convenient when they
are used for data that needs to be handled in different units of data size, e.g., 16 bits or 8
units, depending on situation.
To define a union, write "union". Except this description, the procedures for defining,
declaring, and referencing unions all are the same as explained for structs.

union pack {
 long all ;
 char byte[4] ;
 short word[2] ;
} ;

void main(void)
{
 union pack a , b ;

a

all

b

byte

word

[0]

[1]

[2]

[3]

[0]

[1]

A 4-byte area is shared by all,
byte, and word.

•••

•••

•••

•••

•••

•••

Figure 1.8.4 Declaring and referencing a union

Column Type definition

Since structs and unions require the keywords "struct" and "union", there is a tendency that
the number of characters in defined data types increases. One method to circumvent this
is to use a type definition "typedef".

typedef existing type name new type name;

When the above description is made, the new type name is assumed to be synonymous
with the existing type name and, therefore, either type name can be used in the program.
Figure 1.8.5 below shows an example of how "typedef" can actually be used.

When using type definition, the struct
(union) tag name is unnecessary.

struct data{
 char a ;
 short b ;
 long c ;
} ;

struct data sdata , ∗sptr ;

typedef struct {
 char a ;
 short b ;
 long c ;
} DATA ;

DATA sdata , ∗sptr ;
•••

•••

Figure 1.8.5 Example for using type definition "typedef"

62

1
Introduction to C Language

1.9 Preprocess Commands

1.9 Preprocess Commands

1.9.1 Preprocess Commands of NC30

The C language supports file inclusion, macro function, conditional compile, and some other
functions as "preprocess commands".
The following explains the main preprocess commands available with NC30.

Preprocess command list of NC30

Preprocess commands each consist of a character string that begins with the symbol '#' to
discriminate them from other execution statements. Although they can be written at any
position, the semicolon ';' to separate entries is unnecessary. Table 1.9.1 lists the main
preprocess commands that can be used in NC30.

Table 1.9.1 Main Preprocess Commands of NC30

Description Function

#include Takes in a specified file.

#define Replaces character string and defines macro.

#undef Cancels definition made by #define.

#if to #elif to #else to #endif Performs conditional compile.

#ifdef to #elif to #else to

#endif
Performs conditional compile.

#ifndef to #elif to #else to

#endif
Performs conditional compile.

#error
Outputs message to standard output devices before suspending

processing.

#line Specifies a file's line numbers.

#assert Outputs alarm when constant expression is false.

#pragma
Instructs processing of NC30's extended function. This is

detailed in Chapter 2.

63

1
Introduction to C Language

1.9 Preprocess Commands

1.9.2 Taking in A File

Use the command "#include" to take in another file. NC30 requires different methods of
description depending on the directory to be searched.
This section explains how to write the command "#include" for each purpose of use.

Searching for standard directory

#include <file name>

This statement takes in a file from the directory specified with the startup option '–I.' If the
specified file does not exist in this directory, NC30 searches the standard directory that is
set with NC30's environment variable "INC30" as it takes in the file.
As the standard directory, normally specify a directory that contains the "standard include
file".

Searching for current directory

#include "file name"

This statement takes in a file from the current directory. If the specified file does not exist in
the current directory, NC30 searches the directory specified with the startup option '–I' and
the directory set with NC30's environment variable "INC30" in that order as it takes in the
file.
To discriminate your original include file from the standard include file, place that file in the
current directory and specify it using this method of description.

Example for using "#include"

NC30's command "#include" can be nested in up to 8 levels. If the specified file cannot be
found in any directory searched, NC30 outputs an include error.

/∗include∗∗∗∗∗∗∗∗∗∗/

#include <stdio.h>

#include "usr_global.h"

/∗main function∗∗∗∗∗∗∗∗∗∗/
void main (void)
{

}

The header of a global variable is read
from the current directory.

The standard include file is read from the
standard directory.

•••

Figure 1.9.1 Typical description of "#include"

64

1
Introduction to C Language

1.9 Preprocess Commands

1.9.3 Macro Definition

Use the "#define identifier" for character string replacement and macro definition. Normally use
uppercase letters for this identifier to discriminate it from variables and functions.
This section explains how to define a macro and cancel a macro definition.

Defining a constant

A constant can be assigned a name in the same way as in the assembler "equ statement".
This provides an effective means of using definitions in common to eliminate magic
numbers (immediates with unknown meanings) in the program.

#define THRESHOLD 100

#define UPPER_LIMIT (THRESHOLD + 50)

#define LOWER_LIMIT (THRESHOLD – 50)
Sets the upper limit at +50.

Defines that the threshold = 100.

Sets the lower limit at +50.

Figure 1.9.2 Example for defining a constant

Defining a character string

It is possible to assign a character string a name or, conversely, delete a character string.

#define TITLE "Position control program"
char mess[] = TITLE ;

#define void

void func()
{

}

The defined character string is inserted at
the position of "TITLE".

"void" is deleted.
For a compiler where "void" is not supported, this definition
eliminates the need for modification in the source file.

•••

Figure 1.9.3 Example for defining a character string

65

1
Introduction to C Language

1.9 Preprocess Commands

Defining a macro function

The command "#define" can also be used to define a macro function. This macro function
allows arguments and return values to be exchanged in the same way as with ordinary
functions. Furthermore, since this function does not have the entry and exit processing that
exists in ordinary functions, it is executed at higher speed.
What's more, a macro function does not require declaring the argument's data type.

 #define ABS(a) ((a) > 0 ? (a) : – (a))

#define SEQN(a , b , c) {\
 func1(a) ; \
 func2(b) ; \
 func3(c) ; \
 }

Macro function that returns the
argument's absolute value

The symbol "\" denotes successive description.
Descriptions entered even after line feed are
assumed to be part of a continuous character
string.

Enclose a complex
statement with brackets
'{' and '}'.

Figure 1.9.4 Example for defining a macro function

Canceling definition

#undef identifier

Replacement of the identifier defined in "#define" is not performed after "#undef".
However, do not use "#undef" for the following four identifiers because they are the
compiler's reserved words.

• _FILE_ Source file name
• _LINE_ Line number of current source file
• _DATA_ Compilation date
• _TIME_ Compilation time

66

1
Introduction to C Language

1.9 Preprocess Commands

1.9.4 Conditional Compile

NC30 allows you to control compilation under three conditions.
Use this facility when, for example, controlling function switchover between specifications or
controlling incorporation of debug functions.
This section explains types of conditional compilation and how to write such statements.

Various conditional compilation

Table 1.9.2 lists the types of conditional compilation that can be used in NC30.

Table 1.9.2 Types of Conditional Compile

Description Content

#if condition expression

 A

#else

 B

#endif

If the condition expression is true (not 0), NC30 compiles

block A; if false, it compiles block B.

#ifdef identifier

 A

#else

 B

#endif

If an identifier is defined, NC30 compiles block A; if not

defined, it compiles block B.

#ifndef identifier

 A

#else

 B

#endif

If an identifier is not defined, NC30 compiles block A; if

defined, it compiles block B.

In all of these three types, the "#else" block can be omitted. If classification into three or
more blocks is required, use "#elif" to add conditions.

Specifying identifier definition

To specify the definition of an identifier, use "#define" or NC30 startup option '-D'.

#define identifier ←Specification of definition by "#define"

%nc30 -D identifier ←Specification of definition by startup option

67

1
Introduction to C Language

1.9 Preprocess Commands

Example for conditional compile description

Figure 1.9.5 shows an example for using conditional compilation to control incorporation of
debug functions.

#define DEBUG

void main (void)
{

#ifdef DEBUG
 check_output() ;
#else
 output() ;
#endif

}

#ifdef DEBUG
void check_output (void)
{

}
#endif

It defines an identifier "DEBUG". (Set to debug mode.)

When in debug mode, it calls "debug function;" otherwise, it
calls "ordinary output function". In this case, it calls "debug
function".

When in debug mode, it incorporates "debug function".

•••

•••

•••

Figure 1.9.5 Example for conditional compile description

68

1
Introduction to C Language

1.9 Preprocess Commands

Chapter 2
ROM'ing Technology

2.1 Memory Mapping
2.2 Startup Program
2.3 Extended Functions for ROM'ing
2.4 Linkage with Assembly Language
2.5 Interrupt Processing

This chapter describes precautions to be followed when
creating built-in programs by focusing on the extended
functions of NC30.

70

2
ROM'ing Technology

2.1 Memory Mapping

71

2
ROM'ing Technology

2.1 Memory Mapping

2.1 Memory Mapping

2.1.1 Types of Code and Data

There are various types of data and code that constitute a program. Some are rewritable, and
some are not. Some have initial values, and some do not. All data and code must be mapped
into the ROM, RAM, and stack areas according to their properties.
This section explains the types of data and code that are generated by NC30.

Data and code generated by NC30

Figure 2.1.1 shows the types of data and code generated by NC30 and their mapped
memory areas.

Variable data
Automatic
variable

Static
variable

Fixed data

Constant,
character string

Program

With initial value

Without initial value

To stack area

To RAM and ROM areas

To RAM area

To ROM area

To ROM area

Figure 2.1.1 Types of data and code generated by NC30 and their mapped areas

Handling of static variables with initial values

Since "static variables with initial values" are rewritable data, they must reside in RAM.
However, if variables are stored in RAM, initial values cannot be set for them.
To solve this problem, NC30 allocates an area in RAM for such static variables with initial
values and stores initial values in ROM. Then it copies the initial values from ROM into
RAM in the startup program.

0x41

0x12

0x34

RAM area ROM area

Initial value of "moji"

Initial value of "seisu"

moji:

seisu:

char moji = 'A' ;
int seisu = 0x1234 ;
void main (void)

{

}
Startup program

RAM area

moji:

seisu:

0x41

0x12

0x34

Block transfer from
ROM to RAM

Setting of
initial values
completed

•••

Figure 2.1.2 Handling of static variables with initial values

72

2
ROM'ing Technology

2.1 Memory Mapping

2.1.2 Sections Managed by NC30

NC30 manages areas in which data and code are located as "sections".
This section explains the types of sections generated and managed by NC30 and how they are
managed.

Sections types

NC30 classifies data into sections by type for management purposes. (See Figure 2.1.3.)
Table 2.1.1 lists the sections types managed by NC30.

Table 2.1.1 Sections types Managed by NC30

Section base name Content

data Contains static variables with initial values.

bss Contains static variables without initial values.

rom Contains character strings and constants.

program Contains programs.

vector Variable vector area (compiler does not generate)

fvector Fixed vector area (compiler does not generate)

stack Stack area (compiler does not generate)

heap Heap area (compiler does not generate)

int i = 1 ;

char c = '0' ;

int i, k ;

const char cc = 'a' ;

void main(void)

{

 int l , m ;

i = i + k ;

}

data section

bss section

stack section

program section

rom section

data_I section

RAM

ROM

(Compiler does not
generate)

Static
variables with
initial values

Static variables
without initial
values

Initial values

Programs

Character strings,
constants

Automatic
variables

Figure 2.1.3 Mapping data into sections by type

73

2
ROM'ing Technology

2.1 Memory Mapping

Sections attributes

The sections generated by NC30 are further classified into smaller sections by their
"attributes", i.e., whether or not they have initial value, in which area they are
mapped, and their data size.
Table 2.1.2 lists the symbols representing each attribute and its contents.

Table 2.1.2 Sections attributes

Attribute Content
Applicable

section name

I Section to hold data's initial value. data

N/F/S

N-near attribute (64-byte area at absolute addresses from 0 to 0FFFF)

F-far attribute (entire 1-Mbyte memory area from address 0 to FFFFF)

S-SBDATA attribute (area where SB relative addressing can be used)

data,bss,rom

E/O
E-Data size is even.

O-Data size is odd.
data,bss,rom

 For details on how to specify these attributes, refer to Section 2.3.1, "Efficient Addressing".

Rule for naming sections

The sections generated by NC30 are named after their section base name and attributes.
Figure 2.1.4 shows a combination of each section base name and attributes.

Attribute Meaning
N
F

S
E

O

I

near attribute

far attribute

SBDATA attribute
Even-size data

Odd-size data

Contains initial value

Section base name

data bss rom program

Section name = section base name_attribute

Figure 2.1.4 Rule for assigning section names

74

2
ROM'ing Technology

2.1 Memory Mapping

2.1.3 Control of Memory Mapping

NC30 provides extended functions that enable memory mapping to be performed in an efficient
way to suit the user's system.
This section explains NC30's extended functions useful for memory mapping.

Changing section names (#pragma SECTION)

#pragma ∆ SECTION ∆ designated section base name ∆ changed section base name

This function changes section base names generated by NC30. The effective range of a
changed name varies between cases when "program" is changed and when some other
section base name is changed.

int data1 ;

void func1 (void)
{

}

#pragma SECTION data new_data
#pragma SECTION program new_program

int data2 ;

void func2 (void)
{

}

.section program
_func1:

.section new_program
_func2:

.section new_data_NO,DATA
_data1:

.blkb 2
_data2:

.blkb 2

Expansion
image

Expanded in default section name

<For data> <For program>

Section name
changed

Expanded in changed
section nameFor both, expanded in

changed section
name

•••

•••

•••

•••

Figure 2.1.5 Typical description of "#pragma SECTION"

75

2
ROM'ing Technology

2.1 Memory Mapping

Forcible mapping into ROM (const modifier)

Both RAM and ROM areas are allocated by writing the initial data when declaring the type
of a variable. However, if this data is a fixed data that does not change during program
execution, write the "const" modifier when declaring the type. Because only a ROM area is
allocated and no RAM area is used, this method helps to save the amount of memory used.
Furthermore, since explicit substitutions are checked when compiling the program, it is
possible to check rewrite errors.

 const data type variable name

Warning is generated
when compiling.

char a = 5 ;

const char c = 10;

0x05

a

0x0A

RAM

c

Copied

ROM

void main(void)
{
 a = 6 ;

 c = 5 ;

}

A 2-byte area
is allocated.

Only 1 byte is
allocated.

Startup program

OK!

•••

Figure 2.1.6 const modifier and memory mapping

76

2
ROM'ing Technology

2.1 Memory Mapping

2.1.4 Controlling Memory Mapping of Struct

When allocating memory for structs, NC30 packs them in the order they are declared in order to
minimize the amount of memory used. However, if the processing speed is more important than
saving memory usage, write a statement "#pragma STRUCT" to control the method of mapping
structs into memory.
This section explains NC30's specific extended functions used for mapping structs into memory.

NC30 rules for mapping structs into memory

NC30 follow the rules below as it maps struct members into memory.
(1) Structs are packed. No padding occurs inside the struct.
(2) Members are mapped into memory in the order they are declared.

struct tag_s1 {

 int i ;

 char c ;

 int k ;

} s1 ;

s1.i

s1.c

s1.k

5 bytesMapping
image

Figure 2.1.7 An image depicting how NC30's default struct is mapped into memory

Inhibiting struct members from being packed (#pragma ∆STRUCT∆tag name ∆unpack)

This command statement inserts pads into a struct so that its total size of struct members
equals even bytes. Use this specification when the access speed has priority.

#pragma STRUCT tag_s2 unpack

struct tag_s2 {
 int i ;
 char c ;
 int k ;
} s2 ;

s2.i

s2.c

s2.k

Declares inhibition
of packing.

Padding

A struct's total size is
adjusted to even bytes.

6 bytesMapping
image

Figure 2.1.8 Inhibiting struct members from being packed

77

2
ROM'ing Technology

2.1 Memory Mapping

Optimizing mapping of struct members (#pragma ∆STRUCT∆tag name ∆arrange)

This command statement allocates memory for the members of an even size before other
members no matter in which order they are declared. If this statement is used in
combination with the "#pragma STRUCT unpack" statement described above, each
member of an even size is mapped into memory beginning with an even address.
Therefore, this method helps to accomplish an efficient memory access.

#pragma STRUCT tag_s3 arrange

struct tag_s3{
 int i ;
 char c ;
 int k ;
} s3 ;

s3.i

s3.c

s3.k
Mapping
image

Declares optimization
of mapping.

Members of even size
are mapped first.

Figure 2.1.9 Optimizing memory allocation for struct members

78

2
ROM'ing Technology

2.2 Startup Program

2.2 Startup Program

2.2.1 Roles of Startup Program

For a built-in program to operate properly, it is necessary to initialize the microprocessor and set
up the stack area before executing the program. This processing normally cannot be written in
the C language. Therefore, an initial setup program is written in the assembly language
separately from the C language source program. This is the startup program.
The following explains the startup programs supplied with NC30, "ncrt0.a30" and "sect30.inc".

Roles of startup program

The following lists the roles performed by the startup program:
(1) Allocate a stack area.
(2) Initialize the microprocessor.
(3) Initialize a static variable area.
(4) Set the interrupt table register "INTB".
(5) Call the main function.
(6) Set the interrupt vector table.

79

2
ROM'ing Technology

2.2 Startup Program

Structure of sample startup programs

NC30's startup program consists of two files: "ncrt0.a30" and "sect30.inc".

ncrt0.a30

.include sect30.inc

Program part

Set processor operation mode.

Initialize stack pointer.

Initialize FB and SB registers.

Initialize INTB register.

Initialize near area of data.

Initialize far area of data.

Initialize heap area.

Initialize standard I/O function

library.

Call main function.

Set arrangement of each section
Set size of stack area.

Set variable vector table.

Set SB area.

Define macro for initializing
variable area.

Set start address of section.

Set fixed vector table.

Set size of heap area.

Set start address of interrupt
vector table.

sect30.inc

Figure 2.2.1 Structure of sample startup program

80

2
ROM'ing Technology

2.2 Startup Program

2.2.2 Estimating Stack Sizes Used

Set an appropriate stack size in the startup program. If the stack size is excessively small, the
system could run out of control. Conversely, if excessively large, it means wasting memory.
This section explains how to estimate an appropriate stack size.

Items that use a stack

The following items use a stack:
(1) Automatic variable area
(2) Temporary area used for complex calculation
(3) Return address
(4) Old frame pointer
(5) Arguments to function

File for displaying stack sizes used

Calculate the stack sizes used by each function. Although it can be estimated from
program lists, there is a more convenient way to do it. Specify a startup option
"- fshow_stack_usage" when starting up NC30. It generates a file "xxx.stk" that contains
information about the stack sizes used. However, this information does not include the
stacks used by assembly language subroutine call and inline assembler. Calculate the
stack sizes used for these purposes from program lists.

FUNCTION func ()
 context 5 bytes
 auto 3 bytes
 f8regSize 0 bytes

4 bytes PUSH&CALL func1
6 bytes PUSH&CALL func2
6 bytes PUSH (MAX)

Argument

Automatic variable
temporary area

Old frame pointer

Return address

jsr

jsr

<.stk file>
<Stack image>

Stack
sizes
used by
func()

Information on
function func()

Return address
Old frame pointer

Stack sizes used when
calling subordinate
function (used for
argument)

Area used for 64-bit
floating-point calculation

Automatic variable
temporary area

Figure 2.2.2 Stack size usage information file

81

2
ROM'ing Technology

2.2 Startup Program

Calculating the maximum size of stacks used

Find the maximum size of stacks used from the stack sizes used by each individual
function after considering the relationship of function calls and handling of interrupts.
Figure 2.2.3 shows by using a sample program an example of how to calculate the
maximum size of stacks used.

void main (void) ;
int func1 (int , int) ;
int func2 (char , char) ;
int func3 (int) ;

void main (void)
{

int m , n ;
long kekka1 , kekka2 ;

kekka1 = func1 (m , n) ;
kekka2 = func2 (m , n) ;

}

int func1 (int x , int y)
{

int z1 , z2 ;

z1 = x + y ;
z2 = func3 (z1) ;

return z2 ;
}

int func2 (char x , char y)
{

int z ;

z = x ∗ y ;
return z ;

}
int func3 (int x)

{
return ˜x ;

}

FUNCTION main
context 5 bytes
auto 8 bytes
f8regSize 0 bytes

 0 bytes PUSH & CALL func1
 1 bytes PUSH & CALL func2
 1 bytes PUSH (MAX)

===

FUNCTION func1
context 5 bytes
auto 2 bytes
f8regSize 0 bytes

 0 bytes PUSH & CALL func3
 0 bytes PUSH (MAX)

===

FUNCTION func2
context 5 bytes
auto 2 bytes
f8regSize 0 bytes

 0 bytes PUSH (MAX)
===

FUNCTION func3
context 5 bytes
auto 0 bytes
f8regSize 0 bytes

 0 bytes PUSH (MAX)
===

main()
5+8=13 bytes

func1()
5+2=7 bytes

func3()
5 bytes

func2()
5+2=7 bytes

+1 bytes

(1)Stack size for path : 13+7+5=25 bytes
(2)Stack size for path : 13+1+7=21 bytes

Maximum size of stacks used is 25 byes.

Stack size used
by each function

Stack size used when
calling a function

<Stack size usage information file "sample.stk">

<Source file "sample.c">

%nc30 -fshow_stack_usage sample.c

(1) (2)

Figure 2.2.3 Method for calculating the maximum size of stacks used

82

2
ROM'ing Technology

2.2 Startup Program

Automatically calculating the maximum size of stacks used

If the program structure is simple, it is possible to estimate the stack sizes used by
following the method described above. However, if the program structure is complicated or
when the program uses internal functions, calculations require time and labor. In such a
case, Mitsubishi recommends using the "stack size calculating utility, stk30" that is included
with NC30. It automatically calculates the maximum size of stacks used from the stack size
usage information file "xxx.stk" that is made at compiling and outputs the result to standard
output devices. Furthermore, if a startup option '-o' is added, it outputs the relationship of
function calls along with the calculation result to a "calculation result display file ,xxx.siz".
To estimate an interrupt stack size, it is necessary to calculate the stack sizes used by
each interrupt function and those used by the functions called by the interrupt function. In
this case, use a startup option '-e function name'. If this startup option is used along with
'-o', the stk30 utility outputs the stack sizes used below a specified function and the
relationship of function calls.
Figure 2.2.4 shows the processing results of stk30 by using the sample program described
above.

∗∗∗ Stack Size ∗∗∗

25 bytes

∗∗∗ C Flow ∗∗∗

main(sample.stk)
func1(sample.stk)

func3(sample.stk)
func2(sample.stk)

Stack size
usage

information
file(sample.stk)

%stk30 sample.stk

%stk30 -o sample.stk

>stk30 sample.stk

∗∗∗ Stack Size ∗∗∗

 25 bytes

<Standard output>

<Calculation result display file (sample.siz) >
%stk30 -o -efunc1 sample.stk

∗∗∗ Stack Size ∗∗∗

 12 bytes

∗∗∗ C Flow ∗∗∗

func1(sample01.stk)
func3(sample01.stk)

Stack size used from "func1"

Figure 2.2.4 Stack size calculating utility "stk30"

83

2
ROM'ing Technology

2.2 Startup Program

2.2.3 Creating Startup Program

The sample startup program shown above must be modified to suit the C language program to be
created.
This section describes details on how to modify the sample startup program.

Modifying sample startup program

Modify the following points to suit the C language program to be created:

Setting processor mode register

sect30.inc

Arranging sections and setting start
address

Setting size of heap area

Setting fixed vector table

Setting variable vector table

ncrt0.a30

Setting size of stack area

Setting start address of
interrupt vector table

Figure 2.2.5 Points to be modified in sample startup program

84

2
ROM'ing Technology

2.2 Startup Program

Setting the size of heap area ("ncrt0.a30")

Set the required memory size to be allocated when using memory management functions
(calloc, malloc). Set '0' when not using memory management functions. In this case, it is
possible to prevent unwanted libraries from being linked and reduce ROM sizes by turning
lines of statements initializing the heap area in "ncrt0.a30" into comments.

;---
; HEAP SIZE definition
;---
HEAPSIZE .equ 0

;===
; heap area initialize
;--
; .glb _mbase
; .glb _mnext
; .glb _msize
; mov.w #(heap_top&0FFFFH),_mbase
; mov.w #(heap_top>>16),_mbase+2
; mov.w #(heap_top&0FFFFH),_mnext
; mov.w #(heap_top>>16),_mnext+2
; mov.w #(heap_top&0FFFFH),_msize
; mov.w #(heap_top>>16),_msize+2

When not using memory
management functions, set '0' and
turn the heap area initialization
section into comments.

Figure 2.2.6 Setting the heap area

Setting the size of stack area ("ncrt0.a30")

By using the results obtained by the stack size calculating utility "stk30", etc., set the user
stack and the interrupt stack sizes.
When using multiple interrupts, find the total size of interrupt stacks used for them and set it
as the interrupt stack size.

;---
; STACK SIZE definition
;---
STACKSIZE .equ 300H
;
;---
; INTERRUPT STACK SIZE definition
;---
ISTACKSIZE .equ 300H

When using multiple interrupts, set the
total size of interrupt stacks used for them.

Figure 2.2.7 Setting the stack size

85

2
ROM'ing Technology

2.2 Startup Program

Setting the start address of interrupt vector table ("ncrt0.a30")

Set the start address of the interrupt vector table. The value set here is set in the interrupt
table register "INTB" within "ncrt0.a30".

;--
; INTERRUPT VECTOR ADDRESS definition
;--
VECTOR_ADR .equ 0FFD00H

;===
; interrupt section start
;--

.glb start

.section interrupt
start:
;--
; after reset , this program will start
;--

ldintb #VECTOR_ADR

Set in interrupt table register "INTB" •••

•••

•••

Figure 2.2.8 Setting the start address of interrupt vector table

Setting the processor operation mode ("ncrt0.a30")

Set the processor operation mode. In the same way, add the instructions here that directly
controls the operation of the M16C/60,M16C/20, such as one that sets the system clock.
Figure 2.2.9 shows locations where to add these instructions and how to write the
instruction statements.

;===
; Interrupt section start
;---

.glb start

.section interrupt
start:
;--
; after reset , this program will start
;--

mov.b #00000011B,000AH ; disable register protect
mov.b #10000111B,0004H ; processer mode register 0
mov.b #00001000B,0006H ; systerm clock control register 0
mov.b #00100000B,0007H ; systerm clock control register 1
mov.b #00000000B,000AH ; enable register protect

;
ldc #0080H,flg
ldc #stack_top-1,sp
ldc #istack_top-1,isp
ldc #stack_top-1,fb
ldc #data_SE_top,sb

ldintb #VECTOR_ADR

Add settings matched to the system.

After a reset, the program starts from this label.

Figure 2.2.9 Setting the processor operation mode

86

2
ROM'ing Technology

2.2 Startup Program

Arranging each section and setting start address ("sect30.inc")

Arrange the sections generated by NC30 and set their start addresses. Use the pseudo-
instruction ".org" to specify the start address of each section.
If any section does not have a specified start address, memory for it is allocated in a
contiguous location following the previously defined section.

;---
; Arrangement of section
;---
;---
; Near RAM data area
;---
; SBDATA area

.section data_SE,DATA

.org 400H
data_SE_top:
;

.section bss_SE,DATA
bss_E_top:

;---
; Far RAM data area
;---

.section data_FE,DATA

.org 10000H
data_FE_top:

;---
; Far ROM data area
;---

.section rom_FE,ROMDATA

.org 0F0000H
data_FE_top:

Specify the start address of each
area in conformity with memory
map.

•••

•••

•••

Figure 2.2.10 Setting the start address of each section

87

2
ROM'ing Technology

2.2 Startup Program

Setting the variable vector table ("sect30.inc")

Add the setup items related to the variable vector table to the section definition file
"sect30.inc".
Figure 2.2.11 shows an example of how to set.

;---
; variable vector section
;---

.section vector ; variable vector table

.org VECTOR_ADR

.lword dummy_int ; vector 0 (BRK)

.org (VECTOR_ADR + 44)

.lword dummy_int ; DMA0 (for user)

.lword dummy_int ; DMA1 (for user)

.lword dummy_int ; input key (for user)

.lword dummy_int ; AD Convert (for user)

.org (VECTOR_ADR + 63)

.lword dummy_int ; UART0 trance (for user)

.lword dummy_int ; UART0 receive (for user)

.lword dummy_int ; UART1 trance (for user)

.lword dummy_int ; UART1 receive (for user)

.lword dummy_int ; TIMER A0 (for user)

.lword dummy_int ; TIMER A1 (for user)

.lword dummy_int ; TIMER A2 (for user)

.lword dummy_int ; TIMER A3 (for user)

.lword dummy_int ; TIMER A4 (for user) (vector 25)

.lword dummy_int ; TIMER B0 (for user) (vector 26)

.lword dummy_int ; TIMER B1 (for user) (vector 27)

.lword dummy_int ; TIMER B2 (for user) (vector 28)

.lword dummy_int ; INT0 (for user) (vector 29)

.lword dummy_int ; INT1 (for user) (vector 30)

.lword dummy_int ; INT2 (for user) (vector 31)

.lword dummy_int ; vector 32 (for user or MR30)

.lword dummy_int ; vector 33 (for user or MR30)

.lword dummy_int ; vector 34 (for user or MR30)

.lword dummy_int ; vector 35 (for user or MR30)

.lword dummy_int ; vector 36 (for user or MR30)

.lword dummy_int ; vector 37 (for user or MR30)

.lword dummy_int ; vector 38 (for user or MR30)

.lword dummy_int ; vector 39 (for user or MR30)

.lword dummy_int ; vector 40 (for user or MR30)

.lword dummy_int ; vector 41 (for user or MR30)

.lword dummy_int ; vector 42 (for user or MR30)

.lword dummy_int ; vector 43 (for user or MR30)

.lword dummy_int ; vector 44 (for user or MR30)

.lword dummy_int ; vector 45 (for user or MR30)

.lword dummy_int ; vector 46 (for user or MR30)

.lword dummy_int ; vector 47 (for user or MR30)
; to vector 63 from vector 32 is used for MR30

Figure 2.2.11 Setting variable vector table

88

2
ROM'ing Technology

2.2 Startup Program

Setting the fixed vector table ("sect30.inc")

Set the start address of the fixed vector table and the vector address of each interrupt.
Figure 2.2.12 shows an example of how to write these addresses.

;---
; fixed vector section
;---
;

.section fvector ; fixed vector table

.org 0FFE00H
;
; still nothing
;

.org 0FFFDCH
UDI:

.lword dummy_int
OVER_FLOW:

.lword dummy_int
B_R_K:

.lword dummy_int
ADDRESS_MATCH:

.lword dummy_int
SINGLE_STEP:

.lword dummy_int
WDT:

.lword dummy_int
DBC:

.lword dummy_int
NMI:

.lword dummy_int
RESET:

.lword start

Set the start address of the fixed vector table.

Set the vector address of the
function used. When not using
functions, leave the field set as
"dummy_int".

Processing of "dummy_int" (" ncrt0.a30 ")

;===================================
; dummy interrupt function
;--
dummy_int:

reit
•••

Figure 2.2.12 Setting fixed vector table

89

2
ROM'ing Technology

2.2 Startup Program

Precautions for operating in single-chip mode

When operating the M16C/60,M16C/20 in single-chip mode, note that the "near ROM" and
the "far ROM" areas are not used. Delete the "ncrt0.a30" and the "sect30.inc" blocks
shown in Figure 2.2.13 or turn them into comment statements.

ncrt0.a30: far area initialization program ("FAR area initialize")
sect30.inc: near ROM area allocation ("Near ROM data area")
 far RAM area allocation ("Far RAM data area")

;--
; Near ROM data area
;--
; .section rom_NE,ROMDATA
; rom_NE_top:
;
; .section rom_NO,ROMDATA
; rom_NO_top:

;--
; Far RAM data area
;--
; .section data_EI,DATA
; .org 10000H
; data_FE_top:
;
; .section bss_FE,DATA,ALIGH
; bss_FE_top:
;
; .section data_FO,DATA
; data_FE_top:
;
; .section bss_FO,DATA
; bss_FO_top:

;===
; FAR area initialize.
;---
; bss_FE & bss_FO zero clear
;---
; BZERO ebss_Esz,ebss_E_top
; BZERO ebss_Osz,ebss_O_top
;---
; Copy data_FE(FO) section from data_IFE(IFO) section
;---
; BCOPYedata_Esz,edata_E_top,edata_EI_top
; BCOPYedata_Osz,edata_O_top,edata_OI_top
; ldc #stack_top-1,sp
; ldc #stack_top-1,fb

(" sect30.inc ")

(" ncrt0.a30 ")

Leave these lines as
comments.

•••

•••

•••

•••

Figure 2.2.13 Example for writing program when operating in single-chip mode

90

2
ROM'ing Technology

2.3 Extended Functions for ROM'ing Purposes

2.3 Extended Functions for ROM'ing Purposes

2.3.1 Efficient Addressing

The maximum area accessible by the M16C/60,M16C/20 series is 1 Mbytes. NC30 divides this
area into a "near area" in addresses from 00000 to 0FFFF and a "far area" in addresses from
00000 to FFFFF for management purposes.
This section explains how to arrange and access variables and functions in these areas.

The near and the far areas

NC30 divides a maximum 1 Mbytes of accessible space into the "near area" and the "far
area" for management purposes. Table 2.3.1 lists the features of each area.

Table2.3.1 near Area and far Area

Area name Feature

near area

This space is where the M16C/60,M16C/20 series can access data efficiently.

It is a 64-Kbyte area in absolute addresses from 00000 to 0FFFF, in which

stacks and internal RAM are located.

far area

This is the entire 1-Mbyte memory space in absolute addresses from 00000 to

FFFFF that can be accessed by the M16C/60. Internal ROM, etc. are located

in this area.

Default near/far attributes

NC30 discriminates the variables and functions located in the near area as belonging to the
"near attribute" from those located in the far area as belonging to the "far attribute". Table
2.3.2 lists the default attributes of variables and functions.

Table 2.3.2 Default near/far Attributes

Classification Attribute

Program far, fixed

RAM data near

ROM data far

Stack data near, fixed

If any of these default near/far attributes needs to be modified, specify the following startup
options when starting up NC30:
–ffar_RAM (–fFRAM) : Changes the default attribute of RAM data to "far".
–fnear_ROM (–fNROM) : Changes the default attribute of ROM data to "near".

91

2
ROM'ing Technology

2.3 Extended Functions for ROM'ing Purposes

near/far of variables

[storage class] ∆ type specifier ∆ near/far ∆ variable name;

Unless near/far is specified when declaring type, RAM data is located in the near area, and
RAM data with the const modifier specified and ROM data are located in the far area.

static int data ;

static int near n_data ;

static int far f_data ;

static const int c_data = 0x1234 ;

far area

near area

data

n_data

f_data

c_data 0x1234

Figure 2.3.1 near/far of static variables

Specification of near/far for automatic variables does not have any effect at all. (All
automatic variables are located in the stack area.) What is affected by this specification is
only the result of the address operator '&'.

void func(void)
{

 int near i_near ;
 int far i_far ;

 int ∗addr_near ;
 int ∗addr_far ;

 addr_near = &i_near ;
 addr_far = &i_far ;
}

&i_near → 16 bits long
&i_far → 20 bits long

OK!

Warning occurs!
Substituted by ignoring
upper address.

Pointer variable for near area is available
(described later).

Figure 2.3.2 near/far of automatic variables

92

2
ROM'ing Technology

2.3 Extended Functions for ROM'ing Purposes

near/far of pointers

By specifying near/far for a pointer, it is possible to specify the size of addresses stored in
the pointer and an area where to locate the pointer itself. If nothing is specified, all pointers
are handled as belonging to the near attribute.

(1) Specify the size of addresses stored in the pointer.

[storage class] ∆ type specifier ∆ near/far ∆ ∗ variable name;

near →16 bits long (16-bit absolute)
far→ 20 bits long (20-bit absolute)

int near ∗near_data ;
int far ∗far_data ;

near area

far area∗far_data

∗near_data

far_data

near_data

•••

Figure 2.3.3 Specifying address size stored in pointer

(2) Specify the area in which to locate the pointer itself.

[storage class] ∆ type specifier ∆ ∗ near/far ∆ variable name;

near →Located in near area
far → Located in far area

int ∗near near_data ;
int ∗far far_data ;

∗far_data

∗near_data

far_data

near_data

near area

far area

•••

Figure 2.3.4 Specifying area to locate the pointer

near/far of functions

The attributes of NC30 functions are fixed to the far area for reasons of the M16C/
60,M16C/20 series architecture. If near is specified for an NC30 function, NC30 outputs a
warning when compiling the program and forcibly locates it in the far area.

93

2
ROM'ing Technology

2.3 Extended Functions for ROM'ing Purposes

Using SB relative addressing (#pragma SBDATA)

#pragma SBDATA variable name

For the variables declared in this way, NC30 generates AS30 pseudo-instruction ".SBSYM"
and uses the SB relative addressing mode when referencing them. This makes it possible
to generate highly ROM-efficient code.

#pragma SBDATA m
static int m , n ;

void main (void)
{

m = m + n ;
} .SBSYM _m

.SECTION program

.glb _main
_main:

add.W _n,_m
rts

.SECTION bss_NE,DATA
_n: .blkb 2

.SECTION bss_SE,DATA
_m: .blkb 2

.end

Expansion

image

Pseudo-instruction
".SBSYM" is generated
for variable 'm'.

Whether or not to use
the SB addressing
mode depends on the
assembler.

Variable 'm' is located as
belonging to the SBDATA
attribute.

Figure 2.3.5 An image depicting expansion of "#pragma SBDATA"

Column Locating both pointer and indicated data in far area

What declaration is necessary to locate both a pointer itself and its indicated data in a far
area? The following shows the format and a description example.

[storage class] ∆ type specifier ∆ far ∆ ∗ far ∆ variable name;
Example: int far ∗ far ff_data:

Conversely, when locating both in a near area, near/far specification is unnecessary. This
is because the variables and pointers in NC30 assume the near attribute by default.

94

2
ROM'ing Technology

2.3 Extended Functions for ROM'ing Purposes

2.3.2 Handling of Bits

NC30 allows the user to handle data in units of bits. There are two methods to use data in such
a way: "bit field", an application of structs, and an extended function of NC30.
This section explains each method of use.

Bit field

NC30 supports a bit field as a method to handle bits. A bit field refers to using structs to
assign bit symbols. The following shows the format of bit symbol assignment.

struct tag {

 type specifier ∆ bit symbol : number of bits;
:

} ;

When referencing a bit symbol, separate it with a period '.' when specifying it, as in the
case of structs and unions.

variable name.bit symbol

Memory allocation for a declared bit field varies with the compiler used. NC30 has two
rules according to which memory is allocated for bit fields. Figure 2.3.6 shows an example
of actually how memory is allocated.
(1) Allocated sequentially beginning with the LSB.
(2) Different type of data is located in the next address.
 (The size of the allocated area varies with each data type.)

struct ex {
 char a : 1 ;
 char b : 1 ;
 char c : 1 ;
 char d : 1 ;
} s0 ;

struct ex1 {
 char b0 : 1 ;
 int b12 : 2 ;
 char b3 : 1 ;
} s1 ;

s0.d s0.c s0.b s0.a

bit7 6 5 4 3 2 1 0

s1.b3 s1.b0

s1.b12

s0

s1

1Byte

1Byte

2Byte

Memory is allocated for each
data type as follows:
char type → 1 byte
int type → 2 bytes
long type → 4 bytes

Figure 2.3.6 Example of memory allocation for bit fields

95

2
ROM'ing Technology

2.3 Extended Functions for ROM'ing Purposes

Generating bit instruction (#pragma BIT)

NC30's bit field is such that although bit symbols can be handled in the program, it is an
arithmetic/logic instruction, and not a bit instruction, that is generated. To output a code-
efficient "direct 1-bit instruction", write an extended function "#pragma BIT" along with bit
field declaration.
Figure 2.3.7 shows an example of how to write such a statement and how it will be
expanded.

struct bit {
 char b0 : 1 ;
 char b1 : 1 ;
} ;

#pragma BIT bit1
struct bit bit1 ;
struct bit bit2 ;

void main (void)
{
 bit1 . b0 = 1 ;
 bit2 . b0 = 1 ;
}

_main:
bset 00H,_bit1
or.b #01H,_bit2
rts

Declaration of bit field

Specification to output bit
instruction

<Expansion image>

Figure 2.3.7 Typical description of "#pragma BIT"

In addition to the data where "#pragma BIT" is declared, the direct 1-bit instruction is
generated by the following:
• Variables where "#pragma SBDATA" is declared
• Variables where "#pragma ADDRESS" is declared and that area located at absolute

addresses 00000 to 01FFF
• near-type variables for which the '-fbit' option is specified

96

2
ROM'ing Technology

2.3 Extended Functions for ROM'ing Purposes

2.3.3 Control of I/O Interface

When controlling the I/O interface in a built-in system, specify absolute addresses for variables.
There are two methods for specifying absolute addresses in NC30: one by using a pointer, and
one by using an extended function of NC30.
This section explains each method of specification.

Specifying absolute addresses using a pointer

Use of a pointer allows you to specify absolute addresses. Figure 2.3.8 shows a
description example.

Example: Substituting 0xef for address 0000a

∗(char ∗)0x000a = 0xef ;

 char ∗point ;
point = (char ∗)0x000a ;
∗point = 0xef ;

EF

0A
00

0000a

point
When rearranged into
one line

Figure 2.3.8 Specifying absolute addresses using a pointer

Specifying absolute addresses using an extended function (#pragma ADDRESS)

#pragma ∆ ADDRESS ∆ variable name ∆ absolute address

The above declaration causes a variable name to be located at an absolute address.
Since this method defines a variable name as synonymous with an absolute address, there
is no need to allocate a pointer variable area as required for the above method. Therefore,
this method helps to save memory usage.

#pragma ADDRESS port4 03e8h
char near port4 ;

void func(void)
{

port4 = 0x00 ;

}

_port4 .equ 03e8h

 mov.b #0,_port4

"#pragma ADDRESS" is effective for only variables defined
outside a function and those declared in a function as being
a static variable.

Expansion image

As30 format of numeric description must be followed.

•••

•••

•••

•••

Figure 2.3.9 Specifying absolute addresses using "#pragma ADDRESS"

97

2
ROM'ing Technology

2.3 Extended Functions for ROM'ing Purposes

Example 2.3.1 Defining SFR Area Using "#pragma ADDRESS"

The extended function "#pragma ADDRESS" can be used to set the SFR area. For this
method of SFR setting, normally prepare a separate file and include it in the source
program.
The following shows one example of an SFR area definition file.

#pragma ADDRESS P6 03ECH
#pragma ADDRESS P7 03EDH
#pragma ADDRESS PD6 03EEH
#pragma ADDRESS PD7 03EFH
#pragma ADDRESS P8 03F0H
#pragma ADDRESS P9 03F1H
#pragma ADDRESS PD8 03F2H
#pragma ADDRESS PD9 03F3H
#pragma ADDRESS TABSR 0380H
#pragma ADDRESS TA0 0386H
#pragma ADDRESS TA1 0388H
#pragma ADDRESS TA0MR 0396H
#pragma ADDRESS TA1MR 0397H
#pragma ADDRESS TA0IC 0055H
#pragma ADDRESS TA1IC 0056H

typedef union {
 struct {
 unsiged char b0 : 1 ;
 unsiged char b1 : 1 ;
 unsiged char b2 : 1 ;
 unsiged char b3 : 1 ;
 unsiged char b4 : 1 ;
 unsiged char b5 : 1 ;
 unsiged char b6 : 1 ;
 unsiged char b7 : 1 ;
 } bit ;
 unsigned char all ;
} SFR ;

SFR P6 , P7 , P8 , P9 ;
SFR PD6 , PD7 , PD8 , PD9 ;
SFR TABSR , TA0MR , TA1MR ;
SFR TA0IC , TA1IC ;

unsigned int TA0 , TA1 ;

SFR area definition file <m30600.h>

<Source file>

#include "m30600.h"

void main (void)
{

P6.all = 0x00 ;

Reads in the SFR area definition file.

References the
SFR area.

Sets absolute
addresses.

Type declaration for
bit operation

•••

•••

•••

Example 2.3.1 Defining SFR area using "#pragma ADDRESS"

98

2
ROM'ing Technology

2.3 Extended Functions for ROM'ing Purposes

2.3.4 When Cannot Be Written in C Language

There are some cases where hardware-related processing cannot be written in the C language.
This occurs when, for example, processing cannot be finished in time or when one wishes to
control the C flag directly. To solve this problem, NC30 allows you to write the assembly
language directly in C language source programs ("inline assemble" function). There are two
inline assemble methods: one using the "asm" function, and one using "#pragma ASM".
This section explains each method.

Writing only one line in assembly language (asm function)

asm ("character string")

When the above line is entered, the character string enclosed with double quotations (") is
expanded directly (including spaces and tabs) into the assembly language source program.
Since this line can be written both in and outside a function, it will prove useful when one
wishes to manipulate flags and registers directly or when high speed processing is
required.
Figure 2.3.10 shows a description example.

void main (void)
{
 initialize() ;

 asm(" FSET I") ;

}

Sets interrupt enable flag.

•••

Figure 2.3.10 Typical description of asm function

Accessing automatic variables in assembly language (asm function)

When it is necessary to access automatic variables inside the function, write a statement
using "$$[FB]" as shown in Figure 2.3.11. Since the compiler replaces "$$" with the FB
register's offset value, automatic variable names in the C language can be used in
assembly language programs.

void main (void)
{
 unsigned int m ;
 m = 0x07 ;

 asm(" MOV.W $$[FB],R0",m) ;
} _main:

enter #02H
mov.w #0007H,-2[FB] ; m

;#### ASM START
MOV.W -2[FB],R0

;#### ASM END
exitd

<Expansion image>

FB offset value of 'm' is -2.

asm ("assembly language", automatic
variable name);

FB relative addressing is used.

<Format>

Defines automatic
variable 'm'.

Figure 2.3.11 Using automatic variables in asm function

99

2
ROM'ing Technology

2.3 Extended Functions for ROM'ing Purposes

Writing entire module in assembly language (#pragma ASM)

If the embedded assembly language consists of multiple lines, use an extended function
"#pragma ASM". With this extended function, NC30 determines a section enclosed with
"#pragma ASM" and "#pragma ENDASM" to be an area written in the assembly language
and outputs it to the assembly language source program directly as it is.

void func (void)
{
 int i ;
 for (i=0 ; i<10 ; i++){
 func2() ;
 }

#pragma ASM
 FCLR I

 MOV.W #0FFH,R0

 FSET I
#pragma ENDASM

This area is output to the assembly
language source program directly
as it is.

•••

Figure 2.3.12 Example for using "#pragma ASM" function

Column Suppressing optimization partially by using asm function

When the startup option '-O' is added, NC30 optimizes generated code when compiling the
program. However, if this optimization causes inconveniences such as when an interrupt
occurs, NC30 allows you to suppress optimization partially by using the asm function.
Figure 2.3.13 shows an example for using the asm function for this purpose.

_main:

or.b #03H,_flag

bset 00H,_flag
bset 01H,_flag

rts

struct bit {
char bit0 : 1 ;
char bit1 : 1 ;

} ;

#pragma BIT flag
struct bit flag ;

void main (void)
{
 flag . bit0 = 1 ;
 flag . bit1 = 1 ;

 flag . bit0 = 1 ;
 asm() ;
 flag . bit1 = 1 ;
}

Rearranged into
one instruction by
optimization.

The '-O' option is specified.

Optimization is
suppressed.

<Expansion image>

Figure 2.3.13 Suppressing optimization partially by using asm function

100

2
ROM'ing Technology

2.4 Linkage with Assembly Language

2.4 Linkage with Assembly Language

2.4.1 Interface between Functions

When the module size is small, inline assemble is sufficient to solve the problem. However, if the
module size is large or when using an existing module in the program, NC30 allows you to call an
assembly language subroutine from the C language program or vice versa.
This section explains interfacing between functions in NC30.

Entry and exit processing of functions

The following lists the three primary processings performed in NC30 when calling a
function:

(1) Construct and free stack frame
(2) Transfer argument
(3) Transfer return value

Figure 2.4.1 shows a procedure for these operations.

int func (int , int) ;

void main (void)
{
 int a = 3 , b = 5 ;
 int c ;

 c = func (a , b) ;

}

int func(int x , int y)
{

}

Preparation for
passing argument

JSR $func

Receiving
return value

Public declaration of label

$func :

Constructing stack frame

Receiving argument

Storing return value

Freeing stack frame
(including RTS)

•••

•••

•••

•••

Figure 2.4.1 Operations for calling a function

101

2
ROM'ing Technology

2.4 Linkage with Assembly Language

Structure of a stack frame

When a function is called, an area like the one shown below is created in a stack. This
area is called a "stack frame".
The stack frame is freed when control returns from the called function.

Area for saving registers

Automatic variable area

Old frame pointer

Return address

Argument area

Stack
frame

Area allocated by the
called function

Area allocated by
the calling function

Figure 2.4.2 Structure of a stack frame

Constructing a stack frame

Figure 2.4.3 shows how a stack frame is constructed by tracing the flow of a C language
program.

 void main(void)

{

 int i ;

 char c ;

 func(i , c) ;

}

void func(int x , char y)

{

 Processing of func

}

(1) main under
 execution

(2) Immediately
before
jumping to
func

(3) When entry
processing of
func is
completed

Stack frame of
main function

Argument c

Stack frame of
main function

Argument i

Argument c(y)

Stack frame of
main function

 Argument i(x)

Return address

Automatic variable
of func

Old frame pointer

← SP

← FB

•••

•••

•••

•••

Figure 2.4.3 Constructing a stack frame

102

2
ROM'ing Technology

2.4 Linkage with Assembly Language

Rules for passing arguments

NC30 has two methods for passing arguments to a function: "via a register" and "via a
stack".
When the following three conditions are met, arguments are passed via a register;
otherwise, arguments are passed via a stack.

(1) The types of the function's arguments are prototype declared.
(2) One or more arguments are the type that can be assigned to a register.
(3) No short-cut form is used in the argument part of prototype declaration.

Table 2.4.1 Rules for Passing Arguments

Type of argument First argument Second argument
Third and following

arguments

char type R1L Stack Stack

 short, int types

near pointer type
R1 R2 Stack

Other types Stack Stack Stack

/∗ Prototype declaration ∗∗∗∗∗∗∗∗∗∗/
void func1 (char , char , char) ;
void func2 (int , int) ;

void main (void)
{
 char a , b , c ;
 int m , n ;

 func1 (a , b , c) ;

 func2 (m , n) ;
}

void func1 (char x , char y , char z)
{

}

Register R1

Stack area

Register R1

Register R2

Argument c

Argument b

Argument a

Return
address

void func2 (int x , int y)
{

}

Argument m

Argument n

•••

•••

Figure 2.4.4 Example for passing arguments to functions

103

2
ROM'ing Technology

2.4 Linkage with Assembly Language

Rules for passing return values

All return values except those expressed by a struct or union, are stored in registers.
However, different registers are used to store the return values depending on their data
types.
The return values represented by a struct or union are passed via "stored address and
stack". Namely, an area to store a return value is prepared when calling a function, and
this address is passed via a stack as a hidden argument. The called function writes its
return value to the area indicated by the address placed in the stack when control returns
from it.

Table 2.4.2 Rules for Passing Return Value

Data type Returning method

char R0L

int
short R0

long
float R2R0

double R3R2R1R0

near pointer R0

far pointer R2R0

struct
union Store address is passed via a stack

struct tag_st {
 char moji ;
 int suji ;
} ;

struct tag_st func (char , int) ;

void main (void)
{
 char a ;
 int b ;
 struct tag_st ret_data ;

 ret_data = func (a , b) ;
}

 Register R0

Register R1

Register R2

Return value

int func2 (int x , int y)
{

 return x + y ;
}

Argument m

Argument n

/∗ Prototype declaration∗∗∗∗∗∗∗∗∗∗∗/
int func (int , int) ;

void main (void)
{
 int m , n ;
 int ans ;

 ans = func (m , n) ;
}

struct tag_st func (char x , int y)
{
 struct tag_st z ;

 return z ;
}

Register R1

Register R2

Argument a

Argument b

Stack area

Return
address

Address of
"ret_data"

ret_data
(Body)

• When returned value is a struct

Figure 2.4.5 Example for passing return value

104

2
ROM'ing Technology

2.4 Linkage with Assembly Language

Rules for symbol conversion of functions into assembly language

In NC30, the converted symbols differ depending on the properties of functions. Table
2.4.3 lists the rules for symbol conversion.

Table 2.4.3 Rules for Symbol Conversion

Function type Conversion method

Arguments passed via register Functions are prefixed with "$".

 Arguments passed via stack

No argument

#pragma INTERRUPT

#pragma PARAMETER

Functions are prefixed with "_".

Column A measure for calling functions faster

A function call requires stack manipulation for the return values and arguments to be
passed from a function to another. This takes time before the actual processing can be
performed. Consequently, the via-register transfer reduces the time required for
procedures from calling to processing, because it involves less stack manipulation than the
other method.
To reduce this difference in time further, NC30 provides a facility called "inline storage
class". When functions are specified to be an inline storage class, NC30 generates code
for them as macro functions when compiling the program. This means that ordinary stack
manipulation is nonexistent, and that processing in the called function can be executed
immediately after a call.

inline int func (int , int) ;

inline int func (int x , int y)
{
 return (x + y);
}

void main (void)
{
 int m , n ;
 int ans ;

 ans = func (m , n) ;
}

_func: .MACRO

mov.w R1,R0 ; x x
add.w R2,R0 ; y x

.ENDM

Code is generated as user macro.

There must be a body definition before a
function call (within the same file).

Figure 2.4.6 Example for writing inline storage class

105

2
ROM'ing Technology

2.4 Linkage with Assembly Language

2.4.2 Calling Assembly Language from C Language

This section explains details on how to write command statements for calling an assembly
language subroutine as a C language function.

Passing arguments to assembly language (#pragma PARAMETER)

#pragma PARAMETER function name (register name, ...)

A function that is written as shown above sets arguments in specified registers without
following the ordinary transfer rules as it performs call-up operation.
Use of this facility helps to reduce the overhead during function call because it does not
require stack manipulation for argument transfers. However, the following precautions
must be observed when using this facility:
(1) Before writing "#pragma PARAMETER", be sure to prototype declare the specified

function.
(2) Observe the following in prototype declaration:

• Make sure a function arguments are an 8-bit or 16- bit integer or a 16-bit pointer.
• Structs and unions cannot be declared as a function return value.
• Make sure the register sizes and argument sizes are matched.
• Register names are not discriminated between uppercase and lowercase.
• If the body of a function specified with this #pragma command is defined in the C

language, an error results.

void asm_func (int , int) ;

#pragma PARAMETER asm_func (R0 , R1)

void main (void)

{

 int i ,j ;

 asm _func (i , j) ;

}

Be sure to declare the assembler
function's prototype before declaring
#pragma PARAMETER.

Following can be used as register
names:
 R0, R1, R2, R3,
 R0L, R0H, R1L, R1H,
 A0, A1
Note, however, that arguments are
passed to a function via these registers.

Argument i and argument j
are stored in R0 and R1,
respectively when calling a
function.

Figure 2.4.7 Example for writing #pragma PARAMETER

106

2
ROM'ing Technology

2.4 Linkage with Assembly Language

Calling assembly language subroutine

Follow the rules described below when calling an assembly language subroutine from a C
language program.

(1) Write the subroutine in a file separately from the C language program.
(2) Follow symbol conversion rules for the subroutine name.
(3) Declare the subroutine's prototype in the C language program, from which the

subroutine is to be called. At this time, declare the external reference using the
storage class specifer "extern".

<C language>

Prototype declaration of
called assembly language

asm_func() ;

<Assembly
language>

Specification of section
(.section)

External definition of function's
beginning label symbol (.glb)

Entry processing
of function

Saving and setting FB

Actual
processing

Setting return value

Exit processing
of function

Restoring FB

RTS

_asm_func :

Declaration of argument
transfer via register

(#pragma PARAMETER)

Always write.

Write if necessary.

Figure 2.4.8 Calling assembly language subroutine

107

2
ROM'ing Technology

2.4 Linkage with Assembly Language

Example 2.4.1 Calling Subroutine

The program in this example displays count-up results using LEDs. The LED display part
is written in the assembly language and the count-up part is written in the C language.
Then the two parts are linked.

 /∗ Prototype declaration ∗/
void led (int) ;
#pragma PARAMETER led (A0)

/∗ Specification of variables used in SB relative

addressing ∗/
#pragma SBDATA counter

static int counter = 0 ;
void main (void)
{
 if (counter < 9) {
 counter ++ ;
 } else {
 counter = 0 ;
 }

 led (counter) ;
}

P7 .equ 03edh

 .section program

 .glb led

_led :

 lde.b table[a0] , P7

 rts

;--

; LED display data table

;--

.section rom_FE , ROMDATA

table :

 .byte 0c0h , 0f9h , 0a4h , 0b0h , 099h

 .byte 092h , 082h , 0f8h , 080h , 090h

 .end

<Count-up part> <LED display part>

Sets the method for
calling assembly
language function.

Calls assembly language
function "led()".

Sets the allocated area.

Externally defines
subroutine name.

There is no conversion of
subroutine name because #
pragma PARAMETER is
specified.

Example 2.4.1 Calling subroutine

108

2
ROM'ing Technology

2.4 Linkage with Assembly Language

Calling a subroutine by indirect addressing

Normally an instruction "jsr" is generated for calling an assembly language subroutine from
the C language. To call a subroutine by indirect addressing using "jsri", use a "function
pointer". However, when using a function pointer, note that no registers can be specified
for argument transfers by "#pragma PARAMETER".
Figure 2.4.9 shows a description example.

/∗ Prototype declaration ∗/
extern int count_up (int) ;
extern int count_down (int) ;

void main (void)
{
 int counter = 0 ;
 int mode ;
 int (∗jump_adr) (int) ;

 if (mode == 0){
 jump_adr = count_up ;
 }
 else{
 jump_adr = count_down ;
 }

 counter = (∗jump_adr) (counter) ;
}

.section program

.glb $count_up
$count_up:

add.w #1,R1
mov.w R1,R0
rts

.glb $count_down
$count_down:

sub.w #1,R1
mov.w R1,R0
rts

.end

"mode"= 0

Yes

No

Count-up Count-down
Assembly
language
source file

<C language source file> <Assembly language source file>

Sets jump address
in function pointer.

Declares function
pointer.

Arguments and return values
are exchanged following NC30's
transfer rules.

External declaration of called subroutine

Be sure to declare the called subroutine as
an external referenced function in advance.

Figure 2.4.9 Calling a subroutine by indirect addressing

109

2
ROM'ing Technology

2.4 Linkage with Assembly Language

Example 2.4.2 Calling a Subroutine by Table Jump

The program in this example calls different subroutines from a C language program
according to the value of "num". In cases where multiple branches are involved like in this
example, use of table jump makes it possible to call any desired subroutine in the same
processing time. However, no registers can be specified for argument transfers by
"#pragma PARAMETER".

/∗ Prototype declaration ∗/
int cal_f (int , int , int) ;

extern int (∗jmptbl[])(int , int) ;

void main (void)
{
 int x = 10 , y = 2 ;
 int num , val ;

 num = 2 ;
 if (num < 4) {
 val = cal_f(num , x , y) ;
 }
}
int cal_f(m , x , y)
{
 int z ;
 int (∗p)(int , int) ;

 p = jmptbl [m] ;
 z = (∗p)(x , y) ;
 return z ;
}

.section program
add_f:

mov.w R1,R0
add.w R2,R0
rts

sub_f:
mov.w R1,R0
sub.w R2,R0
rts

mul_f:
mov.w R1,R0
mul.w R2,R0
rts

div_f:
mov.w R2,R3
mov.w R1,R0
exts.w R0
div.w R3
mov.w R2,R0
rts

.section rom_FE , ROMDATA

.glb _jmptbl
_jmptbl:

.lword add_f

.lword sub_f

.lword mul_f

.lword div_f

.END

Externally references
relevant table name as
function pointer.

Gets jump address.

Uses function pointer to call subroutine.

Specifies located section.

Externally declares
table name.

Use pseudo-instruction ".lword" to register
each subroutine's start address.

<C language source file> <Assembly language source file>

Determination
of "num"

Addition
subroutine

(add_f)

Subtraction
subroutine

(sub_f)

Multiplication
subroutine

(mul_f)

Division
subroutine

(div_f)

"num"= 0 "num"= 1 "num"= 2 "num"= 3 "num"> 3

Assembly
language source
file

Example 2.4.2 Calling a subroutine by table jump

110

2
ROM'ing Technology

2.4 Linkage with Assembly Language

Example 2.4.3 A Little Different Way to Use Table Jump

Once the internal labels of a subroutine are registered in a jump table, NC30 allows you to
change the start address of the subroutine depending on the mode. Since multiple
processings can be implemented by a single subroutine, this method helps to save ROM
capacity.

/∗ Prototype declaration ∗/
int clock (int , int) ;

extern int (∗clock_mode []) (int) ;

void main (void)
{
 int mode ;
 int counter = 0 ;

 mode = 2 ;
 if (mode < 3) {
 counter = clock(mode , counter) ;
 }
}

int clock(int m , int x)
{
 int z ;
 int (∗p) (int) ;

 p = clock_mode [m] ;
 z = (∗p) (x) ;
 return z ;
}

.section program
reset:

mov.w #0FFFFH,R1

count:
add.w #1,R1

stop:
mov.w R1,R0
rts

.section rom_FE,ROMDATA

.glb _clock_mode
_clock_mode:

.lword reset

.lword count

.lword stop

.END

Determination
of "mode"

<C language source file> <Assembly language source file>

"mode"= 0

"mode"= 1

"mode"= 2

Resets counter.

Counts up.

Sets return value.
(Stops counting.)

"mode"> 2

Assembly language
source file

Registers internal labels of
subroutine in jump table.

Example 2.4.3 A little different way to use table jump

111

2
ROM'ing Technology

2.4 Linkage with Assembly Language

2.4.3 Calling C Language from Assembly Language

This section explains how to call a C language function from an assembly language program.

Calling a C language function

Follow the rules described below when calling a C language function from an assembly
language program.

(1) Follow NC30's symbol conversion rules for the labels of the called subroutine.
(2) Write the C language function in a file separately from the assembly language

program.
(3) In the assembly language file, declare external references using AS30's pseudo-

instruction ".glb" before calling the C language function.

<Assembly language> <C language>

External reference of function's
beginning label symbol (.glb)

Saving registers

Setting arguments

Allocating area for storing return
values

JSR _func
(JSR $func)

Freeing area that contains return
values

Restoring registers

func (argument)
{

}

Freeing argument area

••••••••••••••••••••••••••••••••••••

Figure 2.4.10 Calling C language function

112

2
ROM'ing Technology

2.5 Interrupt Processing

2.5 Interrupt Processing

2.5.1 Writing Interrupt Processing Functions

NC30 allows you to write interrupt processing as C language functions. There are two
procedures to be followed:
(1) Write interrupt processing functions.
(2) Register them in an interrupt vector table.
This section explains how to write C language functions for each type of interrupt processing.

Writing hardware interrupts (#pragma INTERRUPT)

#pragma ∆ INTERRUPT ∆ interrupt function name

When an interrupt function is declared as shown above, NC30 generates instructions to
save and restore all registers of the M16C/60,M16C/20 and the reit instruction at entry and
exit of the specified function, in addition to ordinary function procedures. For both
arguments and return values, void is only the valid type of interrupt processing functions. If
any other type is declared, NC30 generates a warning when compiling the program.

#pragma INTERRUPT intr

void intr (void)

{

 Interrupt processing

}

 .section program

 .glb _intr

_intr:

 pushm R0 , R1 , R2 , R3 ,

 A0 , A1 , SB , FB

 Interrupt processing

 popm R0 , R1 , R2 , R3 ,

 A0 , A1 , SB , FB

 reit

Expansion
image

Saves all registers.

Restores all registers.

Returns by reit instruction

Only the "void" type is valid for both
arguments and return values.

•••

•••

•••

•••

Figure 2.5.1 An image depicting expansion of interrupt processing function

113

2
ROM'ing Technology

2.5 Interrupt Processing

Writing interrupts that need to be invoked in short time (#pragma INTERRUPT/B)

The M16C/60,M16C/20 has a facility to switch over the register banks while at the same
time protecting register contents, etc., and making it possible to reduce the time until an
interrupt handler is invoked. To utilize this facility, write a command statement as follows:

#pragma ∆ INTERRUPT/B ∆ interrupt function name

When an interrupt function is declared as shown above, NC30 generates instructions to
switch over the register banks, in place of instructions to save and restore the registers.
However, since the M16C/60,M16C/20 register banks consist of only bank 0 and bank 1,
only one interrupt can be specified at a time(Note). Therefore, use this facility for the interrupt
that needs to be invoked in the shortest time possible.

#pragma INTERRUPT/B intr

void intr (void)

{

 Interrupt processing

}

 .section program

 .glb _intr

_intr:

 fset B

 Interrupt processing

 fclr B

 reit

Uses register
bank 1.

Returns to register
bank 0.

Returns by reit instruction

Expansion
image

•••

•••

•••

•••

Figure 2.5.2 An image depicting expansion of fast interrupt processing function

Note: When not using multiple interrupts, this facility can be used in all interrupts.

114

2
ROM'ing Technology

2.5 Interrupt Processing

Writing software interrupts (#pragma INTCALL)

To use the M16C software interrupts, write a command statement as follows:

#pragma ∆ INTCALL ∆ INT number ∆ function name

In software interrupts, arguments can be passed to a function via registers. Furthermore,
any return value except those expressed by a struct or union, can be received from the
called function.

void call32 (int , int)

#pragma INCALL 32 call32 (R0 , R1)

void main (void)

{

 int m , n ;

 call32 (m , n) ;

}

Be sure to declare the function prototype

before declaring #pragma INTCALL.

INT number (decimal)

Following can be used as register names:
 R0, R1, R2, R3,
 R0L, R0H, R1L, R1H,
 A0, A1
These arguments are passed to a function
via these registers.

_main:
enter #02H

mov.w -2[FB],R1 ; n
mov.w -2[FB],R0 ; m

int #32

exitd

Function "CALL32" is called by INT instruction.

Expansion image

Sets argument in register.

Figure 2.5.3 Example for writing "#pragma INTCALL"

115

2
ROM'ing Technology

2.5 Interrupt Processing

2.5.2 Registering Interrupt Processing Functions

For interrupts to be serviced correctly, in addition to writing interrupt processing functions, it is
necessary to register them in an interrupt vector table.
This section explains how to register interrupt processing functions in an interrupt vector table.

Registering in interrupt vector table

When interrupt processing functions are written, they must be registered in an interrupt
vector table. This can be accomplished by modifying the interrupt vector table in the
sample startup program "sect30.inc".
Follow the procedure described below to modify the interrupt vector table.

(1) Externally define the interrupt processing function names using the pseudo-instruction
".glb".

(2) Change the dummy function names "dummy_int" of the interrupts used to interrupt
processing function names.

;---
; variable vector section
;---

.section vector ; variable vector table

.org VECTOR_ADR
;

.lword dummy_int ; vector (BRK)

.org (VECTOR_ADR + 44)

.lword dummy_int ; DMA0 (for user)

.lword dummy_int ; DMA1 (for user)

.lword dummy_int ; input key (for user)

.lword dummy_int ; A-D Convert (for user)

.org (VECTOR_ADR + 68)

.lword dummy_int ; uart0 trance (for user)

.lword dummy_int ; uart0 receive (for user)

.lword dummy_int ; uart1 trance (for user)

.lword dummy_int ; uart1 receive (for user)

.glb _ta0

.lword _ta0 ; TIMER A0 (for user)

.lword dummy_int ; TIMER A1 (for user)

.lword dummy_int ; TIMER A2 (for user)

.lword dummy_int ; TIMER A3 (for user)

.lword dummy_int ; TIMER A4 (for user)
Registers function "ta0()" in
TA0 interrupt.

•••

Figure 2.5.4 Interrupt vector table ("sect30.inc")

116

2
ROM'ing Technology

2.5 Interrupt Processing

2.5.3 Example for Writing Interrupt Processing Function

The program shown in this description example counts up the content of "counter" each time an
INT0 interrupt occurs.

Writing interrupt processing function

Figure 2.5.5 shows an example of source file description.

/∗ Prototype declaration ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/
void int0 (void) ;
#pragma INTERRUPT int0
/∗∗/

unsigned int counter = 0 ;

void int0 (void) /∗ Interrupt function ∗/
{
 if (counter < 9) {

counter ++ ;
}
else {

couter = 0 ;
}

}

void main (void)
{

INT0IC = 1 ; /∗ Setting interrupt level ∗/

asm (" fset i ") ; /∗ Enabling interrupt ∗/
while (1) ; /∗ Interrupt waiting loop ∗/

}

Figure 2.5.5 Example for writing interrupt processing function

117

2
ROM'ing Technology

2.5 Interrupt Processing

Registering in interrupt vector table

Figure 2.5.6 shows an example for registering the interrupt processing functions in an
interrupt vector table.

;--
; variable vector section
;--

.section vector ; variable vector table

.org VECTOR_ADR

.org (VECTOR_ADR + 68)

.lword dummy_int ; UART0 trance (for user)

.lword dummy_int ; UART0 receive (for user)

.lword dummy_int ; UART1 trance (for user)

.lword dummy_int ; UART1 receive (for user)

.lword dummy_int ; TIMER A0 (for user)

.lword dummy_int ; TIMER A1 (for user)

.lword dummy_int ; TIMER A2 (for user)

.lword dummy_int ; TIMER A3 (for user)

.lword dummy_int ; TIMER A4 (for user) (vector 25)

.lword dummy_int ; TIMER B0 (for user) (vector 26)

.lword dummy_int ; TIMER B1 (for user) (vector 27)

.lword dummy_int ; TIMER B2 (for user) (vector 28)

.glb _int0

.lword _int0 ; INT0 (for user) (vector 29)

.lword dummy_int ; INT1 (for user) (vector 30)

.lword dummy_int ; INT2 (for user) (vector 28)
•••

•••

Figure 2.5.6 Example for registering in interrupt vector table

118

2
ROM'ing Technology

2.5 Interrupt Processing

Chapter 3
Using Real-time OS (MR30)

3.1 Basics of Real-time OS
3.2 Method for Using System Calls
3.3 Development Procedures Using MR30
3.4 Incorporating MR30 by Using NC30

This chapter outlines the functions of the real-time OS (MR30) for
the M16C/60,M16C/20 series and explains the precautions to be
observed when you use the real-time OS while using NC30.

120

3
Using Real-time OS (MR30)

3.1 Basics of Real-time OS

121

3
Using Real-time OS (MR30)

3.1 Basics of Real-time OS

3.1 Basics of Real-time OS

3.1.1 Real-time OS and Task

Programs using a real-time OS are configured in units of tasks.
This section explains how tasks are handled in the real-time OS (MR30).

Programs configured with tasks

A task refers to one of program modules that are divided by functionality, processing time,
or other units. One task may consist of one function, or may be configured with multiple
functions.
MR30 uses different identification numbers "ID" for each task for the purpose of task
management. The task ID can be any desired value.

Task 3
ID = 3

Task 4
ID = 4

Task 1
ID = 1

Task 2
ID = 2

Real-time monitor

MR30

Figure 3.1.1 Program configuration with multiple tasks

Task styles

Each task assumes one of the styles listed in Table 3.1.1.

Table 3.1.1 Task Styles

Style that finishes
Style that finishes under some

condition

Style that repeats in

endless loop

void task1 (void)

{

 :

 :

 :

 :

 :

}

void task2 (void)

{

 for (; ;) {

 if () {

 break ;

 }

 }

}

void task3 (void)

{

 for (; ;) {

 :

 :

 :

 }

}

122

3
Using Real-time OS (MR30)

3.1 Basics of Real-time OS

Task status

All tasks are managed by the real-time OS. The real-time OS refers to a "system call", a
request from each task, to determine the task to be executed. The status of each task also
is managed by the real-time OS.
Figure 3.1.2 shows task status in MR30.

READY
(Executable state)

RUN
(Executing state)

WAIT
 (Idle state)

SUSPEND
 (Forced idle state)

WAIT-SUSPEND
(Forced idle state)

DORMANT
(Idle state)

Gains control of the CPU

Relinquishes control of the CPU

Task places itself
in wait state

Clears wait state

Request from other
task for forced wait

Request from
other task to clear
forced wait

Request to clear
wait state

Request from
other task for
forced wait

Request to clear
forced wait

Request from other task for
forced termination

Request from
other task for
forced
termination

Invocation from other task

Figure 3.1.2 Each task status (including status transitions)

Especially important among the above states are RUN, READY, and WAIT.

RUN: This is a state where processing in the task can be executed. Only one task at a
time can be in this state.

READY: This is a state where the task is waiting to be placed in the RUN state. When a
task in the RUN state changes state, one of the tasks in the READY state enters
the RUN state.

WAIT: This is a state where a task in the RUN state has had its processing stopped by
some cause. When a task in the RUN state goes idle, the real-time OS places
one of the tasks in the READY state into a RUN state.

123

3
Using Real-time OS (MR30)

3.1 Basics of Real-time OS

Changeover of task status

There are following three events upon which tasks change state:

• When the RUN task has issued a system call
• When a system call is issued in an interrupt program
• When a system call is issued in the interrupt program managed by the real-time OS

Thus, tasks are made to change state by issuing a system call, and the task in the RUN
state is changed from one task to another in succession. Then, when a wait time occurs in
the program, the real-time OS executes another processing that is irrelevant to the wait.

Column MR30 and µITRON specifications (Note)

MR30 is the real-time OS based on "µITRON specifications". The µITRON specifications
are industry standards created in Japan for real-time OSs that are designed specifically for
controlling microcomputers. The following lists the main specification items:

1. Standardization of system call names
2. Definition of task status (RUN, WAIT, and READY are essential)

Note: The µITRON specifications are copyrighted by Dr. K. Sakamura of the University of Tokyo.

124

3
Using Real-time OS (MR30)

3.1 Basics of Real-time OS

3.1.2 Functions of Real-time OS

The three primary functions of the real-time OS are "task scheduling", "task dispatch", and
"object management".
This section explains about these functions.

Task scheduling

Several tasks, and not just one, in a system can be in the READY state. However, it is
always only one task that is in the RUN state. Therefore, the real-time OS must choose
one task from those in the READY state that is placed in the RUN state next. This
selection process is called "scheduling". Among several methods of scheduling, MR30
uses a "priority method".

Priority method: Each task is assigned priority (or weight) and the task with higher
priority than other tasks is placed in the RUN state first. If two or more
tasks with the same priority exist, the task that is placed in the READY
state first is given priority.

Task priorities are set by the user as necessary, and not set by the real-time OS. Priority
resolution among tasks is the most important point in using the real-time OS.

Context and task control block (TCB)

The process of placing a task in the READY state into a RUN state by the real-time OS is
referred to as "dispatching". When the real-time OS makes this dispatching, the task in the
RUN state is suspended.
This requires that the task's resources (e.g, contents of registers) be saved in some place.
These task resources are called "context". For the purpose of context management, the
real-time OS prepares as many "task control blocks (TCBs)" as the number of tasks set.

Content of TCB

Area where task's
stack pointer is

stored

Task 1 Task 2

TCB
Task 1 Task 1

Code
section

Task 1
Stack

Task Control Block (TCB)

This is a data table that is set for each task managed by the real-time monitor.

TCB
Task 2 Task 2

Code
section

Task 2
Stack

Task status

Task priority

Other

Figure 3.1.3 Main structure of TCB

125

3
Using Real-time OS (MR30)

3.1 Basics of Real-time OS

Task dispatch

The following shows the flow of task dispatch.

1. Dispatch occurs.
2. The context of the task in the RUN state is saved to the stack.
3. The current stack pointer is saved to an area in the TCB.
4. The ID of the next task to be placed in the RUN state is checked.
5. Based on this ID, a stack pointer is acquired from the TCB of the next task to be

placed in the RUN state.
6. The context for the next task is acquired from the stack.
7. Based on the stack pointer, the next task is switched to the RUN state.

Objects types

The items that can be operated on by using a system call are called "objects". A task itself
is part of objects because it can be operated on by a system call. Table 3.1.2 lists the
objects other than tasks prepared by MR30.

Table 3.1.2 Objects of MR30

Object name Function

Event flag
Used to synchronize the timing between tasks. The flag can be set one

event for one bit. (1 word long)

Semaphore

Used to synchronize the timing between tasks. A semaphore is used

mainly for exclusive control between tasks. Exclusive control by

semaphore is based on a semaphore counter.

Mail box
Used to communicate (exchange data) between tasks. One-word long

data or start address of data block can be sent to and from a mail box.

A counter, though not an object, is provided inside the TCB to synchronize the timing of
operation between tasks. Each object is managed by an identification number "ID" as for
tasks. The ID can be any value set by the user.

Column Some note about scheduling

In addition to the priority method, there are following methods of scheduling:
• FCFS method (First Come First Service)

—Tasks are switched to the RUN state in the order they go to a READY state.
• Round robin method

—Tasks are switched to the RUN state sequentially in the same way as with the FCFS
method. The difference is that a task in the RUN state is forcibly switched to another at
certain time intervals by the real-time OS.

126

3
Using Real-time OS (MR30)

3.1 Basics of Real-time OS

Object management

The real-time OS uses a system call to manage the objects.
Table 3.1.3 lists the system calls necessary to manipulate tasks and each object and their
functions.

Table 3.1.3 Main System Calls for Object Manipulation

Classification Object System call Function

Task

management

Task
sta_tsk() Activates a task (READY state).

ext_tsk()
Terminates its own task normally

(DORMANT state).

Task attendant

synchronization

Task
slp_tsk() Places its own task in WAIT state.

wup_tsk() Places WAIT task in READY state.

Synchronization

and

communication

Event flag

set_flg()

Sets an event flag. If there is a task waiting

for an event flag, this system call activates it

(READY state).

wai_flg()

Waits for an event flag (WAIT state). If the

event flag is already set, this system call

continues processing.

Semaphore

sig_sem()

Frees a semaphore (incrementing

semaphore counter by 1). If there is a task

waiting for a semaphore, this system call

activates it (READY state). In this case, the

semaphore does not change.

wai_sem()

If the semaphore counter is already 0, this

system call waits (WAIT state). If not 0, it

decrements the semaphore counter by 1

and continues processing.

Mail box

snd_msg()

Sends a message to a mail box. If there is

a task waiting for a message, this system

call activates it (READY state) and passes

the message. If there is no waiting task,

the message is kept in the mail box.

rcv_msg()

Receives a message from a mail box. If

there is no message, this system call waits

(WAIT state). If there is already a message,

it receives the message and continues

processing.

127

3
Using Real-time OS (MR30)

3.1 Basics of Real-time OS

3.1.3 Interrupt Management

In MR30, interrupt programs are called "interrupt handlers".
This section explains the types of interrupt handlers available with MR30 and how the OS-
dependent interrupt handler, one of these interrupt handlers, is managed.

Types of interrupt handlers

In MR30, the interrupt handlers are classified by whether or not they use a system call
inside the OS. The interrupt handlers that use a system call internally are called "OS-
dependent interrupt handlers" and those do not are called "OS-independent interrupt
handlers". The following explains the functions of the OS-dependent interrupt handlers.

Table 3.1.4 Types of Interrupt Handlers

Interrupt handler Content

OS-dependent interrupt

handler

These interrupt handlers use the system calls provided by MR30.

Unlike interrupt programs, they require processing for using system

calls.

OS-independent

interrupt handler

These interrupt handlers do not use the system calls provided by

MR30. They function in the same way as interrupt programs.

OS-dependent interrupt handlers

Unlike tasks, the OS-dependent interrupt handlers are not the subject of dispatching or
scheduling operation; therefore, no TCBs are created for them.
The following describes the processing procedures for the OS-dependent interrupt
handlers:

1. Registers are saved.
2. Handler is executed (using system call).
3. Registers are restored.
4. OS-dependent interrupt handler terminating system call "ret_int"

∗) To terminate an OS-dependent interrupt handler, MR30 uses a special system call
named "ret_int". Scheduling and dispatching are performed in this system call.
Since a dispatch is performed when an OS-dependent interrupt handler is
terminated, the task that is in the RUN state at termination of the handler is not
necessarily the one that was in the RUN state when an interrupt occurred.

128

3
Using Real-time OS (MR30)

3.1 Basics of Real-time OS

Executing OS-dependent interrupt handler

Figure 3.1.4 shows how an OS-dependent interrupt handler is executed in comparison with
invocation by a system call.

<Invocation by system call> <Invocation from handler>

Task 1

System call
issued

RTM

Registers saved and
stacks switched

System call
processed

Execution tasks
switched

Stacks switched
and registers

restored

Task 2 Handler

Registers saved

Registers restored

Handler
terminating
system call

Execution tasks
switched and dispatch

System call (Note)

issued and task
wait cleared

RTM Task

RTM: Acronym of Real-time Monitor

Figure 3.1.4 Executing OS-dependent interrupt handler during task execution

Note: The system calls that can be used in interrupt handlers are limited. Be sure to use the system calls that are usable in interrupt
handlers.

129

3
Using Real-time OS (MR30)

3.1 Basics of Real-time OS

Management of multiple interrupts

Multiple interrupts could occur (e.g., an interrupt of higher interrupt enable priority may
occur when executing an OS-dependent interrupt handler).
Figure 3.1.5 shows how OS-dependent interrupt handlers operate when multiple interrupts
occur.

<Task 1> <OS-dependent interrupt handler 1>
(Priority = low)

<OS-dependent interrupt handler 2>
(Priority = high)

Registers saved

System call issued

Interrupt

Registers restored

ret_int

Registers saved

System call
issued

Registers restored

ret_int

Interrupt

Dispatch not performed.
Returns to the first interrupt handler.

Dispatch occurs.
Task switching in handlers 1 and 2 are performed here.

Figure 3.1.5 Execution of OS-dependent interrupt handlers when multiple interrupts occur

When multiple interrupt occur, the system call "ret_int" in the OS-dependent interrupt
handler that was invoked for an interrupt of high priority does not perform task dispatch.
This is because all processing of the OS- dependent interrupt handler must be completed
before returning to the task.

130

3
Using Real-time OS (MR30)

3.1 Basics of Real-time OS

3.1.4 Special Handlers

In addition to the interrupt handlers described above, MR30 has some other handlers that utilize
the functions of the real-time OS.
This section explains about such special handlers.

System clock interrupt handler

The system clock interrupt handler is a special handler provided by the real-time OS. This
handler is used for time management by using one hardware timer as the system clock
exclusively for this purpose.

Table 3.1.5 Interrupt Handler Provided by Real-time OS

Handler name Function Remark

System clock

interrupt handler

This handler is provided by the real-time

monitor for timer interrupts. Any timer can be

chosen for this purpose. This timer is required

when using a time management function of the

OS.

One timer is occupied for

this purpose. The timer

also can be disabled

from use.

The cycle time of the system clock interrupt handler (i.e., timer interrupt generation
intervals) can be set as desired by the user.

Special handlers

All handlers listed in Table 3.1.6 are invoked as part of the system clock interrupt handler.
For this reason, system calls can be used in these handlers.

Table 3.1.6 Special Handlers

Handler name Function Remark

Cyclic handler

Invoked from inside the system clock interrupt

handler periodically at time intervals set. Since

this handler functions as part of the system

clock interrupt handler, it assumes the form of a

subroutine.

Prepared by the user.

Alarm handler

Invoked from inside the system clock interrupt

handler only once in a set duration of time.

Since this handler functions as part of the

system clock interrupt handler, it assumes the

form of a subroutine.

Prepared by the user.

131

3
Using Real-time OS (MR30)

3.2 Method for Using System Calls

3.2 Method for Using System Calls

3.2.1 MR30's System Calls

This section explains about the system calls that are required when using the real-time OS by
describing in which form MR30 is supplied and how it can be built into a system.

Supplied form of MR30

MR30 is supplied in library form. This means that the library of MR30 is built into a system
only when linking it.
Each system call of MR30 constitutes a library module.
Figure 3.2.1 shows the system call library provided by MR30.

Event
flag Semaphore Mail box

Task
management

Task attendant
synchronization

Time
management

Version
management

Scheduler Interrupt
processing

Figure 3.2.1 System call library provided by MR30

Incorporation into a system

MR30 consists of a library of each system call. Therefore, when linking the entire system,
only the system calls written in the user program are built into the system. Not all of MR30
is built into the system.
When viewed from the program side, all system calls are handled as external functions
(i.e., functions prepared by MR30).

132

3
Using Real-time OS (MR30)

3.2 Method for Using System Calls

3.2.2 Writing a System Call

This section explains how to write system calls necessary to use the real-time OS by using the C
language.

Basic method for writing a system call

All system calls are handled as functions. Therefore, the method for using system calls in a
program is the same as the one normally used for function calls.

#include <mr30.h>
void task1 (void)
{
 slp_tsk();
}

Include file required for using MR30

 Places its own task in WAIT state.

Figure 3.2.2 Writing a system call

System call parameters

Write the parameters for a system call as arguments of a function.

#include <mr30.h>
#include "id.h"
void task2 (void)
{
 wup_tsk (ID_task1) ;
}

Include file required for using MR30

Include file required for manipulating
objects

Activates a task (READY state).

Figure 3.2.3 Writing a system call which has parameters

Object specification

When using system calls in MR30 that manipulate objects, specify the ID of the object. In
MR30, an object name is used for this ID to indicate it in a visually understandable manner.
Although a simple numeric value can be used to specify the ID, Mitsubishi recommends
using this method for better readability of the program.

Method for specifying ID ID_[object name]
→ Set any object name as desired.

133

3
Using Real-time OS (MR30)

3.2 Method for Using System Calls

Error code of system calls

All return values of system calls constitute the error codes of system calls. Specific
character strings are used for these error codes also, for easy identification.
Table 3.2.1 lists the error codes of system calls.

Table 3.2.1 Error Code List (Note)

Character string Meaning

E_OK Terminated normally.

E_OBJ Object status is invalid.

E_QOVR Queuing or nesting overflowed.

E_TMOUT Polling failed or timed out.

E_RLWAI Wait state forcibly cleared.

These error codes can be used to choose the processing to be performed after using a
system call. Figure 3.2.4 shows an example for using error codes for this purpose.

#include < mr30.h >
void task1 (void)
{
 ER err_code ;

 err_code = slp_tsk () ;

 if (err_code ! = E_OK) {
 ext_tsk () ;
 }
}

Include file that is required by using MR30.

In MR30, arbitrary characters are used to define data type
in system call.

Places its own task in WAIT state.

Error codes of slp_tsk() are:
E_OK and E_RLWAI

Determines error code after clearing WAIT.

Figure 3.2.4 Utilization of error code

Note: Usable error codes vary with each system call.

134

3
Using Real-time OS (MR30)

3.2 Method for Using System Calls

Column Defined character strings

MR30 has defined character strings regarding the data types of system call parameters
and specific other data types. These character strings are standardized to maintain
compatibility between the real-time OSs based on µITRON specifications.

Table 3.2.2 Data Types and Characters

Specific data

Signed 8-bit integer B Signed 16-bit integer H Signed 32-bit integer W

Unsigned 8-bit integer UB Unsigned 16-bit integer UH Unsigned 32-bit integer UW

Pointer to unmatching

data types
VP

Parameter data

Object ID ID Error code ER Task priority PRI

∗

135

3
Using Real-time OS (MR30)

3.3 Development Procedures Using MR30

3.3 Development Procedures Using MR30

3.3.1 Files Required during Development

When developing a program using MR30, there must be a "startup program" and an "object
definition file" available, in addition to the program itself.
This section explains the contents of each file.

MR30 startup program

The need for a startup program was discussed in Section 2.2, "Startup Program". Here, a
brief explanation is made of MR30's startup program.

Must be modified to suit the user's system.

Must be modified to suit the user's system.

Set main control registers.

Clear bss section data.

Set system clock.

Initialize each peripheral I/O.

Initialize each object.

Load data section data.

Must be modified to suit the user's system.

All tasks whose initial state was defined "READY" when registering
tasks are placed in the "READY state". Consequently, the task with
the highest priority among them is placed in the "RUN state".

Activate task
(place in READY state).

Figure 3.3.1 Outline of processing performed by MR30 startup program

136

3
Using Real-time OS (MR30)

3.3 Development Procedures Using MR30

Modification of startup program

Before developing a program using MR30, the startup program provided by MR30 must be
modified to suit the user's system.
The following lists the main points to be modified:

• Setting of processor mode register
• Setting of interrupt vector table start address
• Initialization of peripheral I/Os used
• Modification of memory map(Note)

Setting of processor mode register ("crt0mr.a30")

Initialize the processor mode register and other registers that control the M16C/60,M16C/
20 directly. Figure 3.3.2 shows the lines to be modified and how to write new lines.

;===
; Interrupt section start
;– –

.glb __SYS_INITIAL

.section MR_KERNEL,CODE,ALIGN
_SYS_INITIAL:
;– –
; after reset,this program will start
;– –

mov.b #02H,000AH
mov.b #00H,PMOD ; Set Processor Mode Regsiter
mov.b #00H,000AH
ldc #0080h,flg
ldc #(__Sys_Sp&0FFFFH), sp
ldc #(__Sys_Sp&0FFFFH), fb
ldc #data_SE_top, sb

Program starts from this label after reset.

Set the processor mode register to suit the
system.

Figure 3.3.2 Initializing M16C/60,M16C/20 control registers

Note: Memory map cannot be modified in the startup program. To do this, correct MR30's section definition file "c_sec.inc".

137

3
Using Real-time OS (MR30)

3.3 Development Procedures Using MR30

Setting of interrupt vector table start address ("crt0mr.a30, c_sec.inc")

Set the start address of the interrupt vector table. The values set here are set to the
interrupt table register "INTB" in "crt0mr.a30".

;– –
; Set System Stack Pointer
; and
; Set Interrupt Vector
;– –

fclr U
ldc #(__Sys_Sp&0FFFFH),ISP ; set initial ISP
mov.b #0,R0L
mov.b #__SYS_IPL,R0H
ldc R0,FLG ; set system IPL
ldc #((__INT_VECTOR>>16)&0FFFFH),INTBH
ldc #(__INT_VECTOR&0FFFFH),INTBL
fset I ; enable interrupt

;– –
; VECTOR TABLE
;– –

.glb __INT_VECTOR

.section INTERRUPT_VECTOR ;Interrupt vector table

.org 0ffd00H
__INT_VECTOR:

(" c_sec.inc ")
The values defined in "c_sec.inc" are set
to the interrupt table register "INTB".

(" crt0mr.a30 ")

Figure 3.3.3 Setting interrupt vector table start address

Initialization of peripheral I/Os used ("crt0mr.a30")

Add the initial setup procedure for peripheral I/Os to the startup program by writing them in
"crt0mr.a30". Figure 3.3.4 shows the location for these initial settings to be written.

;+ – +
; | User Initial Routine (if there are) |
;+ – +
;

Add initial setup program for the peripheral I/Os used.

Figure 3.3.4 Initializing peripheral I/Os

138

3
Using Real-time OS (MR30)

3.3 Development Procedures Using MR30

Modification of memory map ("c_sec.inc")

Set the start address of each section by using a pseudo-instruction ".org". Sections without
specified start addresses are located at contiguous addresses following the previously
defined section.

;– –
; Arrangement of section
;– –
; Near RAM data area
;– –

.section data_SE,DATA

.org 400H
data_SE_top:

.section bss_SE,DATA,ALIGN
bss_SE_top:

;– –
; Far RAM data area
;– –

.section data_FE,DATA

.org 10000H
data_FE_top:

;– –
; Far ROM data area
;– –

.section rom_FE,ROMDATA

.org 0F0000H
rom_FE_top:

Set the start address of each area
according to the memory map.

•••

•••

•••

Figure 3.3.5 Modifying memory map

139

3
Using Real-time OS (MR30)

3.3 Development Procedures Using MR30

Object definition file (configuration file)

Write the definition of each object in a file called "configuration file". Create this
configuration file from the template file "default.cfg" for configuration files provided by
MR30.

Specify stack size for
real-time monitor

Specify task priority

Specify system clock

Define tasks

Task ID, task priority, task stack
size, etc.

Define each object

Event flag, semaphore, mail
box, memory pool

Define cyclic handler

Define alarm handler

Define interrupt handler, etc. etc

Figure 3.3.6 Outline of configuration file

The created configuration file is expanded into a file by the configurator "cfg30" provided by
MR30, the file that is required when building MR30 into the system.

Column Memory map setup files for MR30

The startup program provided by MR30 contains include files that determine memory map.
To modify memory map, it is necessary to correct these included files. Here, the following
explains the files related to memory map.

Table 3.3.1 Memory Map Related Files for MR30

File name Function Remark

c_sec.inc
An include file to allocate memory for program

and data when using NC30.

Used for development in C

language

asm_inc.inc
An include file to allocate memory for program

and data when using AS30 only.

Used for development in

assembly language

140

3
Using Real-time OS (MR30)

3.3 Development Procedures Using MR30

3.3.2 Flow of Development Using MR30

This section explains the flow of development of a program with built-in MR30.

Flow of development using MR30

Figure 3.3.7 shows the flow of program development when using MR30 in the program.

Configuration file
Startup program

(corrected)
C language
source file

Configurator
cfg30

System generation
procedure

description file
(makefile)

System data
definition file

C compiler
nc30

Relocatable assembler
as30

Relocatable file MR30 library

Linkage editor
ln30

Machine
language file Writing into ROM

Load module converter
lmc30

System call file

Utility
mkmrtbl

Assembly
language
source file

Relocatable file

Assembly
language
source file

Figure 3.3.7 Development flow

Development procedures

To develop a program, follow the procedures below:

1. Design and create each task and handler.
2. Correct the startup program.
3. Correct memory map.
4. Create a configuration file.
5. Start up the configurator.
6. Create objects.

141

3
Using Real-time OS (MR30)

3.4 Building MR30 into Program Using NC30

3.4 Building MR30 into Program Using NC30

3.4.1 Writing Program Using NC30

NC30 provides extended functions in order for MR30 to be built into a program. The extended
functions for MR30 are written into a specific file by using MR30 configurator. Consequently,
once a specific file is included in the program, there is no need to write the extended functions in
an existing program. However, Mitsubishi recommends that the meaning of the extended
functions be understood.
The following explains how to build MR30 into a program using NC30.

Files to be included

To create a program with built-in MR30, include the required files at the beginning of the
program. These include files contain a description of definitions necessary to build MR30
into a program.

Table 3.4.1 Include Files Necessary to Use MR30

File name Function

mr30.h Contains definitions required for MR30 and declares system call prototype.

id.h

Rewrites object IDs used in program.

Enters declarations using extended functions for MR30.

(This file is automatically created from the configuration file by invoking the

configurator.)

#include <mr30.h>
#include "id.h"

Shown above is an example where "mr30.h" is placed in the standard directory (the
directory specified by environment variable INC30) and "in.h" is placed in the current
directory.
The file "id.h" is created in the current directory by invoking the configurator.

142

3
Using Real-time OS (MR30)

3.4 Building MR30 into Program Using NC30

Extended functions for MR30

The extended functions provided for MR30 use the #pragma commands which are the
preprocess commands of NC30. These extended functions must be written in places
preceding the functions to be specified.
Table 3.4.2 lists the extended functions provided for MR30.

Table 3.4.2 Extended Commands for MR30

Extended command Meaning

#pragma TASK Specifies the function that serves as a task.

#pragma INTHANDLER
Specifies the function that serves as an OS-dependent interrupt

handler.

#pragma HANDLER Abbreviated form of INTHANDLER.

#pragma CYCHANDLER Specifies the function that serves as a cyclic handler.

#pragma ALMHANDLER Specifies the function that serves as an alarm handler.

However, the required extended functions for MR30 are automatically built in by using
MR30's configurator. Therefore, there is no need to write these extended commands.

143

3
Using Real-time OS (MR30)

3.4 Building MR30 into Program Using NC30

3.4.2 Writing Tasks using NC30

This section explains how to write tasks using NC30 and the precautions to be observed when
writing tasks.

Method for writing tasks

MR30 system calls can be used in the function specified in a task, and in the function that
is called by that function.
Figure 3.4.1 shows an example for writing a task.

#include < mr30.h >
#include " id.h "

void task1 (void)
{
 for (; ;) {

 }
}

•••

Figure 3.4.1 Example of task description

Features of command expansion by task specification

The functions specified in tasks differ from ordinary functions in the manner of command
expansion as described below:

• The frame base register (FB) is not saved to a stack.
• When terminating the function, an "ext_tsk" system call is output.

144

3
Using Real-time OS (MR30)

3.4 Building MR30 into Program Using NC30

Precautions for writing tasks-1

Write tasks in function style. At this time, pay attention to the following:

• Return values must be the void type.
• A function has one void or int-type argument. Only one argument can be specified.

When a task is invoked for the first time (as argument of sta_tsk system call), MR30 can
receive one integer-type data as start code.

• No static-type functions can be defined as task. (See Figure 3.4.3.)
• When a task is restarted, the external variables used in the task and static variables are

not initialized. Initialize these variables back again. (See Figure 3.4.4.)

Figures 3.4.2 to 3.4.4 show description examples and the precautions for writing tasks.

#include < mr30.h >
#include " id.h "

void task1 (void)
{

}

void task2 (int code)
{
 switch (code) {

 }
}

Processing can be switched
over by using start code.

One integer type can be specified for argument.

•••

•••

Figure 3.4.2 Example of task description

#include < mr30.h >
#include " id.h "

static void task3 (void)
{

}

No static-type functions can
be used as task.•••

Figure 3.4.3 Precautions for writing tasks-1 (regarding static-type functions)

145

3
Using Real-time OS (MR30)

3.4 Building MR30 into Program Using NC30

Precautions for writing tasks-2

#include < mr30.h >
#include " id.h "

char mode = 0 ;

void task1 (void)
{
 for (; ;) {
 if (mode) {

 }
 }
}

#include < mr30.h >
#include " id.h "

char mode = 0 ;

void task1 (void)
{
 mode = 0 ;

 for (; ;) {
 if (mode) {

 }
 }
}

External variables (mode) are not initialized
when this task is restarted (RUN state) after
being terminated once (idle state).

Must be
corrected like
this

When using external and static variables in a task to
be restarted, initialize them in the task function.

•••

•••

Figure 3.4.4 Precautions for writing tasks-2 (initialization of variables in restarted task)

146

3
Using Real-time OS (MR30)

3.4 Building MR30 into Program Using NC30

Column Referenced range of variables (scope)

Variables are referenced in different ranges depending on their storage class. Table 3.4.3
and Figure 3.4.5 show the referenced range of variables that vary depending on the
storage class.

Table 3.4.3 Referenced Range of Variables

Storage class of variable Referenced range

External variables Can be referenced in all tasks and handlers.

static variables outside task

and handler
Can be referenced in tasks and handlers within the same file.

static variables inside task

and handler
Can be referenced in one task or handler.

Internal variables Can be referenced in one task or handler.

Register variables

#include < mr30.h >
#include " id.h "

char mode = 0 ;
static char code = 0 ;

void task1 (void)
{
 static char data1 ;
 char data2 ;

 mode = 0 ;

 for (; ;) {
 if (mode) {
 code = 1;
 data1 = code;
 data2 = code;

 }
 }
}

External variables: Can be referenced in all tasks and handlers.

static variables outside task and handler: Can be referenced in
tasks and handlers within this file.

External variables (mode) are not initialized when this task is
restarted (RUN state) after being terminated once (idle state).

static variables inside task and handler: Can be referenced in
the task "task1".

Internal variables: Can be referenced in the task "task1".

•••

Figure 3.4.5 Example of reference ranges of variables

147

3
Using Real-time OS (MR30)

3.4 Building MR30 into Program Using NC30

3.4.3 Writing Interrupt Handler

Interrupt handlers in MR30 are classified into "OS-dependent interrupt handlers" and "OS-
independent interrupt handlers".
This section explains how to write OS-dependent interrupt handlers and the precautions for
writing these handlers.(Note)

Writing OS-dependent interrupt handlers in C language

System calls (i.e., those usable in OS-dependent interrupt handlers) can be used in OS-
dependent interrupt handlers and the specified functions.
Figure 3.4.6 shows an example of handler description.

#include < mr30.h >
#include " id.h "

void int_hand (void)
{

}

•••

Figure 3.4.6 Example for writing OS-dependent interrupt handler

Features of command expansion in OS-dependent interrupt handler

An OS-dependent interrupt handler and its specified function are expanded into instructions
that perform the following:

• Save all registers to the stack.
• Perform interrupt handler entry processing for MR30.
• When terminated, restore all registers from the stack.
• Terminate the handler by using a ret_int system call.

Note: The method for writing OS-independent interrupt handlers is the same as one that is written in Section 2.5, "Interrupt
Processing".

148

3
Using Real-time OS (MR30)

3.4 Building MR30 into Program Using NC30

Precautions for writing OS-dependent interrupt handlers

Write OS-dependent interrupt handlers in function style. At this time, pay attention to the
following:

• Only void-type return values are valid.
• Only void-type arguments are valid.
• No static-type functions can be defined.
• Only those system calls that are usable in handlers can be used in the OS-dependent

interrupt handler.

#include < mr30.h >
#include " id.h "

void int_hand (void)
{
 iwup_tsk (ID_task1) ;

 }

In an OS-dependent interrupt handler, use those
system calls that are usable in handlers.

Only void-type return values and arguments
are accepted for OS-dependent interrupt
handlers.

•••

Figure 3.4.7 Example for writing OS-dependent interrupt handlers

#include < mr30.h >
#include " id.h "

static void int_hand (void)
{

}

•••
No static-type functions can be defined as OS-dependent
interrupt handler

Figure 3.4.8 Precautions for writing OS- dependent interrupt handlers (regarding static-
type functions)

149

3
Using Real-time OS (MR30)

3.4 Building MR30 into Program Using NC30

Data exchange between OS-dependent interrupt handler and task

There are two methods for exchanging data between an OS-dependent interrupt handler
and a task: one by using an external variable, and one by using a mail box.
Figure 3.4.9 shows an example of how data is exchanged using an external variable.

#include < mr30.h >
#include " id.h "

char data1 ;

void int_hand (void)
{
 data1 = 0x10 ;
 iwup_tsk (ID_task1) ;

}

void task1 (void)
{
 for (; ;){
 slp_tsk();
 if (data1) {

 }
 }
}

Declares external variable when exchanging data
with a task.

Uses the data from the OS-dependent interrupt
handler.

•••

•••

Figure 3.4.9 Example for data exchange by using an external variable

Column System calls usable in handlers

Only specific system calls can be used in OS-dependent interrupt handlers, cyclic handlers,
and alarm handlers. Note that if an unusable system call is used, the program may not
operate properly. Note also that system calls in ixxx_xxx form are provided for exclusive
use in handlers. For details about the functionality of system calls, refer to the MR30
manual.

ista_tsk() ichg_pri() irot_rdq() irel_wai() get_tid() isus_tsk()

irsm_tsk() iwup_tsk() iset_flg() clr_flg() pol_flg() isig_sem()

preq_sem() isnd_msg() prcv_msg() set_tim() get_tim() act_cyc()

150

3
Using Real-time OS (MR30)

3.4 Building MR30 into Program Using NC30

Data exchange by using mail box

Figure 3.4.10 shows an example for exchanging data between an OS-dependent interrupt
handler and a task by using a mail box. In this description example, data in length of 16
bits is used as a message. In addition to this, 16-bit long addresses can also be used as a
message.

Uses the data from OS-dependent interrupt handler.

The message data can be data or addresses in
length of up to 16 bits.

Sends a message to mail box "mbx1".

#include < mr30.h >
#include " id.h "

void int_hand (void)
{
 int data1 ;
 data1 = 0x10 ;
 isnd_msg (ID_mbx1 , (PT_MSG) data1) ;

}

void task1 (void)
{
 int data1 ;
 for (; ;) {
 rcv_msg ((PT_MSG ∗) & data1 , ID_mbx1)
;
 if (data1) {

 }
 }
}

Prepares data for receiving a message.

Waits for message from mail box "mbx1".
The variable to receive a message is cast by "PT_MSG∗".

 The type declaration of "rcv_msg()" system call is as follows:
ER rcv_msg (PT_MSG ∗, ID) ;

Prepares data used as a message.

The message data is cast by "PT_MSG".
The type declaration of "isnd_msg()" system call is as
follows: ER isnd_msg (ID, PT_MSG) ;

The message's data length must be matched to
that of transmitted message.

••••••

•••

Figure 3.4.10 Example for data exchange by using a mail box

151

3
Using Real-time OS (MR30)

3.4 Building MR30 into Program Using NC30

3.4.4 Writing Cyclic and Alarm Handlers

This section explains how to write cyclic and alarm handlers and the precautions for writing these
handlers.

Method for writing cyclic and alarm handlers

Those system calls that are usable in handlers can be used in cyclic and alarm handlers
and the specified functions.
Figure 3.4.11 shows an example for writing cyclic and alarm handlers.

#include < mr30.h >
#include " id.h "

void cyc_hand(void)
{

}

•••

Figure 3.4.11 Example for writing cyclic and alarm handlers

The cyclic and alarm handlers serve as the functions that are called in the system clock
interrupt handler provided by MR30.

Features of command expansion

The functions specified in cyclic and alarm handlers are expanded into instructions that
perform the following:

• Terminate the handler by using an rts instruction (subroutine return instruction for the
M16C/60,M16C/20) or an exitd instruction (function return instruction for the M16C/
60,M16C/20).

152

3
Using Real-time OS (MR30)

3.4 Building MR30 into Program Using NC30

Precautions for writing cyclic and alarm handlers

Write the cyclic and alarm handlers in function style. At this time, pay attention to the
following:

• Only void-type return values are valid.
• Only void-type arguments are valid.
• No static-type functions can be defined as cyclic or alarm handler.
• Only those system calls that are usable in handlers can be used in cyclic and alarm

handlers.

#include < mr30.h >
#include " id.h "

void cyc_hand (void)
{
 iwup_tsk (ID_task1) ;

 }

Only void-type return values and arguments
are accepted for cyclic handlers.

No static-type functions can be
defined as cyclic handlers.

•••

Figure 3.4.12 Example for writing cyclic handler

#include < mr30.h >
#include " id.h "

static void cyc_hand (void)
{

}
No static-type functions can be defined as
cyclic handler.

•••

Figure 3.4.13 Example for writing cyclic handler (example of erroneous description)

Data exchange between cyclic and alarm handlers and tasks

When cyclic or alarm handlers exchange data with tasks, MR30 uses the same method that
is used for exchanging data between OS-dependent interrupt handlers and tasks.

Appendices

Appendix A. Functional Comparison between
NC30 and NC77

Appendix B. NC30 Command Reference
Appendix C. Questions & Answers

Appedix-2

Appendix A

 Functional Comparison between NC30 and NC77Appendix A

Appedix-3

Appendix A

 Functional Comparison between NC30 and NC77Appendix A

Appendix A. Functional Comparison between NC30 and NC77

Regarding sections

One noteworthy feature of the M16C/60,M16C/20 series is that they support 1 Mbytes of
linear memory space without "boundaries every 64 Kbytes", and that those banks that are
found in the 7700 family are nonexistent. Furthermore, although the interrupt programs in
the 7700 family were subjected to restrictions on allocatable addresses, they in the M16C/
60,M16C/20 series can be mapped into any desired location over the entire memory
space just like ordinary other programs.
Therefore, NC77's interrupt section is nonexistent in NC30, and the interrupt programs in
NC30 are stored (and located) in the program section.
Moreover, the M16C/60,M16C/20 series has two types of interrupt vector tables: a
"variable" vector table that can be located at any desired address in the entire memory
space and a "fixed" vector table which has its location address predetermined for each type
of microcomputer. In NC30, the former is located as the vector section, and latter as the
fvector section.
Table A.1 lists the differences between NC30 and NC77 regarding sections.

Table A.1 Functional Comparison Regarding Sections

 Item NC30 NC77

stack
An area used as stack. It is located at

addresses from 00400H to 0FFFFH.

An area used as stack. It is located in

bank 0 of the 7700 family.

vector

Stores the contents of the M16C/60's,

M16C/20's interrupt vector table. The

interrupt vector table can be located at

any desired address in the M16C/60's

entire memory space by INTB register

relative.

Stores the contents of the 7700 family's

interrupt vector table. The address at

which this interrupt vector table is

located varies with each type of

microcomputer.

fvector
Stores the contents of the M16C/60's,

M16C/20' sfixed vector.

interrupt

deleted

Since the interrupt program is located

at any desired address in the M16C/

60's , M16C/20's entire memory space,

it is located at "program" section.

Stores interrupt programs (functions

specified by "#pragma INTERRUPT"

and "#pragma HANDLER"). This

section is located in bank 0 of the 7700

family.

Appedix-4

Appendix A

 Functional Comparison between NC30 and NC77Appendix A

Modified extended functions

With the M16C/60,M16C/20 series, "banks" and the "m and x flags" are nonexistent.
Therefore, the definitions of the near/far modifiers and part of functionality of the asm
function have been modified.

Table A.2 Modified Extended Functions

Item NC30 NC77

near/far

modifier

1. Specify the addressing mode to

 access data.

 near: Access 00000H through

 0FFFFH.

 far: Access 00000H through

 FFFFFH.

 (2. All functions assume the far

 attribute.)

1. Specify the addressing mode to

 access data.

 near: Access addresses within the

 same bank.

 far: Access addresses outside the

 bank.

2. Specify whether the "JSR" or "JSRL"

 instruction is used to call a function.

 near: JSR instruction is used.

 far: JSRL instruction is used.

asm

function

1. Write assembly language in C

 language.

2. Specify auto variable by variable

 name.

3. Partially suppress optimization.

4. Specify register argument by

 variable name.

1. Write assembly language in C

 language.

2. Specify auto variable by variable

 name.

3. Partially suppress optimization.

4. Control 'm' and 'x' flags.

Added extended functions

For NC30, the compiler's extended functions have been added to support the features of
the M16C/60,M16C/20 series, such as bit manipulating instructions and SB relative
addressing. Furthermore, to accommodate the M16C/60,M16C/20 series 's versatile
interrupt processing, new extended functions are provided for writing interrupt programs
that use software interrupts or register banks. Moreover, the extended functions now
include an "inline" storage class and an inline assemble function "#pragma ASM", making it
possible to take full advantage of the M16C/60,M16C/20 series capabilities.

Table A.3 Added Extended Functions

Item NC30

#pragma ASM to

#pragma ENDASM

Specifies area where statements are written in assembly

language.

#pragma BIT
Declares that the variable is in an area where 1-bit manipulating

instruction in 16-bit absolute addressing mode can be used.

#pragma SBDATA Declares that SB relative addressing can be used for the data.

#pragma INTERRUPTt/B
When calling interrupt function, it switches over register banks,

instead of saving registers to stack.

#pragma INTCALL Declares function that calls software interrupts (int instruction).

Appedix-5

Appendix A

 Functional Comparison between NC30 and NC77Appendix A

Deleted extended functions

The extended functions of NC77 listed in Table A.4 are not supported by NC30, because
they are used to operate on the registers or flags that do not exist in the M16C/60,M16C/20
series.

Table A.4 Extended Functions Not Supported by NC30

Item NC77

#pragma LOADDT
When calling a function, it returns data bank register (DT) to the

value when compiled.

#pragma

M1FUNCTION
Set the 'm' flag to 1 before calling a function.

The extended functions listed in Table A.5 are supported by NC30 also, for reasons of
compatibility with NC77. However, when creating a new program, please follow the
recommended uses below, without using these extended functions.

Table A.5 Extended Functions Retained for Compatibility Reason and Recommended
 Uses in NC30

Item Function Recommended use in NC30

#pragma ROM Locates in rom section. Use const modifier.

#pragma INTF
Specifies interrupt processing

function.
Use #pragma INTERRUPT.

#pragma EQU
Specifies absolute address of

variable.
Use #pragma ADDRESS.

Appedix-6

Appendix B

 NC30 Command ReferenceAppendix B

Appendix B. NC30 Command Reference

NC30 command input format

%nc30 ∆ [startup option] ∆ [assembly language source file name] ∆ [relocatable object file
name] ∆ <C language source file name>

%: Indicates the prompt.
< >: Indicates an essential item.
[]: Indicates items that can be written as necessary.
∆ : Indicates a space.
When writing multiple options, separate them with the space key.

Options regarding compile driver control

Table B.1 Options Regarding Compile Driver Control

Option Function

–c
Creates relocatable file (attribute .r30) before

terminating processing.

–D identifier
Defines identifier. It functions in the same way as

"#define".

–I directory name
Specifies directory name where file specified by

"#include" exists. Up to 8 directories can be specified.

–E
Invokes only preprocess command and outputs result

to standard output device.

–P
Invokes only preprocess command and creates file

(attribute .i).

–S
Creates assembly language source file (attribute .a30)

before terminating processing.

–U predefined macro name Undefines specified predefined macro.

–silent Inhibits copyright message from being output at startup.

If startup options -c, -E, -P, and -S are not specified, NC30 controls the compile driver up to
ln30 until it creates the absolute module file (attribute .x30).

Appedix-7

Appendix B

 NC30 Command ReferenceAppendix B

Output file specifying options

Table B.2 Output File Specifying Options

Option Function

–o file name
Specifies the name of file generated by nc30 (e.g., absolute module

file, map file). Do not write file extension.

Version information display options

Table B.3 Version Information Display Options

Option Function

–v Displays command program name and command line under execution.

–V
Displays message when compiler's each program starts up before

terminating processing (does not perform compile processing).

Debug options

Table B.4 Debug Options

Option Function

–g
Outputs debug information to assembly language source file (attribute.

a30).

–genter
When calling function, it always outputs enter instruction. Be sure to

specify this option when using debugger's stack trace function.

–greg Outputs debug information about register variables.

Appedix-8

Appendix B

 NC30 Command ReferenceAppendix B

Alarm options

Table B.5 Alarm Options

Option Abbreviation Function

–Wnon_prototype –WNP

Outputs alarm when attempt is made to use or

define the function whose prototype is not

declared.

–Wunknown_pragma –WUP
Outputs alarm when attempt is made to use

unsupported "#pragma".

–Wno_stop –WNS
Does not stop compile operation even when

error occurs.

–Wstdout None
Outputs error message to host computer's

standard output device (stdout).

Optimization options

Table B.6 Optimization Options

Option Abbreviation Function

–O None
Optimizes to minimize both speed and

ROM size.

–OR None
Optimizes by emphasizing ROM size than

speed.

–OS None
Optimizes by emphasizing speed than

ROM size.

–Ono_bit –ONB
Suppresses optimization to put bits in

order.

–Ono_break_source_debug –ONBSD
Suppresses optimization that affects

source line information.

–Osp_adjust –OSA

Optimizes to remove stack correction

code. This helps to reduce ROM size.

However, it could result in increased stack

amount.

–Ono_stdlib –ONS

Suppresses inline embedding of standard

library functions or modification of library

functions.

–Ono_cse –ONC
Suppresses optimization that deletes

common instructions.

Appedix-9

Appendix B

 NC30 Command ReferenceAppendix B

Library specifying options

Table B.7 Library Specifying Options

Option Function

–l∆<library name> Specifies library that is used when linking.

Assemble and link options

Table B.8 Assemble and Link Options

Option Function

–as30∆<Option>
Specifies options of assemble command "as30". When passing two or

more options, be sure to enclose them with double quotations (").

–ln30∆<Option>
Specifies options of link command "ln30". When passing two or more

options, be sure to enclose them with double quotations (").

Appedix-10

Appendix B

 NC30 Command ReferenceAppendix B

Generated code modifying options

Table B.9 Generated Code Modifying Options

Option Abbreviation Function

–fansi None

Enables –fnot_reserve_asm,

–fnot_reserve_far_and_near,

–fnot_reserve_inline, and –fextend_to_int

–fnot_reserve_asm –fNRA
Frees "asm" from reserved word. (Only _asm is

valid.)

–fnot_reserve_far_and_near –fNRFAN
Frees "far" and "near" from reserved words. (Only

_far and _near are valid.)

–fnot_reserve_inline –fNRI
Frees "inline" from reserved word. (Only _inline is

valid.)

–fextend_to_int –fETI
Expands char-type data to int type before operating

on it.

–fchar_enumerator –fCE
Handles enumerator type as being unsigned char

type, and not as int type.

–fno_even –fNE

Locates all data in odd attribute section without

separating them between odd and even when

outputting data.

–fshow_stack_usage –fSSU
Outputs stack usage conditions to file (extension.

stk).

–ffar_RAM –fFRAM Changes default attribute of RAM data to far.

–fnear_ROM –fNROM Changes default attribute of ROM data to near.

–fconst_not_ROM –fCNR
Does not handle types specified by const as ROM

data.

–fnot_address_volatile –fNAV

Does not recognize variables specified by #pragma

ADDRESS (#pragma EQU) as those specified by

volatile.

–fsmall_array –fSA

When referencing far-type array, if its total size is

within 64 Kbytes, this option calculates subscripts in

16 bits.

–fbit –fB

Outputs 1-bit manipulating instruction in 16-bit

absolute addressing mode for variables located in

near area.

Other Options

Table B.10 Other Options

Option Abbreviation Function

–dsource –dS
Outputs C language source listing as comment in assembly

language source file list to be output.

Appedix-11

Appendix B

 NC30 Command ReferenceAppendix B

Command input example

1 Link the startup program (ncrt0.a30) and a C language source program (c_src.c) to
create an absolute module file (test.x30).

%nc30 -otest ncrt0.a30 c_src.c
→Specifies the output file name.

2 Generate an assembler list file and a map file.

%nc30 -as30 "-l" -ln30 "-M" c_src.c
→Specifies the options of "as30" and "ln30".

3 Output debug information to an assembly language source file (attribute.a30).

%nc30 -g -S ncrt0.a30 c_src.c

Appedix-12

Appendix C

 Questions & AnswersAppendix C

Appendix C. Questions & Answers

Transferring (copying) structs

<Question>
What method can be used to transfer (copy) structs?

<Answer>
(1) When transferring structs of the same definition

→Use a struct vs. variable name and a assignment operator to transfer the structs.
(2) When transferring structs of different definitions

→Use a assignment operator for each member to transfer the structs.

struct tag1 { /∗Definition of struct ∗/
int mem1 ;
char mem2 ;
int mem3 ;

} ;

struct tag2 {
int mem1 ;
char mem2 ;
int mem3 ;

} ;

near struct tag1 near_s1t1,near_s2t1 ;
near struct tag2 near_s1t2 ;
far struct tag1 far_s1t1,far_s2t1 ;

main()
{

near_s1t1.mem1 = 0x1234 ;
near_s1t1.mem2 = 'A' ;
near_s1t1.mem3 = 0x5678 ;

 /∗ Transferring structs of the same definition------------ ∗/
near_s2t1 = near_s1t1 ; /∗ near -> near ∗/
far_s1t1 = near_s1t1 ; /∗ near -> far ∗/
near_s2t1 = far_s1t1 ; /∗ far -> near ∗/
far_s2t1 = far_s1t1 ; /∗ far -> far ∗/

 /∗Transferring structs of different definitions ------------ ∗/
near_s1t2.mem1 = near_s1t1.mem1 ;
near_s1t2.mem2 = near_s1t1.mem2 ;
near_s1t2.mem3 = near_s1t1.mem3 ;

}

(1) For structs of the same definition
 →Can be transferred using a struct vs.
 variable name and a assignment operator
 irrespective of allocated areas.

(2) For structs of different definitions
 →Transfer the structs, one member at a time.

Figure C.1 Example for writing transfers of structs

Appedix-13

Appendix C

 Questions & AnswersAppendix C

Reducing generated code (1)

<Question>
We wish to reduce the amount of generated code. What points should we check?

<Answer>
Check the following points:

[When declaring data...]
(1) Among the data declared to be the int type, is there data that falls within the following

range? If any, correct its data type. Designations in () can be omitted.
Unsigned int type that falls within 0 to 255 → Correct it to the (unsigned) char type.
(signed) int type that falls within –128 to 127 → Correct it to the signed char type.

(2) Among the data other than the int type where the unsigned/signed modifiers are
omitted, is there data that does not have a negative value? If any, add the unsigned
modifier.
(In NC30, data other than the int type assumes the "signed" modifier by default.)

[When declaring bit data...]
(1) Is there any bit data using a bit field for which "#pragma BIT" is not declared? Always

be sure to declare "#pragma BIT".
(For direct 1-bit instructions to be generated in NC30, it is necessary to declare
"#pragma BIT" as well as a bit field.)

[When compiling...]
(1) Is the optimization option "-OR" specified? If not, specify this option.

(When the optimization option "-OR" is specified in NC30, it optimizes code generation
by placing emphasis on ROM efficiency.)

Appedix-14

Appendix C

 Questions & AnswersAppendix C

Reducing generated code (2)

<Question>
Files are divided in our program. What points should we consider in order to reduce the
generated code?

<Answer>
Pay attention to the following:

[When referencing data located in SB relative addressing...]
(1) When referencing data located in an SB relative addressing area, always be sure to

declare "#pragma SBDATA".

<Source file 1>
Defines "mode".

<Source file 2>
References "mode".

void func1(void) ;

char mode ;
#pragma SBDATA mode

void main(void)
{

mode = 1;
func1();

}

extern void func(void) ;

extern char mode ;
#pragma SBDATA mode

void func1(viod)
{

mode = mode + 1 ;
}

For "mode" to be accessed by SB relative,
declare "#pragma SBDATA" in the
referencing program.

Figure C.2 Example for writing "#pragma SBDATA"

[For programs whose generated code is 64 Kbytes or less...]
(1) By using the asm function or "#pragma ASM", set ".OPTJ JMPW, JSRW" at the

beginning of each file, which is the branch instruction optimizing control directive
command.

#pragma ASM
.OPTJ JMPW,JSRW

#pragma ENDASM

void func1(void) ;

<Using asm function> <Using "#pragma ASM">

asm(" .OPTJ JMPW,JSRW") ;

void func1(void) ;
char mode ;

void main(void)
{

}

•••

•••

Figure C.3 Example for setting ".OPTJ JMPW, JSRW"

MITSUBISHI SINGLE-CHIP MICROCOMPUTERS

M16C/60, M16C/20 Series

Programming manual <C language> Rev.A

July. First Edition 1998

Editioned by

 Committee of editing of Mitsubishi Semiconductor

Published by

 Mitsubishi Electric Corp., Kitaitami Works

This book, or parts thereof, may not be reproduced in any form without

permission of Mitsubishi Electric Corporation.

1998 MITSUBISHI ELECTRIC CORPORATION

	Chapter 1 Introduction to C Language
	1.1 Programming in C Language
	1.1.1 Assembly Language and C Language
	1.1.2 Program Development Procedure
	1.1.3 Easily Understandable Program

	1.2 Data Types
	1.2.1 "Constants" Handleable in C Language
	1.2.2 Variables
	1.2.3 Data Characteristics

	1.3 Operators
	1.3.1 Operators of NC30
	1.3.2 Operators for Numeric Calculations
	1.3.3 Operators for Processing Data
	1.3.4 Operators for Examining Condition
	1.3.5 Other Operators
	1.3.6 Priorities of Operators

	1.4 Control Statements
	1.4.1 Structuring of Program
	1.4.2 Branching Processing Depending on Condition (branch processing)
	1.4.3 Repetition of Same Processing (repeat processing)
	1.4.4 Suspending Processing

	1.5 Functions
	1.5.1 Functions and Subroutines
	1.5.2 Creating Functions
	1.5.3 Exchanging Data between Functions

	1.6 Storage Classes
	1.6.1 Effective Range of Variables and Functions
	1.6.2 Storage Classes of Variables
	1.6.3 Storage Classes of Functions

	1.7 Arrays and Pointers
	1.7.1 Arrays
	1.7.2 Creating an Array
	1.7.3 Pointers
	1.7.4 Using Pointers
	1.7.5 Placing Pointers into an Array
	1.7.6 Table Jump Using Function Pointer

	1.8 Struct and Union
	1.8.1 Struct and Union
	1.8.2 Creating New Data Types

	1.9 Preprocess Commands
	1.9.1 Preprocess Commands of NC30
	1.9.2 Taking in A File
	1.9.3 Macro Definition
	1.9.4 Conditional Compile

	Chapter 2 ROM'ing Technology
	2.1 Memory Mapping
	2.1.1 Types of Code and Data
	2.1.2 Sections Managed by NC30
	2.1.3 Control of Memory Mapping
	2.1.4 Controlling Memory Mapping of Struct

	2.2 Startup Program
	2.2.1 Roles of Startup Program
	2.2.2 Estimating Stack Sizes Used
	2.2.3 Creating Startup Program

	2.3 Extended Functions for ROM'ing Purposes
	2.3.1 Efficient Addressing
	2.3.2 Handling of Bits
	2.3.3 Control of I/O Interface
	2.3.4 When Cannot Be Written in C Language

	2.4 Linkage with Assembly Language
	2.4.1 Interface between Functions
	2.4.2 Calling Assembly Language from C Language
	2.4.3 Calling C Language from Assembly Language

	2.5 Interrupt Processing
	2.5.1 Writing Interrupt Processing Functions
	2.5.2 Registering Interrupt Processing Functions
	2.5.3 Example for Writing Interrupt Processing Function

	Chapter 3 Using Real-time OS (MR30)
	3.1 Basics of Real-time OS
	3.1.1 Real-time OS and Task
	3.1.2 Functions of Real-time OS
	3.1.3 Interrupt Management
	3.1.4 Special Handlers

	3.2 Method for Using System Calls
	3.2.1 MR30's System Calls
	3.2.2 Writing a System Call

	3.3 Development Procedures Using MR30
	3.3.1 Files Required during Development
	3.3.2 Flow of Development Using MR30

	3.4 Building MR30 into Program Using NC30
	3.4.1 Writing Program Using NC30
	3.4.2 Writing Tasks using NC30
	3.4.3 Writing Interrupt Handler
	3.4.4 Writing Cyclic and Alarm Handlers

	Appendices
	Appendix A. Functional Comparison between NC30 and NC77
	Appendix B. NC30 Command Reference Appendix-
	Appendix C. Questions & Answers

