
M16C/60, M16C/20, M16C/80 Series

Application Note

< Flash Memory Control>

Preliminary

MITSUBISHI SINGLE-CHIP MICROCOMPUTERS

Mitsubishi Electric Corporation Kitaitami Works

Mitsubishi Electric Semiconductor Systems Corporation

Mitsubishi Electric System LSI Design Corporation

REV.B

Keep safety first in your circuit designs!

Notes regarding these materials

● Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with
them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with
appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of
non-flammable material or (iii) prevention against any malfunction or mishap.

● These materials are intended as a reference to assist our customers in the selection of the
Mitsubishi semiconductor product best suited to the customer's application; they do not
convey any license under any intellectual property rights, or any other rights, belonging to
Mitsubishi Electric Corporation or a third party.

● Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement
of any third-party's rights, originating in the use of any product data, diagrams, charts,
programs, algorithms, or circuit application examples contained in these materials.

● All information contained in these materials, including product data, diagrams, charts,
programs and algorithms represents information on products at the time of publication of
these materials, and are subject to change by Mitsubishi Electric Corporation without notice
due to product improvements or other reasons. It is therefore recommended that customers
contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product
distributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other
loss rising from these inaccuracies or errors.
Please also pay attention to information published by Mitsubishi Electric Corporation by
various means, including the Mitsubishi Semiconductor home page (http://
www.mitsubishichips.com).

● When using any or all of the information contained in these materials, including product
data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information
as a total system before making a final decision on the applicability of the information and
products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability
or other loss resulting from the information contained herein.

● Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use
in a device or system that is used under circumstances in which human life is potentially at
stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor when considering the use of a product contained herein
for any specific purposes, such as apparatus or systems for transportation, vehicular, medical,
aerospace, nuclear, or undersea repeater use.

● The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or
reproduce in whole or in part these materials.

● If these products or technologies are subject to the Japanese export control restrictions,
they must be exported under a license from the Japanese government and cannot be
imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/
or the country of destination is prohibited.

● Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor
product distributor for further details on these materials or the products contained therein.

Guide to Using This Manual

This manual is a reference for making boot rogram.
This manual consists of five chapters.
Look at a necessary chapter, according to a flowchart shown below.

To know about M16C's
flash memory

Make boot program

Using M16C/20 Using M16C/62

Set protect to the
program code

Chapter 1

Chapter 2 Chapter 3

Chapter 5

Practice

No

Yes

Chapter 4

Using M16C/80

M16C Family-related document list

Usages

(Microcomputer development flow)

Outline design
of system

Selection of
microcomputer

Detail design
of system

Hard-
ware
devel-
opment

System
evaluation

Soft-
ware
devel-
opment

Contents

Hardware specifications (pin assignment,
memory map, specifications of peripheral
functions, electrical characteristics, timing
charts)

Detailed description about hardware
specifications, operation, and application
examples (connection with peripherals, re-
lationship with software)

Method for creating programs using as-
sembly and C languages

Detailed description about operation of
each instruction (assembly language)

H
ar

dw
ar

e

 Type of document

Data sheet and
data book

User’s manual
S

of
tw

ar
e

M16C Family M16C/80 Series M16C/80 Group

M16C/60 Series M16C/60 Group

M16C/61 Group

M16C/62 Group

M16C/20 Series M16C/20 Group

M16C/21 Group

M16C/22 Group

M16C Family Line-up

Programming
manual

Software
manual

Table of Contents

Chapter 1 Outline of M16C Internal Flash MCU .. 1

1.1 What Is Flash Memory? .. 2

1.2 M16C Family and Flash Memory ...4

1.3 Controlling Flash Memory On-Board .. 6

Chapter 2 M16C/20 Group ... 9

2.1 Outline of Hardware ...10

2.2 Developing The Boot Program ... 17

2.3 Sample List ... 36

2.4 Precautions ... 61

Chapter 3 M16C/62 Group ... 63

3.1 Outline of Hardware ...64

3.2 Developing The Boot Program ... 75

3.3 Sample List ... 102

3.4 Precautions ... 139

Chapter 4 M16C/80 Group ... 141

4.1 Outline of Hardware .. 142

4.2 Developing The Boot Program ... 153

4.3 Sample List ... 180

4.4 Precautions ... 217

Chapter 5 Internal Flash Memory Rewrite Inhibit Function 219

5.1 ID Code... 220

5.2 ROM Code Protect Function ... 223

Chapter 1

Outline of M16C Internal Flash MCU
1.1 What Is Flash Memory?

1.2 M16C Family and Flash Memory

1.3 Controlling Flash Memory On-Board

1

2

Outline of M16C Internal Flash MCU

1.1 What Is Flash Memory?

Flash memory has since around the middle of 1980s been available as an electrically programmable/erasable

memory product that does not require battery backup. In recent years, flash memory has been widely used

in portable telephones (including PHS), notebook personal computers, and various other portable equipment.

This section describes advantages of flash memory and available types.

Advantages of Flash Memory

Flash memory is electrically rewritable nonvolatile memory. Compared to other products such as EPROM

and EEPROM that have the same functionality, flash memory is significantly advantageous in chip size

and cost. The following lists advantages of flash memory:

(1) Small chip size
The EEPROM memory cell consists of two transistors, whereas that of flash memory consists of one

transistor as does EPROM. Therefore, when manufactured using the same fabrication method to provide

the same memory capacity as other memory products, flash memory can be manufactured in smaller chip

size.

(2) Encapsulated in plastic packages
EPROM requires a window-fitted package because its data is erased by irradiating ultraviolet rays upon it,

and cannot be encapsulated in a plastic package. On the other hand, flash memory does not require a

window-fitted package because it is electrically erasable, and can be encapsulated in a plastic package.

(3) Unnecessary IC sockets
When mounted on the circuit board, EPROM requires use of an IC socket because it needs to be placed

in a ultraviolet radiation unit to erase its data. On the other hand, flash memory can be mounted directly on

the circuit board because its data can be electrically erased.

Table 1.1.1 Comparison between Flash Memory and EPROM and EEPROM

Flash memory EPROM EEPROM

Chip size Small Small Not small

Capsulated in plastic packages Possible Possible Impossible

IC socket Not use use Not use

1.1 What Is Flash Memory?

1

3

Outline of M16C Internal Flash MCU

Types of Flash Memory

There are several types of cell structures that comprise flash memory. These, for example, include NOR,

DINOR, and AND types. Each type is taken advantage of when using flash memory.

(1) NOR type
The NOR-type cell structure is the same as that of EPROM. Also, because cells can be read at random,

EPROM can easily be replaced with this type of flash memory.

(2) DINOR type
The DINOR-type cell structure draws on the tunnel effect to write and erase data. Therefore, this type of

flash memory does not require a large current for program/erase operation, making it suitable for use in

low-voltage, single-power supply applications.

(3) AND type
The feature of AND type is a reduced cell size, so that its cell structure is ideal for large-capacity memory.

Because cell data is read out by serial access, this type of flash memory is used mainly for data storage

purposes.

1.1 What Is Flash Memory?

1

4

Outline of M16C Internal Flash MCU

1.2 M16C Family and Flash Memory

The M16C family microcomputers have been well received in consumer electronics and industrial fields for

their numerous features including high-efficiency C language support, high performance, superior noise

characteristics, and low power consumption. In addition to conventional mask ROM and OTP, a new product

with built-in flash memory has been added to the lineup. This section explains about the flash memory that is

incorporated in the M16C family microcomputers.

Flash Memory Incorporated in The M16C Family

The M16C family microcomputers incorporate suitable types of flash memory to meet the application

needs of each group. The M16C/20 group incorporates the NOR type, while the M16C/62 and 80 groups

incorporate the DINOR type.

Table 1.2.1 Flash Memory Incorporated in The M16C Family

Read/Write Modes

The flash memory built into the M16C can be read/written in three modes.

(1) Parallel input/output mode
In this mode, a general-purpose programmer or the suitable flash programmer are used to read or write

data. Part of MCU pins are used to send control signals. No software is required.

(2) Serial input/output mode
Read/write operations are controlled via serial interface using part of MCU pins. Data can be read/written

using the suitable serial programmer. Software is required, which can be either the standard boot program

or a user boot program that supports the protocol of the serial programmer.

(3) CPU rewrite mode
Read/write operations are controlled by setting the control registers in a user program. Software is required,

which includes a read program, a write program, and a user boot program including a RAM transfer program.

M16C/20 group M16C/62 and 80 groups

Cell structure NOR type DINOR type

Access method Random access Random access

Programming method Byte write Page write

Erasing method Collective erase Block by block erase

1.2 M16C Family and Flash Memory

1

5

Outline of M16C Internal Flash MCU

Standard Boot Program and User Boot Program

The boot program used to control read/writes to flash memory can be the standard boot program that is

already included in flash memory or a boot program created by the user to suit the application system.

The standard boot program is prepared by the manufacturer to control flash memory using the manufacturer-

designated method. Normally, this program is stored in the boot ROM area. On the other hand, the user

boot program is created by the user to control flash memory using the user's own exclusive method.

Normally, this program will be stored in the user ROM area.

Table 1.2.2 compares between the standard boot program and user boot program.

Table 1.2.2 Comparing between The Standard Boot Program and User Boot Program

Standard write program User boot program

Source Supplied by manufacturer Created by user

Required hardware
(internal functions) Fixed Free

Stored location Boot ROM area User ROM area

1.2 M16C Family and Flash Memory

1

6

Outline of M16C Internal Flash MCU

1.3 Controlling Flash Memory On-Board

To control flash memory on-board, you need to follow a predetermined procedure. This section describes the

procedure for controlling flash memory.

Outline of Operation

To control the flash memory built in the M16C, you need to have a program (write control program), known

as the boot program, which is necessary to program/erase the flash memory and a program to transfer the

said program to RAM. These programs must be written into memory using a general-purpose programmer

or a dedicated serial programmer beforehand.

To control flash memory, first transfer the write control program to a RAM area using the RAM transfer

program. Then execute the write control program from RAM to write to the flash memory on-board.

Figure 1.3.1 shows an outline of operation when controlling flash memory.

1.3 Controlling Flash Memory On-Board

1

7

Outline of M16C Internal Flash MCU

Figure 1.3.1 Operation When Controlling Flash Memory

M16C internal flash MCU Source (serial programmer)

Application program
Flash memoryRAM

Write control program

RAM transfer program
Start

(1) After reset

Written beforehand

(2) Transfer the write program to RAM

Flash memoryRAM

AAAA
AAAA

Write control
program

RAM transfer program

Source

Application program

Start

(3) Write application program to flash memory

Flash memoryRAM

AAAA
AAAA

Write control
program

RAM transfer program

Source

AAAAA
Application program

M16C internal flash MCU

M16C internal flash MCU

Serial

1.3 Controlling Flash Memory On-Board

1

8

Outline of M16C Internal Flash MCU

Flash memory
rewrite finished

Transfer write control
program to RAM area

Jump to RAM area

Erase flash memory

Write to flash memory

Flash memory
rewrite starts

RAM transfer program

Write control program

Flow of Boot Program

Figure 1.3.2 shows a boot program flowchart.

Detail algorithms necessary to program/erase flash memory vary with each group. This is explained in

Chapter 2 for the M16C/20 group, and in Chapter 3 for the M16C/62 group. For the M16C/80 group, this

is explained in Chapter 4.

Figure 1.3.2 Flow of Boot Program

1.3 Controlling Flash Memory On-Board

Chapter 2

M16C/20 Group
2.1 Outline of Hardware

2.2 Developing Boot Program

2.3 Sample Program List

2.4 Precautions

2

10

M16C/20 Group

2.1 Outline of Hardware

2.1 Outline of Hardware

The M16C/20 group contains NOR-type flash memory.

This section shows hardware information about the M16C/20 group which we think is necessary to create a

boot program.

Internal Flash Memory Outline

Table 2.1.1 shows the outline performance of M30201F6 of the M16C/20 group.

Table 2.1.1. Outline Performance of M30201F6

Item

Power supply voltage

Program/erase voltage

Flash memory operation mode

Erase block
division

Program method

Erase method

Program/erase control method

Number of commands

Program/erase count

ROM code protect

Performance

4.0V to 5.5 V (f(XIN)=10MHz)

VPP=12V ± 5% (f(XIN)=10MHz)

Three modes (parallel I/O, standard serial I/O, CPU
rewrite)

See Figure 2.1.1.

One division (3.5 Kbytes) (Note)

In units of byte

Collective erase

Program/erase control by software command

6 commands

100 times

Parallel I/O mode is supported.

Note: The boot ROM area contains a standard serial I/O mode control program which is stored in it
when shipped from the factory. This area can be erased and programmed in only parallel I/O
mode.

User ROM area

Boot ROM area

VCC=5V ± 5% (f(XIN)=10MHz)

2

11

M16C/20 Group

2.1 Outline of Hardware

SFR

RAM

0000016

0040016

00BFF16

DF00016

DFDFF16

F400016

FFFFF16

Boot ROM
area
(3.5 Kbytes)

User ROM
area
(48 Kbytes)

Can be erased/programmed
in only parallel input/output
mode

Memory Map

Figure 2.1.1 shows a memory map of the M30201F6. Among the memory areas are a boot ROM area and

a user ROM area. Both areas can be accessed for program, read, verify, and erase in parallel input/output

mode. In CPU rewrite mode, however, the boot ROM area cannot be accessed for program, verify, and

erase.

Figure 2.1.1 M30201F6 Memory Map

2

12

M16C/20 Group

2.1 Outline of Hardware

Flash memory control register 0

Symbol Address When reset
FCON0 03B416 001000002

WR

b7 b6 b5 b4 b3 b2 b1 b0

CPU rewrite mode
select bit

FCON00

Bit symbol Bit name Function R W

0: CPU rewrite mode is invalid
1: CPU rewrite mode is valid

This bit can not write. The value, if
read, turns out to be indeterminate.

Reserved bit

CPU rewrite mode
monitor flag

0: CPU rewrite mode is invalid
1: CPU rewrite mode is valid

Must always be set to "0".

Nothing is assigned. In an attempt to write this bit, write "0". The value,
if read, turns out to be "0".

FCON02

0

A
A

A
A
AA
AA

Reserved bit

01

Must always be set to "1".Reserved bit

0

AA
Must always be set to "0".Reserved bit

Flash memory control register 1

Symbol Address When reset
FCON1 03B516 XXXXXX002

WR

b7 b6 b5 b4 b3 b2 b1 b0

Bit symbol Bit name Function R W

0

A
A

0

Reserved bit

A
A

Nothing is assigned. In an attempt to write these bits, write "0". The
value, if read, turns out to be indeterminate.

Must always be set to "0".

A
A

Flash command register

Symbol Address When reset
FCMD 03B616 0016

WR

b7 b6 b5 b4 b3 b2 b1 b0

Writing of software command
<Software command name> <Command code>
•Read command "0016"
•Program command "4016"
•Program verify command "C016"
•Erase command "2016" +"2016"
•Erase verify command "A016"
•Reset command "FF16" +"FF6"

Function R W

A

Related Register Configuration

Figure 2.1.2 shows related registers for making user boot program.

Figure 2.1.2 Related Register Configuration

2

13

M16C/20 Group

2.1 Outline of Hardware

Command

Program verify

Read

Program

03B616

First bus cycle Second bus cycle

0016

4016

C016

Write

Write

Write

Program
address

Write

Read

Erase verify A016Write Verify
address

Verify
data

Read

Erase 2016Write 03B616 2016Write

Verify
address

Reset FF16Write

Mode Address Mode Address
Data

(D0 to D7)
Data

(D0 to D7)

03B616

03B616

03B616

03B616

03B616

Program
data

Verify
data

FF16Write 03B616

Flash Control Circuit
The M16C/20's flash control circuit controls the program, read, verify, and erase operations performed on the

internal flash memory. Operation modes are selected by writing commands to the Flash Memory Control

Register (addresses 03B416, 03B516) and Flash Command Register (address 03B616). Among the memory

areas are a boot ROM area and a user ROM area. Both areas can be accessed for program, read, verify, and

erase in parallel input/output mode. In CPU rewrite mode, however, the boot ROM area cannot be accessed

for program, verify, and erase.

Software Commands

Table 2.1.2 lists software commands.

When CPU rewrite mode is effective, write software commands to the Flash Command Register to specify

the program or erase operations to be performed.

Table 2.1.2 Software Command List

Read Command (00 16)

The read mode is entered by writing the command code “0016” to the flash command register in the first

bus cycle. When an address to be read is input in one of the bus cycles that follow, the content of the

specified address is read out at the data bus (D0–D7), 8 bits at a time.

The read mode is retained intact until another command is written.

After reset and after the reset command is executed, the read mode is set.

2

14

M16C/20 Group

2.1 Outline of Hardware

Program Command (40 16)

The program mode is entered by writing the command code “4016” to the flash command register in the

first bus cycle. When the user execute an instruction to write byte data to the desired address (e.g., STE

instruction) in the second bus cycle, the flash memory control circuit executes the program operation. The

program operation requires approximately 20 µs. Wait for 20 µs or more before the user go to the next

processing.

During program operation, the watchdog timer remains idle, with the value “7FFF16” set in it.

Note 1: The write operation is not completed immediately by writing a program command once. The user

must always execute a program-verify command after each program command executed. And if

verification fails, the user need to execute the program command repeatedly until the verification

passes. See Figure 2.1.3 for an example of a programming flowchart.

Program-Verify Command (C0 16)

The program-verify mode is entered by writing the command code “C016” to the flash command register in

the first bus cycle. When the user execute an instruction (e.g., LDE instruction) to read byte data from the

address to be verified (the previously programmed address) in the second bus cycle, the content that has

actually been written to the address is read out from the memory.

The CPU compares this read data with the data that it previously wrote to the address using the program

command. If the compared data do not match, the user need to execute the program and program-verify

operations one more time.

Erase Command (20 16 + 2016)

The flash memory control circuit executes an erase operation by writing command code “2016” to the flash

command register in the first bus cycle and the same command code to the flash command register again

in the second bus cycle. The erase operation requires approximately 20 ms. Wait for 20 ms or more before

the user go to the next processing.

Before this erase command can be performed, all memory locations to be erased must have had data

“0016” written to by using the program and program-verify commands. During erase operation, the watchdog

timer remains idle, with the value “7FFF16 set in it.

Note 1: The erase operation is not completed immediately by writing an erase command once. The user

must always execute an erase-verify command after each erase command executed. And if

verification fails, the user need to execute the erase command repeatedly until the verification

passes. See Figure 2.1.3 for an example of an erase flowchart.

2

15

M16C/20 Group

2.1 Outline of Hardware

Erase-Verify Command (A0 16)

The erase-verify mode is entered by writing the command code “A016” to the flash command register in

the first bus cycle. When the user execute an instruction to read byte data from the address to be verified

(e.g., LDE instruction) in the second bus cycle, the content of the address is read out.

The CPU must sequentially erase-verify memory contents one address at a time, over the entire area

erased. If any address is encountered whose content is not “FF16” (not erased), the CPU must stop erase-

verify at that point and execute erase and erase-verify operations one more time.

Note 1: If any unerased memory location is encountered during erase-verify operation, be sure to execute

erase and erase-verify operations one more time. In this case, however, the user does not need to

write data “0016” to memory before erasing.

Reset Command (FF 16 + FF16)

The reset command is used to stop the program command or the erase command in the middle of operation.

After writing command code “4016” or “2016” twice to the flash command register, write command code

“FF16” to the flash command register in the first bus cycle and the same command code to the flash

command register again in the second bus cycle. The program command or erase command is disabled,

with the flash memory placed in read mode.

2

16

M16C/20 Group

2.1 Outline of Hardware

Start

Loop counter : X=0

Write program
command

Write : 4016

Duration = 20 µs

Duration = 6 µs

X=25 ?

Verify
OK ?

PASS FAIL

FAIL

PASS

YES

PASS

NO

NO

FAIL

Write program data/
address

Loop counter : X=X+1

Write program verify
command

Last
address ?

Next
address ?

Write read command Write read command

Verify
OK ?

Write : Program data

Write : C016

Write : 0016

Program

Address = first location

YES

Write:2016

Duration = 6µs

X=1000 ?

Verify
OK?

PASS FAIL

FAIL
PASS

YES

PASS

NO

NO

FAIL

Duration = 20ms

YES

NO

Start

All bytes =
"0016"?

Program all bytes =
"0016"

Address = First address

Loop counter X=0

Write erase command

Write erase command

Loop counter X=X+1

Write erase verify
command/address

Verify
OK?

Last
address?

Write read command Write read command

Write:2016

Write:A016

Write:0016

Read:
expect value=FF16

Erase

Next
address ?

Figure 2.1.3 Program and Erase Execution Flowchart in The CPU Rewrite Mode

2
M16C/20 Group

17

2.2 Developing The Boot Program

2.2 Developing The Boot Program

The standard boot program that was built into the boot ROM area of the flash microcomputer when shipped

from the factory can be used to program/erase the flash memory. In this case, the hardware resources

(internal functions) used for control are fixed. Therefore, if you want to control flash memory in the way

suitable for your system, you need to create a boot program for yourself.

This section shows an algorithm for the boot program (e.g., for erase and program) that you must at least

have in order to control the flash memory of the M16C/20 group.

System Example

By using the internal peripheral function of UART0 and a serial programmer to control flash memory, the

following shows an example of device connections is shown in Figure 2.2.1. Assignments of internal

peripheral functions are listed in Table 2.2.1.

Figure 2.2.1 Example of Device Connection

Table 2.2.1 Assignments of Internal Peripheral Functions

Usage Setting example

UART1 Used for transfer/receive of serial programmer and
data

• Clock synchronous serial I/O
• External clock used

Timer A0 Used for time-over judgment of serial transfer/
receive
Used to watch time during program and erase

• One-shot timer mode
• 300 µs(at 10MHz)

Peripheral
function

• 20 µs (at 10 MHz)

Timer B0 Used for BUSY waveform output time during serial
transmission/reception
Used for wait time during verify

• Timer mode
• 6 µs (at 10 MHz)

P53(BUSY)

CLK0

RXD0

TXD0

CNVss

Clock input

P53 output

Data input

Data output

M30201 Flash

(1) Control pins and external circuitry will vary according to peripheral unit (programmer). For more
information, see the peripheral unit (programmer) manual.

(2) In this example, the microprocessor mode and standard serial I/O mode are switched via a switch.

NMI

M16C/20 Group
2

18

2.2 Developing The Boot Program

Flow of The Main Processing

Figure 2.2.2 shows a flow of the main processing.

After initializing the CPU, transfer the write control program to RAM. When transfer is finished, jump to

RAM and execute the write control program from RAM.

Figure 2.2.2 Flow of The Main Processing

Initial setting 2
Initial setting 1

Transfer to RAM

JMP to
RAM

RAM transfer program on ROM Write control program on RAM

CPU programming mode

Command reception

Command check

FF16
Page read

Page program4116

Erase all unlock blocksA716

Clear status register
5016

other

ID check completed ?
SR11=1?

Y

N

Read status register
7016

Version information outputFB16

ID check function
F516

Set UART0 of initial setting 2

2
M16C/20 Group

19

2.2 Developing The Boot Program

Initialization 1 (CPU, Memory)

The CPU and RAM and the peripheral functions used for programming flash memory are initialized. Figure

2.2.3 shows a flow of CPU and memory initialization. To clear RAM, use of string instructions (e.g.,

SSTR.W) will prove effective.

Figure 2.2.3 Initialization 1 (CPU, Memory)

Initial setting 1

Set ISP and SB

Set 'H" to BUSY pin

Protect release

Set system clock
control register

Set processor mode
register

Set protect

Port 5 (P5: address 03E916)
b4

Protect register (PRCR: address 000A16)

11

Port 5 direction register (PD5: address 03EB16)

1
b4

System clock write enabled
Processor mode register write enabled

1 0 0 0 0 0 0 0

System clock control register 0 (CM0: address 000616)

System clock control register 1(CM1: address 000716)

Processor mode register 0(PM0: address 000416)

Processor mode register 1(PM1: address 000516)

1

Set 'H' data

Set output port

b1 b0

CM16 and CM17 is enabled

0 0 1 0 0 0 0 0

No division mode

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0

b7 b6 b5 b4 b3 b2 b1 b0

1 0 0 0 0 0 0 0

With wait

END

RAM clear R0 #0000H

A1 #0400H

R3

Set initial value

Set top address of RAM

Programing control program size /2+α

After setting these registers, execute SSTR.W

M16C/20 Group
2

20

2.2 Developing The Boot Program

Transfer to RAM Area

The write control program is transferred to RAM. After transferring, jump to write control program on RAM.

To transfer, use of string instructions (SMOVF.W) will prove effective.

Figure 2.2.4 shows the algorithm.

Figure 2.2.4 Transfer to RAM Area

 Initialization 2

Set of write to Flash memory is executed. The flash mode register is set in M16C/20 group.

Figure 2.2.5 shows a algorithm.

Figure 2.2.5 Initialization 2

Transfer to RAM

Transfer preparing

Transfer

Jump to RAM area

A0

A1

R3

Set source address (low-order 16 bits)

Set destination address

Execute SMOVF.W

R0H Set source address (high-order 4 bits)

JMP

END

Transfer version information

Programing control program size /2+a

Initial setting 2

b7 b6 b5 b4 b3 b2 b1 b0

 0 1 0 0 0

CPU rewrite mode enabled

Flash memory control register 0 (address 03B416)
Set CPU rewrite mode

register

b7 b6 b5 b4 b3 b2 b1 b0

 0 0

Reserved bit

Flash memory control register 1 (address 03B516)

Go to initial setting of
peripheral function

Reserved bit

2
M16C/20 Group

21

2.2 Developing The Boot Program

Set UART0

Set timer

UART0 transmit/receive mode register (U0MR: address 03A016)
b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 1 0 0 1

Clock synchronous serial I/O mode
External clock

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 1 0 0 0 0

(f1)
Reserved bit

TxD CMOS output
LSB first

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 1 0

One-shot timer mode
No pulse output
One-shot start flag is valid
f1

#3000-1 When 10MHz, 300µs

UART0 transmit/receive control register 0 (U0C0: address 03A416)

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 1 0 1

Transfer enabled
Receive enabled

UART transmit/receive control register 1 (U0C1: address 03A516)

Timer A0 mode register (TA0MR: address 039616)

Timer A0 register (TA0: address 038716,038616)

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0

(Transfer buffer empty)
(Continuous receive mode disabled)
CLK0 clock output
CLK normal mode first

UART transmit/receive control register 2 (UCON: address 03B016)

From initial setting 2

END

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0

Timer mode
f1

#60-1 When 10MHz, 6µs

Timer B0 mode register (TB0MR: address 039B16)

Timer B0 register (TB0: address 039116,039016)

Initialization 2 (Peripheral Function)

The peripheral functions used for programming to flash memory is initialized. Figure 2.2.6 shows initialization

of UART0 for data transmit and timer A0 and B0 for time-out calculation.

Figure 2.2.6 Initialization 2 (Peripheral Function)

M16C/20 Group
2

22

2.2 Developing The Boot Program

Receiving commands

Start one-shot timer

Reception
completed ?

Read out receive
buffer register

Preparing
reception

Reception
processing

UART0 transfer buffer register (03A316,03A216)

UART0 reception buffer register (03A716,03A616)

Yes

No

b7 b0b7 b0
(b15) (b8)

END

Receive buffer
empty flag

No

>300 µs?
over

Jump to time-out
processing

300 µS wait

Write to transfer buffer
register

BUSY="L" output

BUSY="H" output

6 µs timer start

Port 5
0
b3

Port 5

1
b3

b7 b0b7 b0
(b15) (b8)

Receiving Commands

Receive commands is received from the serial programmer.

After a wait time of 300 µs, write dummy data to the transmit buffer, pull the BUSY signal low, and wait for

data from the serial programmer. After receiving data, return the BUSY signal back high and read the

received data.

Figure 2.2.7 shows a flow of control. Figure 2.2.8 shows BUSY signal control timing.

Figure 2.2.7 Receiving Commands

Figure 2.2.8 BUSY Signal Control Timing

Interrupt request
is happen

Read out the
reception data --> Store in RAM

Set 'H'
(Preparation to read

reception data)
Set 'L'

(Preparation
to receive)

BUSY (P53)

Receive complete
flag (RI)

Set 'L'
(Preparation
to receive)

Interrupt request
is happen

CLK

RxD

2
M16C/20 Group

23

2.2 Developing The Boot Program

Page Read

Read a specified page (256 bytes) in the user ROM area, one byte at a time, and transmit the read data via

serial I/O. The locations to read are addresses xxx0016 through xxxFF16, with data sequentially transmitted

beginning with address xxx0016.

Receive two bytes of address from the serial programmer and store it in RAM. Write read command (0016)

to the Flash Command Register, read data from flash memory one byte at a time, and transmit it via serial

I/O. When you finished sending one page of data (256 bytes), terminate the processing.

Figures 2.2.9 show processing flows.

Figure 2.2.9 Page Read

r3<2

r3=2

Write read command

End
r3=258

r3=/258

r3>2

Page read

r3=r3+1

Transfer/receive cycles
r3=0

Write to transmit buffer
register

Start one-shot timer

>300 µsec?Over

Set low-order address,
addr_l=0

Read the receive buffer
register

Reception
completed?

Y

NJump to time-out
processing

r3=2?

Read data

Address = address + 1

r3=258?

Store reception data to
address buffer

r3=2?

r3<=2

BUSY = "L" output

6 µsec wait

BUSY = "H" output

6 µsec timer start

M16C/20 Group
2

24

2.2 Developing The Boot Program

Page Program

Write data to the user ROM area in units of 256 bytes. The locations to write are addresses xxx0016

through xxxFF16, with data sequentially received beginning with address xxx0016.

Receive a total of 258 bytes of data, consisting of two bytes of address and 256 bytes of write data, from

the serial programmer and store them in RAM.

After receiving all of these data, check for error.

If the CPU rewrite mode monitor flag is invalid (FCON02 = 0), assume a program error (SRD4 = 1). When

you received an invalid address, assume an address error (SRD8 = 1). If the flag is valid (FCON02 = 1),

write Program command (4016) to the Flash Command Register and execute an instruction that writes the

address to be programmed and the byte data.

After an elapse of 20 µs, verify Program.

Write Program Verify command (C016) to the Flash Command Register and after an elapse of 6 µs, execute

an instruction that reads the programmed address. If the read data matches the written data, program the

next address. If the data do not match, execute Program and Program Verify operations over again. If the

data still do not match after repeating this 25 times, assume a program error (SRD4 = 1). If an error is found

after programming 256 bytes or by error determination, write Reset command (FF16) to the Flash Command

Register twice in succession. Then write Read command (0016) and return to the main routine.

Figures 2.2.10 and 2.2.11 show processing flows.

Figure 2.2.10 Page Program (1)

Y

r3<259

r3=r3+1

Write to transmit buffer
register

Start one-shot timer

>300 µsec?Over

Read the receive buffer
register

Reception
completed?

NJump to time-out
processing

r3=259?

A

Page program

Store the reception data
to RAM

Receive cycles r3=0

Set low-order address,
addr_l=0

BUSY = "L" output

BUSY = "H" output

r3=259

2
M16C/20 Group

25

2.2 Developing The Boot Program

r3=256?

n 256

n<256

End

6 µsec wait

Transfer cycles r3=0

Retry cycle r2=25

> 20 µsec?

over

Y

Vpp=12V input ?

Y

N

Address check

OK

error

Stop TA0
Set TA0=20µsec

Write program command

Data write

Write program verify
command

Read data OK ?

Y

N

Address +1
r3 = r3 +1

Set TA0= 300 µsec
Start one-shot timer

Write reset command
Write reset command

Write read command

Retry cycle
r2=0 ?

Retry cycle r2-1

N

Y

Program error
flag (SR4)=1

Address error
flag (SR8)=1

A

Figure 2.2.11 Page Program (2)

M16C/20 Group
2

26

2.2 Developing The Boot Program

All Erase (Erase All Unlock Blocks)

Erase the entire user ROM area of flash memory.

If All Erase command is received from the serial programmer, continue and receive one more byte of data.

After confirming that this second byte of data is the verify command, check for error.

If the CPU rewrite mode monitor flag is invalid (FCON02 = 0), assume an erase error (SRD5 = 1). If the flag

is valid (FCON02 = 1), write Program command (4016) to the Flash Command Register, set the start

address F400016 and end address FFFFF16, set #0016 in the write data, and then execute an instruction to

write the data.

After an elapse of 20 µs, verify Program.

Write Program Verify command (C016) to the Flash Command Register and after an elapse of 6 µs, execute

an instruction that reads the programmed address. If the read data matches the written data, program the

next address. If the data do not match, execute Program and Program Verify operations over again. If the

data still do not match after repeating this 25 times, assume an erase error (SRD5 = 1).

After you finished writing #0016 in the entire area, write Erase command (2016) to the Flash Command

Register twice in succession. After an elapse of 20 ms, write Erase Verify command (A016) to the Flash

Command Register and after an elapse of 6 µs, execute an instruction that reads the erased address. If the

read data matches #FF16, check the next address. If the data do not match, execute Erase and Erase

Verify operations over again. If the data still do not match after repeating this 1000 times, assume an erase

error (SRD5 = 1).

If an error is found after erase is finished or by error determination, write Reset command (FF16) to the

Flash Command Register twice in succession. Then write Read command (0016) and return to the main

routine.

Figures 2.2.12 and 2.2.13 show processing flows.

2
M16C/20 Group

27

2.2 Developing The Boot Program

Erase al l unlock block

Confirm confirm
command
OK

NG

Write to transfer
buffer register

Start one-shot timer

Read the receive
buffer register

>300 µsec?over

Reception
completed?

Y

NJump to time-out
processing

Set write data "00h"

BUSY="L" output

BUSY = "H" output

Set erase start/stop
address

Vpp=12V input ?

OK

NG

Retry cycle r2=25

Stop TA0
Set TA0=20 µsec

 Write program
command

 Write "00h"

Start one-shot timer
of TA0

> 20 µsec ?

over

N

 Write program verify
command

6 µsec wait

Erase retry cycle
= 0 ?
Y

N
Y

Read data =
"00h"?

N

Set erase retry cycle

Y

End address ?N

Address + 1

B

A

N

Address - 1

6 µsec wait

Figure 2.2.12 Erase All Unlock Block (1)

M16C/20 Group
2

28

2.2 Developing The Boot Program

Address - 1

Retry cycle r2=1000

Stop TA0
Set TA0=300 µsec

Write all erase command
Write all erase command

>20 msec?

over

N

Start one-shot timer of
TA0

Write erase verify
command

6 µsec wait

Read data
 "0FFh" ?

Y

N

Y

Start address ?N

Write reset command
Write reset command

End

Write read command

Verify retry cycle
=0 ?

Y

N

Set erase error flag

Address - 1

B

A

Figure 2.2.13 Erase All Unlock Block (2)

2
M16C/20 Group

29

2.2 Developing The Boot Program

Read Status Register

Transmit two bytes of status data indicating the flash memory's operating status via serial I/O.

Write status data (SRD) to the Transmit Buffer Register and transmit it.

After you finished sending, write status register 1 (SRD1) to the Transmit Buffer Register and transmit it.

After you finished sending, return to the main routine.

Figure 2.2.14 shows a processing flow.

Figure 2.2.14 Read Status Register

Read status register

Transfer/receive
cycle r3=0

End

r3=2?

r3=2

r3<2

r1l = r1h

r3=r3+1

Start one-shot timer

Read receive buffer
register

>300 µsec?over

Reception
completed?

Y

N
Jump to time-out

processing

r1l=SRD
r1h=SRD1

Transfer buffer
register = r1l

BUSY="L" output

BUSY = "H" output

6 µsec wait

Start 6 µsec timer

M16C/20 Group
2

30

2.2 Developing The Boot Program

Clear Status Register

Status register error information is cleared.

#8016 is written into the status register (SRD).

The logic sum for the status register 1 (SRD1) is obtained on #9C16 is cleared. Processing returns to the

main part.

Figure 2.2.15 shows a processing flow.

Figure 2.2.15 Clear Status Register

ID Check

The ID data stored in the flash memory is compared with the data received by serial I/O. Three bytes of the

address data, one byte of ID size and some bytes of ID check data are received via serial I/O.

After these data reception, this process judges whether the flash memory is blank or not. When blank, the

ID check is ended and processing returns to the main part. When something is written in the ROM, the

received ID address, the ID data size and ID data contents are checked. When mismatch, ID check error

is generated (SR10 = 1, SR11 = 0) and processing returns to the main part. When match, the ID check is

ended (SR10 = 1, SR11 = 1) and processing returns to the main part.

Figure 2.2.16 shows a processing flow.

Clear status register

End

Clear SRD error flag
Clear SRD1 error flag

2
M16C/20 Group

31

2.2 Developing The Boot Program

Figure 2.2.16 ID Check

Store receive data
into RAM

r3=r3+1

a1 <-- ID size+4

OK

Blank flag ?Blank

Non blank

Check address
& ID size

Error

ID check

Transfer/receive
cycles r3=0

Set ID size (a1)
temporary

Write transfer buffer
register

Start one-shot timer

>300 µsec?over

Reception
completed?

Y

NJump to time-out
processing

Read the receive
buffer register

r3=4?

Read ID data from
Flash memory

ID check

r3=r3+1

r3=8?

ID check cycles r3=1

ID check completed
SR11=1, SR10=1

Error cycle=0

ID mismatch
SR11=0, SR10=1

End

OK

Error

r3=8

r3<8

r3=ID size(a1)?r3=a1

r3=/a1

r3/=4

r3=4

N

BUSY="L" output

BUSY = "H" output

6 µsec wait

Start 6 µsec timer

M16C/20 Group
2

32

2.2 Developing The Boot Program

Version Information Output

The version information of boot program is sent via serial I/O.

Version information is read and written in the transmit buffer register.

After all version information is send, processing jumps to main .

Figure 2.2.17 shows a processing flow.

Figure 2.2.17 Version Information Output

Version information output

Transfer/receive
cycles a0=0

End

a0=8?

a0=a0+1

a0=8

a0<8

Write version
information to transmit

buffer register

Start one-shot timer

>300 µsec?
Over

Reception
completed?

Y

NJump to time-out
processing

Read the receive buffer
register

BUSY = "L" output

BUSY = "H" output

6 µsec wait

Start 6 µsec timer

2
M16C/20 Group

33

2.2 Developing The Boot Program

Time-Out Processing

Time-out flag (SR9) is set to 1 and initiale setting 2 of main routine is executed again.

Figure 2.2.18 shows a processing flow.

Figure 2.2.18 Time-Out Processing

Time-out processing

Time-out flag
(SR9)=1

End

Initial setting 2
UART0 setting

BUSY = "H" output

M16C/20 Group
2

34

2.2 Developing The Boot Program

Status Register (SRD)

The status register indicates operating status of the flash memory and status such as whether an erase

operation or a program ended successfully or in error.

Table 2.2.2 shows the definition of each status register bit.

Table 2.2.2 Status Register (SRD)

State Bit (SR7)
The status bit indicates the operating status of the flash memory. When power is turned on, "1" (ready) is

set for it.

Erase Bit (SR5)
The erase bit indicates the operating status of the auto erase operation. If an erase error occurs, it is set

to "1". When the erase status is cleared, it is set to "0".

Program Status (SR4)
The program status reports the operating status of the auto write operation. If a write error occurs, it is set

to "1". When the program status is cleared, it is set to "0".

Each bit of
SRD

SR4 (bit4)

SR5 (bit5)

SR7 (bit7)

SR6 (bit6)

Status name
Definition

SR1 (bit1)

SR2 (bit2)

SR3 (bit3)

SR0 (bit0)

"1" "0"

Program bit

Erase bit

Status bit

Reserved

Reserved

Reserved

Reserved

Reserved

Ready Busy

Terminated in error

Terminated in error

-

Terminated normally

Terminated normally

-

-

-

-

-

-

-

-

-

2
M16C/20 Group

35

2.2 Developing The Boot Program

Each bit of
SRD1

SR12 (bit4)

SR13 (bit5)

SR15 (bit7)

SR14 (bit6)

Status name
Definition

SR9 (bit1)

SR10 (bit2)
SR11 (bit3)

SR8 (bit0)

"1" "0"

Checksum match bit

Reserved

Boot update completed bit

Reserved

Data receive time out

ID check completed bits

Reserved

Update completed Not update

-

Match

-

Mismatch

-

Time out

-

Normal operation

-

-

00 Not verified
01 Verification mismatch
10 Reserved
11 Verified

Status Register 1 (SRD1)

Status register 1 indicates the status of serial communications, results from ID checks and results from

check sum comparisons.

Table 2.2.3 gives the definition of each status register 1 bit. "0016" is output when power is turned ON and

the flag status is maintained even after the reset.

Table 2.2.3 Status Register 1 (SRD1)

Boot Update Completed Bit (SR15)
This flag indicates whether the control program was downloaded to the RAM or not, using the download

function.

Checksum Match Bit (SR12)
This flag indicates whether the check sum matches or not when a program, is downloaded for execution

using the download function.

ID Check Completed Bits (SR11 and SR10)
These flags indicate the result of ID checks. Some commands cannot be accepted without an ID check.

Data Reception Time Out (SR9)
This flag indicates when a time out error is generated during data reception. If this flag is attached during

data reception, the received data is discarded and the microcomputer returns to the command wait state.

M16C/20 Group
2

36

2.3 Sample List

2.3 Sample List

This section shows a sample list of the program described in Section 2.2.

In addition to the processing explained in Section 2.2, the sample shown below includes the programmer

command processing used by a synchronous serial programmer and the command processing used by an

asynchronous serial communication programmer (M16C Flash Start).

Source

;**
;* System Name : Sample Program for M16C/20 Flash *
;* File Name : M201SAMP.a30 *
;* MCU : M30201F6 *
;* Xin ; 2MHz - 10MHz (for UART mode) *
;* CPU ; 1wait,f1 *
;* Assembler : AS30 ver 3.00 *
;* Linker : LN30 ver 3.00 *
;*--*
;* Copyright,1999 MITSUBISHI ELECTRIC CORPORATION *
;* AND MITSUBISHI SYSTEM LSI DESIGN CORPORATION *
;*--*
;++++++++ Include file ++++++++++++++++++++++++++++++++++
;
 .list off
 .include sfr20.inc
 .include flash201.inc
 .list on
;
;++
;+ Version table +
;++
 .section rom,code
 .org Version
 .byte 'VER.0.02(VER.1.04)'
;
;++
;+ Program section start +
;++
 .section prog,code
 .org Boot_TOP
 .sb SB_base
 .sbsym SRD
 .sbsym SRD1
 .sbsym ver
 .sbsym SF
 .sbsym addr_l
 .sbsym addr_m
 .sbsym addr_h
;
;++
;+ Boot program start +
;++
Reset:
 ldc #Istack,ISP ; stack pointer set
 ldc #SB_base,SB ; SB register set
;
 mov.b #00000001b,pd5 ; TxD-output,BUSY/RxD/CLK-input
 mov.b #00000001b,p5 ; TxD-"H"output
;
;--------------------------------------

2
M16C/20 Group

37

2.3 Sample List

;+ Hot start & RAM clear +
;--------------------------------------
 mov.w #0,a0
Start_check:
 cmp.w #55aah,buff[a0]
 jne RAM_clear
 add.w #2,a0
 cmp.w #18,a0
 jltu Start_check
 bset ram_check ; RAM check OK flag set
 jmp CPU_set
;
RAM_clear:
 mov.w #0,r0
 mov.w #(Ram_END+1-Ram_TOP)/2,r3
 mov.w #Ram_TOP,a1
 sstr.w
;
 mov.w #0,a0
Buff_set:
 mov.w #55aah,buff[a0]
 add.w #2,a0
 cmp.w #18,a0
 jltu Buff_set
;
;--------------------------------------
;+ CPU set & Serial I/O mode check +
;--------------------------------------
CPU_set:
 btst busy
 bmc s_mode
 bset busy ; BUSY-"H"output
 bset busy_d
;
 jsr Initialize_1
 mov.b #80h,SRD
 and.b #9eh,SRD1
 bset sr7 ; RADY
;
Reload_chack:
 btst sr15 ; Update
 jc Transfer_end
 btst ram_check ; Reload ?
 jz Version_inf
 btst s_mode
 bxor old_mode
 jnc Transfer_end
;
;--------------------------------------
;+ Version information +
;--------------------------------------
Version_inf:
 mov.w #0,a0 ; a0=0
Ver_loop:
 lde.w Version+9[a0],ver[a0] ; Version data store
 add.w #2,a0 ; address increment
 cmp.w #8,a0 ; a0=8 ?
 jltu Ver_loop ; jump Ver_loop at a0<8
;
;++
;+ Program_transfer clock synchronous mode +
;++
 btst s_mode ; Serial I/O mode select
 jz Transfer2 ; UART mode
;

M16C/20 Group
2

38

2.3 Sample List

Transfer1:
 bset old_mode ; clock synchronous mode
 mov.w #(Trans_TOP1 & 0ffffh),a0
 mov.b #(Trans_TOP1>> 16),r1h
 mov.w #Ram_progTOP,a1
 mov.w #(Trans_END1- Trans_TOP1 + 1)/2,r3
 smovf.w ; String move
 jmp Transfer_end
;
;++
;+ Program_transfer UART mode +
;++
Transfer2:
 bclr old_mode ; UART mode
 mov.w #(Trans_TOP2 & 0ffffh),a0
 mov.b #(Trans_TOP2>> 16),r1h
 mov.w #Ram_progTOP,a1
 mov.w #(Trans_END2- Trans_TOP2 + 1)/2,r3
 smovf.w ; String move
Transfer_end:
;
;--
;+ Jump to RAM +
;--
 jmp Ram_progTOP
;
;++
;+ Subroutine : Initialize_1 +
;++
Initialize_1:
;--
;+ Processor mode register +
;+ & System clock control register +
;--
 mov.b #3,prcr ; Protect off
 mov.w #8000h,pm0 ; 1wait
 mov.w #2008h,cm0 ; f1 select
 mov.b #0,prcr ; Protect on
;
;--
;+ ID address & size store +
;--
 mov.w #0ffdfh,ID ; ID address 0fffdfh store
 mov.w #0070fh,ID+2 ; ID size 7 store
;
 rts
;
;++
;+ Subroutine : Download program +
;++
 .org Download_program
;
 mov.w #0,r3 ; receive number (r3=0)
 mov.w #0,a1 ; sumcheck buffer
 bclr sr15 ; Download flag reset
 bclr sr12 ; Check sum flag reset
Download_loop:
 mov.b r1l,u0tb ; data transfer
 jsr wait_loop ; BUSY "H" 6usec check
 bclr busy ; BUSY "L"
 bset ta0os ; 300usec start
?:
 btst ir_ta0ic ; Time over check
 bmc sr9 ; Time over flag set
 bmc busy ; BUSY "H"

2
M16C/20 Group

39

2.3 Sample List

 jc Version_inf ; jump Version_inf at time out
 btst ri_u0c1 ; Receive complete ?
 jz ?-
 bset busy ; BUSY "H"
 bset tb0s ; 6usec timer start
 mov.w u0rb,r0 ; receive data --> r0
 add.w #1,r3 ; r3+1 increment
 cmp.w #3,r3 ; r3=3 ?
 jgtu Version_store ; jump Version_store at r3>3
 mov.w r3,a0 ; r3 --> a0
 mov.b r0l,addr_l[a0] ; Store program size
 mov.w #0,a0 ; a0 initialize
 cmp.w #3,r3 ; r3 = 3?
 jne Download_loop ; No,Download_loop
 cmp.w #0,addr_m ; program size = 0 ?
 jz Version_inf ; jump to Version_inf at program size error
 jmp Download_loop ; jump Download_loop
;
Version_store:
 cmp.w #11,r3 ; r3 = 11?
 jgtu Program_store ; jump Program_store at r3 > 11
 mov.b r0l,ver[a0] ; version data store to RAM
 jmp Program_store_1
;
Program_store:
 mov.b r0l,Ram_progTOP-8[a0] ; program data store to RAM
Program_store_1:
 add.b r0l,a1 ; add data to a1
 add.w #1,a0 ; a0(download offset)+1 increment
 cmp.w addr_m,a0 ; a0 = program size (addr_m,h)?
 jltu Download_loop ; jump Download_loop at a0< program size
 jmp SUM_Check ; compare check sum
;;
;++
;+ Subroutine : Download program UART +
;++
 .org U_Download_program
;
 mov.w #0,r3 ; receive number (r3=0)
 mov.w #0,a1 ; sumcheck buffer
 bclr sr15 ; Download flag reset
 bclr sr12 ; Check sum flag reset
U_Download_loop:
 bclr busy ; BUSY "L"
?:
 btst ri_u0c1 ; Receive complete ?
 jnc ?-
 bset busy ; BUSY "H"
 mov.w u0rb,r0 ; receive data --> r0
 add.w #1,r3 ; r3+1 increment
 cmp.w #3,r3 ; r3=3 ?
 jgtu U_Version_store ; jump Version_store at r3>3
 mov.w r3,a0 ; r3 --> a0
 mov.b r0l,addr_l[a0] ; Store program size
 mov.w #0,a0 ; a0 initialize
 cmp.w #3,r3 ; r3 = 3 ?
 jne U_Download_loop ; No, jump U_Download_loop
 cmp.w #0,addr_m ; program size = 0 ?
 jz Version_inf ; jump to Version_inf at program size error
 jmp U_Download_loop ; jump Download_loop
;
U_Version_store:
 cmp.w #11,r3 ; r3 = 11?
 jgtu U_Program_store ; jump Program_store at r3 > 11
 mov.b r0l,ver[a0] ; version data store to RAM

M16C/20 Group
2

40

2.3 Sample List

 jmp U_Program_store_1
;
U_Program_store:
 mov.b r0l,Ram_progTOP-8[a0] ; program data store to RAM
U_Program_store_1:
 add.b r0l,a1 ; add data to a1
 add.w #1,a0 ; a0(download offset)+1 increment
 cmp.w addr_m,a0 ; a0 = program size (addr_m,h)?
 jltu U_Download_loop ; jump Download_loop at a0< program size
SUM_Check:
 mov.w a1,r0
 cmp.b data,r0l ; compare check sum
 bmeq sr12 ; check sum flag set at data=r0l
 jne Version_inf ; jump Version_inf at check sum error
 bset sr15 ; Download flag set
 jmp Ram_progTOP ; jump Ram_progTOP
;
;==
;+ Transfer Program -- clock synchronous serial I/O mode +
;+ (1) Main flow +
;+ (2) Flash control program +
;+ Read,Program,Erase,All_erase,etc. +
;+ (3) Other program +
;+ ID_check,Download,Version_output etc. +
;==
Trans_TOP1:
;++
;+ main program +
;++
Main:
 jsr Initialize_2 ; Initialize_2
Loop_main:
 bset ta0os ; 300usec timer start
 mov.b #0,ta0ic
?:
 btst ir_ta0ic ; 300usec?
 jz ?-
 mov.b #0,ta0ic ; Interrupt request bit clear
 mov.b #0ffh,r1l ; #ffh --> r1l (transfer data);
 mov.b r1l,u0tb ; dummy data --> transfer buffer
 bclr busy ; BUSY "L"
?:
 btst ti_u0c1 ; Transmit buffer empty ?
 jz ?-
 bset ta0os ; 300É sec timer start
?:
 btst ir_ta0ic ; 300É sec ?
 jc Time_out ; jump Time_out at time out
 btst ri_u0c1 ; receive complete ?
 jz ?-
 bset busy ; BUSY "H"
 mov.b #0,tb0ic ;
 bset tb0s ; 6usec timer start
 mov.b #0,ta0ic ; Interrupt request bit clear
 mov.w u0rb,r0 ; receive data --> r0
 mov.b #0ch,r0h ; #00001100b sr10,11 mask data
 and.b SRD1,r0h ; sr10,11 pick up
 cmp.b #0ch,r0h ; ID check OK?
 jne Command_check_2 ; jump Command_check_2 at ID uncheck
Command_check:
 cmp.b #0ffh,r0l ; Read (ffh)
 jeq Read
 cmp.b #041h,r0l ; Program (41h)
 jeq Program
 cmp.b #020h,r0l ; Erase (20h)

2
M16C/20 Group

41

2.3 Sample List

 jeq Erase
 cmp.b #0a7h,r0l ; All erase (a7h)
 jeq All_erase
 cmp.b #050h,r0l ; Clear SRD (50h)
 jeq Clear_SRD
 cmp.b #071h,r0l ; Read RBS (71h)
 jeq Read_RB
 cmp.b #077h,r0l ; RB program (77h)
 jeq Program_RB
 cmp.b #07ah,r0l ; RB enable (7ah)
 jeq Loop_main
 cmp.b #075h,r0l ; RB disable (75h)
 jeq Loop_main
 cmp.b #0fah,r0l ; Download (fah)
 jeq Download
 cmp.b #0fch,r0l ; Boot output (fch)
 jeq Boot_output
Command_check_2:
 cmp.b #070h,r0l ; Read SRD (70h)
 jeq Read_SRD
 cmp.b #0f5h,r0l ; ID check (f5h)
 jeq ID_check
 cmp.b #0fbh,r0l ; Version out (fbh)
 jeq Ver_output
Command_err:
 jsr Initialize_21 ; Command error,UART reset
 jmp Loop_main
;
;--
;+ Read / Boot output +
;--
Boot_output:
 bclr fcon00 ; not CPU write mode
Read:
 mov.w #0,r3 ; receive number (r3=0)
 mov.b #0,addr_l ; addr_l = 0
Read_loop:
 mov.b r1l,u0tb ; data transfer
 jsr wait_loop ; BUSY"H" 6usec check
 bclr busy ; BUSY "L"
 bset ta0os ; 300usec start
?:
 btst ir_ta0ic ; Time over check
 jc Time_out ; jump Time_out at time out
 btst ri_u0c1 ; Receive complete ?
 jz ?-
 bset busy ; BUSY "H"
 bset tb0s ; 6usec timer start
 mov.w u0rb,r0 ; receive data --> r0
 add.w #1,r3 ; r3+1 increment
 cmp.w #2,r3 ; r3 = 2 ?
 jgtu Read_data ; jump Read_data at r3>2
 mov.w r3,a0 ; r3 --> a0
 mov.b r0l,addr_l[a0] ; Store address
 cmp.w #2,r3 ; r3 = 2 ?
 jltu Read_loop ; jump Read_loop at r3<2
 mov.w addr_l,a0 ; addr_l,m --> a0
 mov.b addr_h,a1 ; addr_h --> a1
 mov.b #00h,fcmd ; Read command
Read_data:
 lde.b [a1a0],r1l ; Flash memory read
 add.w #1,a0 ; a0+1 increment
 cmp.w #258,r3 ; r3 = 258 ?
 jne Read_loop ; jump Read_loop at r3<258
Read_end:

M16C/20 Group
2

42

2.3 Sample List

 bset fcon00 ; CPU write mode
 jmp Loop_main ; jump Loop_main
;
;--
;+ Program +
;--
Program:
 mov.w #1,r3 ; receive number (r3=1)
 mov.b #0,addr_l ; addr_l = 0
Program_loop:
 mov.b r1l,u0tb ; data transfer
 jsr wait_loop ; BUSY "H" 6usec check
 bclr busy ; BUSY "L"
 bset ta0os ; 300usec start
?:
 btst ir_ta0ic ; Time over check
 jc Time_out ; jump Time_out at time out
 btst ri_u0c1 ; Receive complete ?
 jz ?-
 bset busy ; BUSY "H"
 bset tb0s ; 6usec timer start
 mov.w u0rb,r0 ; receive data --> r0
 mov.w r3,a0 ; r3 --> a0
 mov.b r0l,addr_l[a0] ; Store address
 add.w #1,r3 ; r3+1 increment
 cmp.w #259,r3 ; r3 = 259 ?
 jltu Program_loop ; jump Program_loop at r3<259
 btst fcon02 ; Vpp 12V input ?
 jz Program_err
 mov.w #0,r3 ; writing number (r3=0)
Address_check:
 mov.w addr_m,a0 ; addr_m,h --> a0
 cmp.w #0f40h,a0 ; compare f4000h
 jltu Address_err ; jump Address_err at < f4000h
 cmp.w #1000h,a0 ; compare 100000h
 jltu Program_loop2 ; jump Program_loop2
Address_err:
 bset sr8 ; address error
 jmp Program_end ; jump Program_end at address error
Program_loop2:
 mov.w r3,a0 ; r3 --> a0
 mov.b data[a0],r0l ; data --> r0l
 mov.w addr_l,a0 ; addr_l,m --> a0
 mov.b addr_h,a1 ; addr_h --> a1
;
 mov.w #25,r2 ; retry number
 bclr ta0os ; timer stop
 mov.w #200-1,ta0 ; 20usec timer set
Byte_loop:
 mov.b #40h,fcmd ; Program command
 ste.b r0l,[a1a0] ; data write
 bset ta0os ; 20usec timer start
?:
 btst ir_ta0ic
 jz ?-
 mov.b #0,ta0ic
 mov.b #0c0h,fcmd ; Verify command
 jsr wait_6usec ; wait 6usec
 lde.b [a1a0],r0h ; data read
 cmp.b r0l,r0h ; compare write and read data
 jeq Byte_end ; when equal,jump to Byte_end
 sbjnz.w #1,r2,Byte_loop ; to Byte_loop
Program_err:
 bset sr4 ; error flag set
 jmp Program_end

2
M16C/20 Group

43

2.3 Sample List

Byte_end:
 add.w #1,addr_l ; address increment
 add.w #1,r3 ; write number increment
 cmp.w #256,r3 ; 256 times writing ?
 jltu Program_loop2 ; jump Program_loop2 at r3<256
Program_end:
 mov.w #3000-1,ta0 ; 300 usec set
 mov.b #0ffh,fcmd ; reset command
 mov.b #0ffh,fcmd
 mov.b #00h,fcmd ; Read command
 jmp Loop_main ; jump Loop_main
;
;--
;+ All erase +
;--
All_erase:
 mov.b r1l,u0tb ; data transfer
 jsr wait_loop ; BUSY "H" 6sec check
 bclr busy ; BUSY "L"
 bset ta0os ; 300usec start
?:
 btst ir_ta0ic ; Time over check
 jc Time_out ; jump Time_out at time out
 btst ri_u0c1 ; Receive complete ?
 jz ?-
 bset busy ; BUSY "H"
 mov.w u0rb,r0 ; receive data --> r0
 cmp.b #0d0h,r0l ; Confirm command check
 jne Erase_err ; jump Erase_end at Confirm command error
;
 mov.w #4000h,a0 ; start address f4000h
 mov.w #0fh,a1
 mov.w a0,data
 mov.w #0ffffh,addr_l ; end address fffffh
;
Zero_clear:
 btst fcon02 ; Vpp 12V input ?
 jz Erase_err
 mov.b #00h,r0l ; write data "00h"
 mov.w #25,r2 ; retry counter
 bclr ta0os ; timer stop
 mov.w #200-1,ta0 ; 20usec set
Zero_clear1:
 mov.b #40h,fcmd ; Program command
 ste.b r0l,[a1a0] ; "00h" write
 bset ta0os ; 20usec timer start
?:
 btst ir_ta0ic
 jz ?-
 mov.b #0,ta0ic
 mov.b #0c0h,fcmd ; program verify command
 jsr wait_6usec ; wait 6usec
 lde.b [a1a0],r0h ; data read
 cmp.b r0l,r0h ; compare write and read data
 jeq Zero_clear2 ; when equal , jump to Zero_clear2
 sbjnz.w #1,r2,Zero_clear1 ; to Zero_clear1
 jmp Erase_err ; jump to Erase_err
Zero_clear2:
 mov.w #25,r2 ; retry counter
 cmp.w addr_l,a0 ; end address ?
 jeq Erase_verify ; jump to Erase_verify
 add.w #1,a0
 jmp Zero_clear1
;
Erase_verify:

M16C/20 Group
2

44

2.3 Sample List

 mov.w #1000,r2 ; retry 1000 times
 bclr ta0os ; timer stop
 mov.w #3000-1,ta0 ; 300usec set
Erase_verify2:
 mov.b #20h,fcmd ; Auto erase command
 mov.b #20h,fcmd ; Auto erase command
 mov.b #0,ta0ic
 mov.w #0,r1
 bset ta0os ; 300usec timer start
?:
 btst ir_ta0ic
 jz ?-
 add.b #1,r1l
 cmp.b #66,r1l ; 20msec ?
 jeq ?+
 mov.b #0,ta0ic
 bset ta0os
 jmp ?-
?:
Erase_verify3:
 mov.b #0a0h,fcmd ; erase verify command
 jsr wait_6usec ; wait 6usec
 lde.b [a1a0],r0h ; data read
 cmp.b #0ffh,r0h ; "ffh" ?
 jeq Erase_verify4 ; when equal , jump to Erase_verify2
 sbjnz.w #1,r2,Erase_verify2 ; to Erase_verify
 jmp Erase_err ; jump to Erase_err
Erase_verify4:
 cmp.w data,a0 ; start address ?
 jeq Erase_end ; jump to Erase_end
 sub.w #1,a0
 jmp Erase_verify3
Erase_err:
 bset sr5 ; erase error flag set
Erase_end:
 mov.b #0ffh,fcmd ; reset command
 mov.b #0ffh,fcmd
 mov.b #00h,fcmd ; read command
 jmp Loop_main ; jump Loop_main
;
;---
; Read SRD
;---
Read_SRD:
 mov.w #0,r3
 mov.b SRD,r1l
 mov.b SRD1,r1h
;
Read_SRD_loop:
 mov.b r1l,u0tb ; data transfer
 jsr wait_loop ; BUSY "H" 6usec check
 bclr busy ; BUSY "L"
 bset ta0os ; 300usec start
?:
 btst ir_ta0ic ; Time over check
 jc Time_out ; jump Time_out at time out
 btst ri_u0c1 ; Receive complete ?
 jz ?-
 bset busy ; BUSY "H"
 bset tb0s ; 6usec timer start
 mov.w u0rb,r0 ; receive data --> r0
 add.w #1,r3
 mov.b r1h,r1l
 cmp.w #2,r3
 jne Read_SRD_loop

2
M16C/20 Group

45

2.3 Sample List

Read_SRD_end:
 jmp Loop_main
;
;---
;+ Clear SRD +
;---
Clear_SRD:
 mov.b #80h,SRD ; SRD clear
 and.b #9ch,SRD1 ; SRD1 clear
 jmp Loop_main
;
;---
;+ Block Erase / Read Rock Bit +
;+ / Program Rock Bit (dummy) +
;---
Erase:
Read_RB:
Program_RB:
 mov.w #0,r3
 mov.b #0ffh,r1l
Read_RB_loop:
 mov.b r1l,u0tb ; data transfer
 jsr wait_loop ; BUSY "H" 6usec check
 bclr busy ; BUSY "L"
 bset ta0os ; 300usec start
?:
 btst ir_ta0ic ; Time over check
 jc Time_out ; jump Time_out at time out
 btst ri_u0c1 ; Receive complete ?
 jz ?-
 bset busy ; BUSY "H"
 bset tb0s ; 6usec timer start
 mov.w u0rb,r0 ; receive data --> r0
 add.w #1,r3
 cmp.w #3,r3
 jltu Read_RB_loop
Read_RB_end:
 jmp Loop_main
;
;---
; ID check
;---
ID_check:
 mov.w #0,r3 ; receive number (r3=0)
 mov.w #0ffh,a1 ; ID size (dummy data = ffh)
ID_data_store:
 cmp.w a1,r3 ; r3=a1(ID size)
 jeq ID_address_check ; jump ID_address_check at r3=ID size
 mov.b r1l,u0tb ; data transfer
 jsr wait_loop ; BUSY "H" 6usec check
 bclr busy ; BUSY "L"
 bset ta0os ; 300usec start
?:
 btst ir_ta0ic ; Time over check
 jc Time_out ; jump Time_out at time out
 btst ri_u0c1 ; Receive complete ?
 jz ?-
 bset busy ; BUSY "H"
 bset tb0s ; 6usec timer start
 mov.w u0rb,r0 ; receive data --> r0
 mov.w r3,a0 ; r3 --> a0
 mov.b r0l,addr_l[a0] ; Store address
 add.w #1,r3 ; r3+1 increment
 cmp.w #4,r3 ; r3=4 ?

M16C/20 Group
2

46

2.3 Sample List

 jne ID_data_store ; jump ID_data_store at r3 not= 4
 mov.b data,a1 ; ID size --> a1
 add.w #4,a1 ; a1=a1+4
 jmp ID_data_store ; jump ID_data_store
ID_address_check:
 btst blank ; blank flag check
 jc ID_check_end ; jump ID_check_end at blank
 cmp.w #0ffdfh,addr_l ; lower ID address check
 jne ID_error ; jump ID_error at ID address error
 cmp.w #0070fh,addr_h ; higher ID address check
 jne ID_error ; jump ID_error at ID address error
ID_data_check:
 mov.w #0000fh,a1 ; ID higher address --> a1
 mov.w #0ffdfh,r1 ; ID lower address --> r1
 mov.w #1,r3 ; check loop number (r3=1)
ID_check_loop:
 mov.w r1,a0 ; r1 --> a0
 lde.b [a1a0],r0l ; ID data read from Flash memory
 mov.w r3,a0 ; r3 --> a0
 cmp.b r0l,data[a0] ; compare ID data
 jne ID_error ; jump ID_error at ID error
 add.w #4,r1 ; r1+4 increment (next ID address)
 cmp.w #0ffe7h,r1 ; r1=0ffefh ?
 jne ?+ ; jump ? at not equal
 mov.w #0ffebh,r1 ; r1=0ffeb at equal
?:
 add.w #1,r3 ; r3 +1 increment
 cmp.w #8,r3 ; r3=8 ?
 jltu ID_check_loop ; jump ID_check_loop at r3<8
ID_OK:
 bset sr10
 bset sr11 ; ID check OK (sr11=1,sr10=1)
 jmp ID_check_end ; jump ID_check_end
ID_error:
 bset sr10
 bclr sr11 ; ID error (sr11=0,sr10=1)
ID_check_end:
 jmp Loop_main ; jump Loop_main
;
;---
; Download
;---
Download:
 bclr fcon00 ; not CPU write mode
 jmp.a Download_program ; jump Download_program
;
;--
;+ Version output +
;--
Ver_output:
 mov.w #0,a0
Ver_output_loop:
 lde.b ver[a0],r1l
 mov.b r1l,u0tb ; data transfer
 jsr wait_loop ; BUSY "H" 6usec check
 bclr busy ; BUSY "L"
 bset ta0os ; 300usec start
?:
 btst ir_ta0ic ; Time over check
 jc Time_out ; jump Time_out at time out
 btst ri_u0c1 ; Receive complete ?
 jz ?-
 bset busy ; BUSY "H"
 bset tb0s ; 6usec timer start
 mov.w u0rb,r0 ; receive data --> r0

2
M16C/20 Group

47

2.3 Sample List

 add.w #1,a0
 cmp.w #8,a0
 jltu Ver_output_loop
Ver_output_end:
 jmp Loop_main
;
;--
;+ 6usec timer wait +
;--
wait_6usec:
 bset tb0s
wait_loop:
 btst ir_tb0ic
 jz wait_loop
 bclr tb0s
 mov.b #0,tb0ic
 rts
;
;++
;+ Subroutine : Initialize_2 +
;++
Initialize_2:
 bset fcon00 ; CPU write mode
 bset fcon05 ; F4000h-FFFFFh select
 bclr fcon04
 lde.w 0ffffch,r0 ; Reset vector read --> r0
 lde.w 0ffffeh,r1 ; Reset vector read --> r1
 and.w r1,r0 ; r0 & r1
 cmp.w #0ffffh,r0 ; Blank check
 jne Blank_check_end ; jump Blank_check_end at Blank error
 bset sr10 ; check complete
 bset sr11 ;
 bset blank ; blank flag set
Blank_check_end:
;
;--
;+ UART0 +
;--
Initialize_21:
;----- UART0 transmit/receive mode register
;
 mov.b #0,u0c1 ; UART0 reset
 mov.b #0,u0mr
 mov.b #0,u0c0
;
 mov.b #00001001b,u0mr
; |||||+++------------ clock synchronous SI/O
; ||||+--------------- external clock
; ++++---------------- fixed
;
;----- UART0 transmit/receive control register 0
;
 mov.b #00000100b,u0c0
; |||| |++------------ f1 select
; |||| +-------------- RTS select
; |||+---------------- CTS/RTS enabled
; ||+----------------- CMOS output(TxD)
; |+------------------ falling edge select
; +------------------- LSB first
;
;----- UART transmit/receive control register 2
;
 mov.b #00000000b,ucon
; ||||||++------------ Transmit buffer empty
; ||||++-------------- Continuous receive mode disabled

M16C/20 Group
2

48

2.3 Sample List

; ||++---------------- CLK/CLKS normal
; |+------------------ CTS/RTS shared
; +------------------- fixed
;
;----- UART0 transmit/receive control register 1
;
 mov.b #00000101b,u0c1
; |||| | +------------ Transmission enabled
; |||| +-------------- Reception enabled
; +++++--------------- fixed
;
;--
;+ Timer +
;--
 mov.b #02h,ta0mr ; f1 select,one-shot mode
 mov.b #0,ta0ic ; Interrupt flag clear
 mov.w #3000-1,ta0 ; 300usec at 10 MHz
 bset ta0s
;
 mov.b #00h,tb0mr ; f1 select
 mov.w #60-1,tb0 ; 6usec at 10 MHz
;
 rts
;
;--
;+ Time_out +
;--
Time_out:
 bset busy ; BUSY "H"
 bset sr9 ; SRD1 time out flag set
 jmp Command_err ; jump Command_err at time out
;
Trans_END1:
;--
;==
;+ Transfer Program -- UART mode +
;+ (1) Main flow +
;+ (2) Flash control program +
;+ Read,Program,All_erase,Read_SRD,Clear_SRD +
;+ (3) Other program +
;+ ID_check +
;==
;
Trans_TOP2:
;
;++
;+ main program +
;++
U_Main:
 bclr freq_set0 ; freq set flag clear
 bclr freq_set1
 bclr freq_set2
 mov.b #64,data ; 9600bps for 10MHz
 jsr U_Initialize_2 ; Initialize_2
 bset re_u0c1 ; Reception enabled
 bclr busy ; BUSY "L"
?:
 btst ri_u0c1 ; receive complete ?
 jz ?-
 bset busy ; BUSY "H"
 mov.w u0rb,r0 ; receive data --> r0
 cmp.b #0b0h,r0l
 jne U_Freq_Get
;
;------ 10MHz --------------;

2
M16C/20 Group

49

2.3 Sample List

 mov.b #64,baud ; 9600bps
 mov.b #32,baud+1 ; 19200bps
 mov.b #15,baud+2 ; 38400bps
 mov.b #10,baud+3 ; 57600bps
 mov.b baud,data
 mov.b data,u0brg ; Transmission late
 bset freq_set0 ; "B0h" get flag set
 jsr U_BPS_B0
 jmp U_Loop_main
;
U_Freq_Get:
 mov.b #80h,data
 mov.b #01000000b,r1l ; counbter1,2 reset
 mov.b #10000000b,r1h
 mov.b data,u0brg ; Transmission late
;
;---------------------------;
U_Loop_main:
 btst txept_u0c0 ; Transmit register empty ?
 jnc U_Loop_main
;
 bclr te_u0c1 ; Transmission disabled
 bset re_u0c1 ; Reception enabled
 bclr busy ; BUSY "L"
?:
 btst sum_u0rb ; Error sum flag check
 jc U_RESET
U_Loop_bak:
 btst ri_u0c1 ; receive complete ?
 jz ?-
 bset busy ; BUSY "H"
 mov.w u0rb,r0 ; receive data --> r0
 btst freq_set2 ; freq fixed ?
 jc U_Command_check ; jump Command_check_2 at data
 btst freq_set0
 jz U_Freq_check ; jump U_Freq_check
 cmp.b #00h,r0l ; "00h" get?
 bmgtu freq_set2
 jne U_Command_check ; jump U_Freq_check
 bclr freq_set0
 mov.b #0ffh,r0l ; dummy data set
 mov.b #01000000b,r1l ; counbter1,2 reset
 mov.b #10000000b,r1h
 mov.b #80h,data
 jmp U_Freq_check
;
U_Command_check:
 mov.b #0ch,r0h ; #00001100b sr10,11 mask data
 and.b SRD1,r0h ; sr10,11 pick up
 cmp.b #0ch,r0h ; ID check OK?
 jne U_Command_check_2 ; jump Command_check_2 at ID uncheck
U_Command_check_1:
 cmp.b #0ffh,r0l ; Read (ffh)
 jeq U_Read
 cmp.b #041h,r0l ; Program (41h)
 jeq U_Program
 cmp.b #020h,r0l ; Erase (20h)
 jeq U_Erase
 cmp.b #0a7h,r0l ; All erase (a7h)
 jeq U_All_erase
 cmp.b #050h,r0l ; Clear SRD (50h)
 jeq U_Clear_SRD
 cmp.b #071h,r0l ; Read RBS (71h)
 jeq U_Read_RB
 cmp.b #077h,r0l ; RB program (77h)

M16C/20 Group
2

50

2.3 Sample List

 jeq U_Program_RB
 cmp.b #07ah,r0l ; RB enable (7ah)
 jeq U_Loop_main
 cmp.b #075h,r0l ; RB disable (75h)
 jeq U_Loop_main
 cmp.b #0fah,r0l ; Download (fah)
 jeq U_Download
 cmp.b #0fch,r0l ; Boot output (fch)
 jeq U_Boot_output
U_Command_check_2:
 cmp.b #070h,r0l ; Read SRD (70h)
 jeq U_Read_SRD
 cmp.b #0f5h,r0l ; ID check (f5h)
 jeq U_ID_check
 cmp.b #0fbh,r0l ; Version out (fbh)
 jeq U_Ver_output
 cmp.b #0b0h,r0l ; Baud rate 9600bp (b0h)
 jeq U_BPS_B0
 cmp.b #0b1h,r0l ; Baud rate 19200bps (b1h)
 jeq U_BPS_B1
 cmp.b #0b2h,r0l ; Baud rate 38400bps (b2h)
 jeq U_BPS_B2
 cmp.b #0b3h,r0l ; Baud rate 57600bps (b3h)
 jeq U_BPS_B3
U_Command_err:
 jsr U_Initialize_21 ; command error,UART Initialize
 jmp U_Loop_main
;
U_RESET:
 mov.b #0,u0mr ; u0mr reset
 mov.b #00000101b,u0mr
 jmp U_Loop_bak
;--
;+ UART Read / Boot output +
;--
U_Boot_output:
 bclr fcon00 ; not CPU write mode
U_Read:
 mov.w #0,r3 ; receive number (r3=0)
 mov.b #0,addr_l ; addr_l = 0
U_Read_loop:
 bclr busy ; BUSY "L"
?:
 btst ri_u0c1 ; Receive complete ?
 jz ?-
 bset busy ; BUSY "H"
 mov.w u0rb,r0 ; receive data --> r0
 add.w #1,r3 ; r3+1 increment
 cmp.w #2,r3 ; r3 = 2 ?
 jgtu U_Read_data ; jump U_Read_data at r3>2
 mov.w r3,a0 ; r3 --> a0
 mov.b r0l,addr_l[a0] ; Store address
 cmp.w #2,r3 ; r3 = 2 ?
 jltu U_Read_loop ; jump U_Read_loop at r3<2
 mov.w addr_l,a0 ; addr_l,m --> a0
 mov.b addr_h,a1 ; addr_h --> a1
 mov.b #00h,fcmd ; Read command
 bclr re_u0c1 ; Reception disabled
 bset te_u0c1 ; Transmission enabled

U_Read_data:
 cmp.w #258,r3 ; r3 = 258 ?
 jz U_Read_end ; jump U_Read_loop at r3=258
 lde.b [a1a0],r1l ; Flash memory read
 mov.b r1l,u0tb ; r1l --> transmit buffer register

2
M16C/20 Group

51

2.3 Sample List

?:
 btst ti_u0c1 ; transmit buffer empty ?
 jnc ?-
 add.w #1,a0 ; address increment
 add.w #1,r3 ; counter increment
 jmp U_Read_data ; jump Read_data
;
U_Read_end:
 bset fcon00 ; CPU write mode
 jmp U_Loop_main ; jump Loop_main
;
;--
;+ Program +
;--
U_Program:
 mov.w #1,r3 ; receive number (r3=1)
 mov.b #0,addr_l ; addr_l = 0
U_Program_loop:
 bclr busy ; BUSY "L"
?:
 btst ri_u0c1 ; Receive complete ?
 jz ?-
 bset busy ; BUSY "H"
 mov.w u0rb,r0 ; receive data --> r0
 mov.w r3,a0 ; r3 --> a0
 mov.b r0l,addr_l[a0] ; Store address
 add.w #1,r3 ; r3+1 increment
 cmp.w #259,r3 ; r3 = 259 ?
 jltu U_Program_loop ; jump Program_loop at r3<259
 btst fcon02 ; Vpp 12V input ?
 jz U_Program_err
 mov.w #0,r3 ; writing number (r3=0)
U_Address_check:
 mov.w addr_m,a0 ; addr_m,h --> a0
 cmp.w #0f40h,a0 ; compare f4000h
 jltu U_Address_err ; jump U_Address_err at < f4000h
 cmp.w #1000h,a0 ; compare 100000h
 jltu U_Program_loop2 ; jump U_Program_loop2
U_Address_err:
 bset sr8 ; address error
 jmp U_Program_end ; jump U_Program_end at address error
U_Program_loop2:
 mov.w r3,a0 ; r3 --> a0
 mov.b data[a0],r0l ; data --> r0l
 mov.w addr_l,a0 ; addr_l,m --> a0
 mov.b addr_h,a1 ; addr_h --> a1
;
 mov.w #25,r2 ; retry number
 mov.w #200-1,ta0 ; 20usec timer set
U_Byte_loop:
 mov.b #40h,fcmd ; Program command
 ste.b r0l,[a1a0] ; data write
 bset ta0os ; 20usec timer start
?:
 btst ir_ta0ic
 jz ?-
 mov.b #0,ta0ic
 mov.b #0c0h,fcmd ; Verify command
 jsr U_wait_6usec ; wait 6usec
 lde.b [a1a0],r0h ; data read
 cmp.b r0l,r0h ; compare write and read data
 jeq U_Byte_end ; when equal,jump to Byte_end
 sbjnz.w #1,r2,U_Byte_loop ; to Byte_loop
U_Program_err:
 bset sr4 ; error flag set

M16C/20 Group
2

52

2.3 Sample List

 jmp U_Program_end
U_Byte_end:
 add.w #1,addr_l ; address increment
 add.w #1,r3 ; write number increment
 cmp.w #256,r3 ; 256 times writing ?
 jltu U_Program_loop2 ; jump Program_loop2 at r3<256
U_Program_end:
 mov.b #0ffh,fcmd ; reset command
 mov.b #0ffh,fcmd
 mov.b #00h,fcmd ; Read command
 jmp U_Loop_main ; jump Loop_main
;
;--
;+ Erase : Block Erase/ Rock Bit Program (dummy) +
;--
U_Erase:
U_Program_RB:
 mov.w #1,r3 ; receive number (r3=1)
U_Erase_loop:
 bclr busy ; BUSY "L"
?:
 btst ri_u0c1 ; Receive complete ?
 jz ?-
 bset busy ; BUSY "H"
 mov.w u0rb,r0 ; receive data --> r0
 mov.w r3,a0 ; r3 --> a0
 add.w #1,r3 ; r3+1 increment
 cmp.w #4,r3 ; r3 = 4 ?
 jltu U_Erase_loop ; jump Erase_loop at r3<4
 jmp U_Loop_main ; jump U_Loop_main
;
;--
;+ All erase +
;--
U_All_erase:
 bclr busy ; BUSY "L"
?:
 btst ri_u0c1 ; Receive complete ?
 jz ?-
 bset busy ; BUSY "H"
 mov.w u0rb,r0 ; receive data --> r0
 cmp.b #0d0h,r0l ; Confirm command check
 jne U_Erase_err ; jump Erase_end at Confirm command error
;
 mov.w #4000h,a0 ; start address f4000h
 mov.w #0fh,a1
 mov.w a0,data
 mov.w #0ffffh,addr_l ; end address fffffh
;
U_Zero_clear:
 btst fcon02 ; Vpp 12V input ?
 jz U_Erase_err
 mov.b #00h,r0l ; write data "00h"
 mov.w #25,r2 ; retry counter
 bclr ta0os ; timer stop
 mov.w #200-1,ta0 ; 20usec set
U_Zero_clear1:
 mov.b #40h,fcmd ; Program command
 ste.b r0l,[a1a0] ; "00h" write
 bset ta0os ; 20usec timer start
?:
 btst ir_ta0ic
 jz ?-
 mov.b #0,ta0ic

2
M16C/20 Group

53

2.3 Sample List

 mov.b #0c0h,fcmd ; program verify command
 jsr U_wait_6usec ; wait 6usec
 lde.b [a1a0],r0h ; data read
 cmp.b r0l,r0h ; compare write and read data
 jeq U_Zero_clear2 ; when equal , jump to Zero_clear2
 sbjnz.w #1,r2,U_Zero_clear1 ; to Zero_clear1
 jmp U_Erase_err ; jump to Erase_err
U_Zero_clear2:
 mov.w #25,r2 ; retry counter
 cmp.w addr_l,a0 ; end address ?
 jeq U_Erase_verify ; jump to Erase_verify
 add.w #1,a0
 jmp U_Zero_clear1
;
U_Erase_verify:
 mov.w #1000,r2 ; retry 1000 times
 mov.w #3000-1,ta0 ; 300u set
U_Erase_verify2:
 mov.b #20h,fcmd ; Auto erase command
 mov.b #20h,fcmd ; Auto erase command
 mov.b #0,ta0ic
 mov.w #0,r1
 bset ta0os ; 300usec timer start
?:
 btst ir_ta0ic
 jz ?-
 add.b #1,r1l
 cmp.b #66,r1l ; 20msec ?
 jeq ?+
 mov.b #0,ta0ic
 bset ta0os
 jmp ?-
?:
U_Erase_verify3:
 mov.b #0a0h,fcmd ; erase verify command
 jsr U_wait_6usec ; wait 6usec
 lde.b [a1a0],r0h ; data read
 cmp.b #0ffh,r0h ; "ffh" ?
 jeq U_Erase_verify4 ; when equal , jump to Erase_verify2
 sbjnz.w #1,r2,U_Erase_verify2 ; to Erase_verify
 jmp U_Erase_err ; jump to Erase_err
U_Erase_verify4:
 cmp.w data,a0 ; start address ?
 jeq U_Erase_end ; jump to Erase_end
 sub.w #1,a0
 jmp U_Erase_verify3
U_Erase_err:
 bset sr5 ; erase error flag set
U_Erase_end:
 mov.b #0ffh,fcmd ; reset command
 mov.b #0ffh,fcmd
 mov.b #00h,fcmd ; read command
 jmp U_Loop_main ; jump Loop_main
;
;---
; Read SRD +
;---
U_Read_SRD:
 bclr re_u0c1 ; Reception disabled
 mov.w #0,r3
 mov.b SRD,r1l
 mov.b SRD1,r1h
 bset te_u0c1 ; Transmission enable
;

M16C/20 Group
2

54

2.3 Sample List

U_Read_SRD_loop:
 mov.b r1l,u0tb ; r1l --> transmit buffer register
?:
 btst ti_u0c1 ; transmit buffer empty ?
 jz ?-
 add.w #1,r3
 mov.b r1h,r1l
 cmp.w #2,r3
 jne U_Read_SRD_loop
 jmp U_Loop_main
;
;---
;+ Clear SRD +
;---
U_Clear_SRD:
 mov.b #80h,SRD ; SRD clear
 and.b #9ch,SRD1 ; SRD1 clear
 jmp U_Loop_main
;
;---
;+ Read Rock Bit (dummy) +
;---
U_Read_RB:
 mov.w #0,r3
 mov.b #0ffh,r1l
U_Read_RB_loop:
 bclr busy ; BUSY "L"
?:
 btst ri_u0c1 ; transmit buffer empty ?
 jz ?-
 bset busy ; BUSY "H"
 mov.w u0rb,r0 ; receive data ---> r0
 add.w #1,r3 ; r3+1 increment
 cmp.w #2,r3 ; r3 = 2 ?
 jltu U_Read_RB_loop ; jump U_Read_RB_loop at r3<2
 bclr re_u0c1 ; Reception disabled
 bset te_u0c1 ; Transmission enabled
 mov.b r1l,u0tb ; dummy --> Transmit buffer register
?:
 btst ti_u0c1 ; transmit buffer empty?
 jnc ?-

 jmp U_Loop_main
;
;---
; ID check
;---
U_ID_check:
 mov.w #0,r3 ; receive number (r3=0)
 mov.w #0ffh,a1 ; ID size (dummy data = ffh)
U_ID_data_store:
 cmp.w a1,r3 ; r3=a1(ID size)
 jeq U_ID_address_check ; jump ID_address_check at r3=ID size
 bclr busy ; BUSY "L"
?:
 btst ri_u0c1 ; Receive complete ?
 jz ?-
 bset busy ; BUSY "H"
 mov.w u0rb,r0 ; receive data --> r0
 mov.w r3,a0 ; r3 --> a0
 mov.b r0l,addr_l[a0] ; Store address
 add.w #1,r3 ; r3+1 increment
 cmp.w #4,r3 ; r3=4 ?
 jne U_ID_data_store ; jump ID_data_store at r3 not= 4

2
M16C/20 Group

55

2.3 Sample List

 mov.b data,a1 ; ID size --> a1
 add.w #4,a1 ; a1=a1+4
 jmp U_ID_data_store ; jump ID_data_store
U_ID_address_check:
 btst blank ; blank flag check
 jc U_ID_check_end ; jump ID_check_end at blank
 cmp.w #0ffdfh,addr_l ; lower ID address check
 jne U_ID_error ; jump ID_error at ID address error
 cmp.w #0070fh,addr_h ; higher ID address check
 jne U_ID_error ; jump ID_error at ID address error
U_ID_data_check:
 mov.w #0000fh,a1 ; ID higher address --> a1
 mov.w #0ffdfh,r1 ; ID lower address --> r1
 mov.w #1,r3 ; check loop number (r3=1)
U_ID_check_loop:
 mov.w r1,a0 ; r1 --> a0
 lde.b [a1a0],r0l ; ID data read from Flash memory
 mov.w r3,a0 ; r3 --> a0
 cmp.b r0l,data[a0] ; compare ID data
 jne U_ID_error ; jump ID_error at ID error
 add.w #4,r1 ; r1+4 increment (next ID address)
 cmp.w #0ffe7h,r1 ; r1=0ffefh ?
 jne ?+ ; jump ? at not equal
 mov.w #0ffebh,r1 ; r1=0ffeb at equal
?:
 add.w #1,r3 ; r3 +1 increment
 cmp.w #8,r3 ; r3=8 ?
 jltu U_ID_check_loop ; jump ID_check_loop at r3<8
U_ID_OK:
 bset sr10
 bset sr11 ; ID check OK (sr11=1,sr10=1)
 jmp U_ID_check_end ; jump ID_check_end
U_ID_error:
 bset sr10
 bclr sr11 ; ID error (sr11=0,sr10=1)
U_ID_check_end:
 jmp U_Loop_main ; jump Loop_main
;
;---
; Download
;---
U_Download:
 bclr fcon00 ; not CPU write mode
 jmp.a U_Download_program ; jump Download_program
;
;--
;+ Version output +
;--
U_Ver_output:
 mov.w #0,a0
 bclr re_u0c1 ; Reception disabled
 bset te_u0c1 ; Transmission enabled
U_Ver_output_loop:
 lde.b ver[a0],u0tb ; Version data transfer
?:
 btst ti_u0c1 ; transmit buffer empty ?
 jz ?-
 add.w #1,a0
 cmp.w #8,a0
 jltu U_Ver_output_loop
 jmp U_Loop_main
;
;--
;+ Baud rate change - UART mode +

M16C/20 Group
2

56

2.3 Sample List

;--
U_BPS_B0:
 mov.b baud,data ; Baud rate 9600bps
 jmp U_BPS_SET
U_BPS_B1:
 mov.b baud+1,data ; Baud rate 19200bps
 jmp U_BPS_SET
U_BPS_B2:
 mov.b baud+2,data ; Baud rate 38400bps
 jmp U_BPS_SET
U_BPS_B3:
 mov.b baud+3,data ; Baud rate 57600bps
U_BPS_SET:
 bclr re_u0c1 ; Reception disabled
 bset te_u0c1 ; Transmission enabled
 mov.b r0l,u0tb ; r1l --> transmit buffer register
?:
 btst ti_u0c1 ; transmit buffer empty ?
 jnc ?-
?:
 btst txept_u0c0
 jnc ?-
 bclr te_u0c1 ; Transmission disabled
 jsr U_Initialize_20 ; UART mode Initialize
 jmp U_Loop_main ; jump Loop_main
;
;++
;+ Freq check - UART mode - +
;++
U_Freq_check:
 bclr re_u0c1 ; Reception disabled
 btst 8,r1 ; counter = 8 times
 jc U_Freq_check_4
;
 btst freq_set1
 jc U_Freq_check_1
 cmp.b #00h,r0l ; "00h"?
 jeq U_Freq_check_3
 jmp U_Freq_check_2
U_Freq_check_1:
 btst 13,r0 ; fer_u1rb
 jz U_Freq_check_3
U_Freq_check_2:
 or.b r1h,r1l ; r1l = counter1 or counter2
U_Freq_check_3:
 xor.b data,r1l ; Baud = Baud xor r1l
 mov.b r1l,data ; data set
 mov.b r1h,r1l
 rot.b #-1,r1l
 rot.b #-1,r1h ; counter sift
 rot.b #-1,r1l
 jmp U_Freq_check_6
;
U_Freq_check_4:
 btst freq_set1 ; Min-Baud get ?
 jc U_Freq_set_1 ; Yes , finished
 bset freq_set1
 cmp.b #00h,r0l ; "00h"?
 jeq U_Freq_check_5
 xor.b data,r1h
 mov.b r1h,data
U_Freq_check_5:
 mov.b data,data+1 ; Min Baud --> data+1
 mov.b #01000000b,r1l ; counter reset

2
M16C/20 Group

57

2.3 Sample List

 mov.b #10000000b,r1h
 mov.b #01111111b,data ; Reset
U_Freq_check_6:
 mov.b data,u0brg ; Transmission late
?:
 btst p5_1
 jz ?-
 jmp U_Loop_main
;
U_Freq_set_1:
 btst 13,r0 ; fer_u1rd
 jz U_Freq_set_2
 xor.b data,r1h
 mov.b r1h,data
U_Freq_set_2:
 bset freq_set2
 mov.b data+1,r1l
 sub.b data,r1l
 shl.b #-1,r1l
 add.b data,r1l
;
 mov.b r1l,baud ; 9600bps
 shl.b #-1,r1l ; 19200bps
 mov.b r1l,baud+1
 shl.b #-1,r1l ; 38400bps
 mov.b r1l,baud+2
 mov.b baud,r0l ; 57600bps
 mov.b #0,r0h
 divu.b #6
 mov.b r0l,baud+3
 mov.b baud,data
 mov.b #0b0h,r0l ; "B0h" set
 mov.b data,u0brg ; Transmission late
 jmp U_BPS_SET
;
;--
;+ 6usec timer wait +
;--
U_wait_6usec:
 bset tb0s
?:
 btst ir_tb0ic
 jz ?-
 bclr tb0s
 mov.b #0,tb0ic
 rts
;
;++
;+ Subroutine : U_Initialize_2 +
;++
U_Initialize_2:
 bset fcon00 ; CPU write mode
 bset fcon05 ; F4000h-FFFFFh select
 bclr fcon04
 lde.w 0ffffch,r0 ; Reset vector read --> r0
 lde.w 0ffffeh,r1 ; Reset vector read --> r1
 and.w r1,r0 ; r0 & r1
 cmp.w #0ffffh,r0 ; Blank check
 jne U_Blank_check_end ; jump Blank_check_end at Blank error
 bset sr10 ; check complete
 bset sr11 ;
 bset blank ; blank flag set
U_Blank_check_end:
;

M16C/20 Group
2

58

2.3 Sample List

;--
;+ UART0 +
;--
;
U_Initialize_20:
;----- UART0 init late generater 1
 mov.b data,u0brg ; Transmission late
;
U_Initialize_21:
;----- UART0 transmit/receive mode register
;
 mov.b #0,u0mr ; u0mr reset
 mov.b #00000101b,u0mr
; |||||+++------------ transfer data 8 bit long
; ||||+--------------- Internal clock
; |||+---------------- one stop bit
; ||+----------------- parity disabled
; |+------------------ sleep mode deselected
;
;----- UART0 transmit/receive control register 0
;
 mov.b #00001000b,u0c0
; |||| |++------------ f1 select
; ||||++-------------- RTS select
; |||+---------------- CTS/RTS enabled
; ||+----------------- CMOS output(TxD)
; |+------------------ falling edge select
; +------------------- LSB first
;
;----- UART transmit/receive control register 2
;
 mov.b #00000000b,ucon
; ||||||++------------ Transmit buffer empty
; ||||++-------------- Continuous receive mode disabled
; ||++---------------- CLK/CLKS normal
; |+------------------ CTS/RTS shared
; +------------------- fixed
;

;----- UART transmit/received control register 1
;
 mov.b #00000000b,u0c1
; |||||||+------------ Transmission disabled
; ||||||+------------- Transmission enabled
; |||||+-------------- Reception disabled
; ||||+--------------- Reception enabled
; ++++---------------- fixed
;
;--
;+ Timer +
;--
 mov.b #02h,ta0mr ; f1 select,one-shot mode
 mov.b #0,ta0ic ; Interrupt flag clear
 mov.w #3000-1,ta0 ; 300usec at 10 MHz
 bset ta0s
;
 mov.b #00h,tb0mr ; f1 select
 mov.w #60-1,tb0 ; 6usec at 10 MHz
;
 rts
;
Trans_END2:
;
 .end

2
M16C/20 Group

59

2.3 Sample List

Header

;**
;* *
;* file name : definition of M16C/20 Flash *
;* *
;* Version : 0.07 (1999-8-5) *
;* : for Boot Ver 1.03 *
;**
;
;---
; BUSY output
;---
busy .btequ 3,03E9h ; p5_3
busy_d .btequ 3,03EBh ; pd5_3
;
;---
; define of symbols
;---
Ram_TOP .equ 000400h
Ram_END .equ 000bffh ;
Istack .equ 000c00h ;
;
Version .equ 0dfbf0h
Boot_TOP .equ 0df000h
Boot_END .equ 0dffffh
Vector .equ 0fffdch
;
SB_base .equ 000400h
Ram_progTOP .equ 000600h
;
Download_program .equ 0df100h
U_Download_program .equ 0df1a0h
;
 .section memory,data
 .org Ram_TOP
;
SRD: .blkb 1
SRD1: .blkb 1
ver: .blkb 10
SF: .blkb 1
unuse: .blkb 3
addr_l: .blkb 1
addr_m: .blkb 1
addr_h: .blkb 1
data: .blkb 256
ID: .blkb 11
buff: .blkb 20
ID_err: .blkb 1
baud: .blkb 4
;
sr0 .btequ 0,SRD ;
sr1 .btequ 1,SRD ;
sr2 .btequ 2,SRD ;
sr3 .btequ 3,SRD ; Block status after program (0=OK 1=ERR)
sr4 .btequ 4,SRD ; Program status (0=OK 1=ERR)
sr5 .btequ 5,SRD ; Erase status (0=OK 1=ERR)
sr6 .btequ 6,SRD ;
sr7 .btequ 7,SRD ; Write state machine status (0=BUSY 1=READY)
sr8 .btequ 0,SRD1 ; Block address error
sr9 .btequ 1,SRD1 ; Time out (0=OK 1=TIME OUT)
sr10 .btequ 2,SRD1 ; ID collation
sr11 .btequ 3,SRD1 ; (00= no check 01= error 10= -- 11= OK)

M16C/20 Group
2

60

2.3 Sample List

sr12 .btequ 4,SRD1 ; Check sum (0= error 1= ok)
sr13 .btequ 5,SRD1 ;
sr14 .btequ 6,SRD1 ;
sr15 .btequ 7,SRD1 ; Download flag
;
ram_check .btequ 0,SF
blank .btequ 1,SF
s_mode .btequ 2,SF
old_mode .btequ 3,SF
freq_set0 .btequ 4,SF
freq_set1 .btequ 5,SF
freq_set2 .btequ 6,SF
;

2
M16C/20 Group

61

2.4 Precautions

2.4 Precautions

This section describes precautions to be observed when controlling the M16C/20's internal flash memory.

Handling of Vpp Power Supply

In addition to the operating Vcc power supply, the flash memory requires a high-voltage (12 V) Vpp power

supply for program/erase operations. We recommend that the Vpp power supply be 12 V only when you

need to program/erase the flash memory, and 0 V otherwise.

When using the Vpp power supply, pay attention to the following:

(1) Do not apply an overvoltage to the Vpp pin. If the flash memory's Vpp voltage exceeds the absolute

maximum rated voltage of 13 V, the device may be damaged.

(2) When turning the Vpp voltage on or off, make sure the Vcc power supply is turned on. Before accessing

the device, wait until the power supply stabilizes after being turned on.

(3) Set the current capacity of the Vpp power supply by considering the device's power consumption in the

same way as for the Vcc power supply. The Vpp current (Ipp) during programming/erasing reaches the

maximum value when program or erase operation is executed internally in the device after entering the

command. At this time, be careful that the Vpp voltage applied to the M16C/20 will not drop.

(4) Connect a bypass capacitor to the Vpp power supply pin as close to the Vpp pin as possible, as for the

Vcc power supply pin. To prevent a transient drop of the Vpp voltage in (3) above, connect a bypass

capacitor as close to the Vpp pin as possible. Although the value of this bypass capacitor varies with the

operating current, the appropriate value normally is 0.1 to 1 µF per device.

(5) Do not enter a low signal to the WE pin while you are applying 12 V to the Vpp pin. If the WE input is

pulled low while the Vpp pin has 12 V applied to it, the flash memory may receive the data pin status at

that point in time as a command. Therefore, if the WE input is pulled low by noise or for other reasons

while writing data, the flash memory may be erroneously programmed/erased.

M16C/20 Group
2

62

2.4 Precautions

Additional programming inhibited

Additional programming means writing data to a byte again after once writing to it (the byte that passed

verification).

Additional programming causes a high voltage to be applied to memory cells of the flash memory repeatedly,

which may result in reduced or lost margins for memory data cell readout or degraded data retention

characteristics.

Therefore, when programming the flash memory, be careful not to additionally write to the bytes that have

passed test by Program Verify. However, an exception is that only when you wrote "0016" to all bytes of

flash memory before erasing, you can additionally write data "0016" to each byte once. This is because

writing "0016" to all bytes of flash memory before erasing is indispensable to prevent overerase.

Table 2.4.1 shows inhibited additional programming and acceptable additional programming.

Table 2.4.1 Inhibited Additional Programming and Acceptable Additional Programming

Writing "0016" to all bytes before erasing.

Inhibited additional
programming

(1) Writing the same data to the verified bytes again.
Example: Writing data 25 times per byte without verifying

programmed data.
(2) Writing new data to already programmed bytes without

erasing them.

Acceptable additional
programming

Chapter 3

M16C/62 Group
3.1 Outline of Hardware

3.2 Developing Boot Program

3.3 Sample Program List

3.4 Precautions

3

64

M16C/62 Group

3.1 Outline of Hardware

3.1 Outline of Hardware

The M16C/62 group contains DINOR-type flash memory.

This section shows hardware information about the M16C/62 group which we think is necessary to create a

boot program.

Internal Flash Memory Outline

Table 3.1.1 shows the outline performance of M30624FG and M30624FGL of the M16C/62 group.

Table 3.1.1. Outline Performance of M30624FG and M30624FGL

Item

Power supply voltage

Program/erase voltage

Flash memory operation mode

Erase block
division

Program method

Erase method

Program/erase control method

Protect method

Number of commands

Program/erase count

ROM code protect

Performance

5V version: 2.7V to 5.5 V
(f(XIN)=16MHz, without wait, 4.2V to 5.5V,

 f(XIN)=10MHz, with one wait, 2.7V to 5.5V)
3V version: 2.4V to 3.6 V

(f(XIN)=10MHz, without wait, 2.7V to 3.6V,
 f(XIN)=7MHz, without wait, 2.4V to 3.6V)

5V version: 4.2V to 5.5 V
(f(XIN)=12.5MHz, with one wait,

 f(XIN)=6.25MHz, without wait)

3V version: 2.7V to 3.6 V
(f(XIN)=10MHz, with one wait,

 f(XIN)=6.25MHz, without wait)

Three modes (parallel I/O, standard serial I/O, CPU rewrite)

See Figure 3.1.1

One division (8 Kbytes) (Note)

In units of pages (in units of 256 bytes)

Collective erase/block erase

Program/erase control by software command

Protected for each block by lock bit

8 commands

100 times

Parallel I/O and standard serial modes are supported.

Note: The boot ROM area contains a standard serial I/O mode control program which is stored in it
when shipped from the factory.This area can be erased and programmed in only parallel I/O
mode.

User ROM area

Boot ROM area

3

65

M16C/62 Group

3.1 Outline of Hardware

0C000016

0D000016

Block 6 : 64K bytes

Block 5 : 64K bytes

0E000016
Block 4 : 64K bytes

0F000016
Block 3 : 32K bytes

0F800016
Block 2 : 8K bytes

0FA00016
Block 1 : 8K bytes

Block 0 : 16K bytes
0FC00016 0FE00016

0FFFFF16 0FFFFF16
Boot ROM area

Note 1: The boot ROM area can be rewritten in
only parallel input/output mode. (Access
to any other areas is inhibited.)

Note 2: To specify a block, use the maximum
address in the block that is an even
address.

User ROM area

00000016

0C000016

Memory Map

The user ROM of M30624FG has seven blocks as block 0 to block 6. Figure 3.1.1 shows the memory map.

Figure 3.1.1 M30624FG memory Map

3

66

M16C/62 Group

3.1 Outline of Hardware

Flash memory control register 0
Symbol Address When reset
FMR0 03B716 XX0000012

WR

b7 b6 b5 b4 b3 b2 b1 b0

FMR00

Bit symbol Bit name Function R W

0: Busy (being written or erased)
1: Ready

CPU rewrite mode
select bit (Note 1)

0: Normal mode
 (Software commands invalid)
1: CPU rewrite mode
 (Software commands acceptable)

FMR01

0: Boot ROM area is accessed
1: User ROM area is accessed

Lock bit disable bit
(Note 2)

0: Block lock by lock bit data is
enabled

1: Block lock by lock bit data is
disabled

Flash memory reset bit
(Note 3)

0: Normal operation
1: Reset

Nothing is assigned.
When write, set "0". When read, values are indeterminate.

User ROM area select bit (
Note 4) (Effective in only
boot mode)

FMR02

FMR03

FMR05

0

Note 1: For this bit to be set to “1”, the user needs to write a “0” and then a “1” to it in succession.
When it is not this procedure, it is not enacted in “1”. This is necessary to ensure that no
interrupt or DMA transfer will be executed during the interval. Use the control program
except in the internal flash memory for write to this bit.

Note 2: For this bit to be set to “1”, the user needs to write a “0” and then a “1” to it in succession
when the CPU rewrite mode select bit = “1”. When it is not this procedure, it is not enacted in
“1”. This is necessary to ensure that no interrupt or DMA transfer will be executed during the
interval.

Note 3: Effective only when the CPU rewrite mode select bit = 1. Set this bit to 0 subsequently after
setting it to 1 (reset).

Note 4: Use the control program except in the internal flash memory for write to this bit.

A

AAA

AAA

A
A
AA
AA

AAA

AAA

RY/BY status flag

Flash memory control register 1

Symbol Address When reset
FMR1 03B616 XXXX0XXX2

WR

b7 b6 b5 b4 b3 b2 b1 b0

Bit symbol Bit name Function R W

Flash memory power
supply-OFF bit (Note)

0: Flash memory power supply is
 connected
1: Flash memory power supply-off

FMR13

0

Note : For this bit to be set to “1”, the user needs to write a “0” and then a “1” to it in succession.
When it is not this procedure, it is not enacted in “1”. This is necessary to ensure that no
interrupt or DMA transfer will be executed during the interval. Use the control program except
in the internal flash memory for write to this bit.
During parallel I/O mode,programming,erase or read of flash memory is not controlled by this
bit,only by external pins.

A
A

AA

000 00

Reserved bit Must always be set to “0”

AReserved bit Must always be set to “0”

Reserved bit Must always be set to “0”

0

Related Register Configuration

Figure 3.1.2 shows related registers for making user boot program.

Figure 3.1.2 Related Register Configuration

3

67

M16C/62 Group

3.1 Outline of Hardware

Command

Page program

Clear status register

Read array

Read status register

X

X

X

X(Note 3)

First bus cycle Second bus cycle Third bus cycle

FF16

7016

5016

4116

Write

Write

Write

Write

X SRDRead

Write

Lock bit program X 7716Write BA D016Write

Erase all unlock block X A716Write X D016Write

WA1 WD1Write

(Note 2)

WA0(Note 3) WD0 (Note 3)

Block erase X 2016Write D016Write BA (Note 4)

Read lock bit status X 7116Write BA D6Read (Note 5)

Mode Address Mode Address Mode Address
Data

(D0 to D7)
Data

(D0 to D7)
Data

(D0 to D7)

(Note 6)

Note 1: When a software command is input, the high-order byte of data (D8 to D15) is ignored.
Note 2: SRD = Status Register Data
Note 3: WA = Write Address, WD = Write Data

WA and WD must be set sequentially from 0016 to FE16 (byte address; however, an even address). The page size is
256 bytes.

Note 4: BA = Block Address (Enter the maximum address of each block that is an even address.)
Note 5: D6 corresponds to the block lock status. Block not locked when D6 = 1, block locked when D6 = 0.
Note 6: X denotes a given address in the user ROM area (that is an even address).

Flash Control Circuit
The M16C/62's flash control circuit controls the block erase and page program operations performed on the

internal flash memory. Operation modes are selected by entering software commands to the flash control

circuit. The status shows the status of the flash control circuit, as well as the status of program and block

erase operations performed by the flash control circuit.

To enter commands to the flash control circuit, write the command to flash memory address.

Software Commands

Flash memory operations are selected by writing a software command to the flash control circuit. The

table below lists the operations performed by software commands.

Table 3.1.2 Software Command List

Flash Memory Address

The table below shows the flash memory capacity of each block (address space, number of pages) and

the block addresses of each block.

Table 3.1.3 Flash Memory Address

Block 6

Block 5

Block 4

Block 3

Block 2

Block 1

Block 0 16 Kbytes

Page No.

256

256

256

128

32

32

64

Address

C000016–CFFFF16

D000016–DFFFF16

E000016–EFFFF16

F000016–F7FFF16

F800016–F9FFF16

FA00016–FBFFF16

FC00016–FFFFF16

Block address

CFFFE16

DFFFE16

EFFFE16

F7FFE16

F9FFE16

FBFFE16

FFFFE16

8 Kbytes

8 Kbytes

32 Kbytes

64 Kbytes

64 Kbytes

64 Kbytes

Size

3

68

M16C/62 Group

3.1 Outline of Hardware

Read Array Command (FF 16)

The read array mode is entered by writing the command code “FF16” in the first bus cycle. When an even

address to be read is input in one of the bus cycles that follow, the content of the specified address is read

out at the data bus (D0–D15), 16 bits at a time. The read array mode is retained intact until another

command is written.

Read Status Register Command (70 16)

When the command code “7016” is written in the first bus cycle, the content of the status register is read out

at the data bus (D0–D7) by a read in the second bus cycle.

The status register is explained in the next section.

Clear Status Register Command (50 16)

This command is used to clear the bits SR3 to 5 of the status register after they have been set. These bits

indicate that operation has ended in an error. To use this command, write the command code “5016” in the

first bus cycle.

Page Program Command (41 16)

Page program allows for high-speed programming in units of 256 bytes. Page program operation starts

when the command code “4116” is written in the first bus cycle. In the second bus cycle through the 129th

bus cycle, the write data is sequentially written 16 bits at a time. At this time, the addresses A0-A7 need to

be increased by 2 from “0016” to “FE16.” When the system finishes loading the data, it starts an auto write

operation (data program and verify operation).

Whether the auto write operation is completed can be confirmed by reading the status register or the flash

memory control register 0. At the same time the auto write operation starts, the read status register mode

is automatically entered.

After the auto write operation is completed, the status register can be read out to know the result of the

auto write operation. For details, refer to the section where the status register is detailed.

The status register bit 7 (SR7) is set to 0 at the same time the auto write operation starts and is returned to

1 upon completion of the auto write operation. In this case, the read status register mode remains active

until the Read Array command (FF16) or Read Lock Bit Status command (7116) is written or the flash

memory is reset using its reset bit.

The RY/BY status flag of the flash memory control register 0 is 0 during auto write operation and 1 when

the auto write operation is completed as is the status register bit 7.

Figure 3.1.3 shows an example of a page program flowchart.

Each block of the flash memory can be write protected by using a lock bit. For details, refer to the section

where the data protect function is detailed.

Additional writes to the already programmed pages are prohibited.

3

69

M16C/62 Group

3.1 Outline of Hardware

n = FE16

Start

Write 4116

n = 0

Write address n and
data n

RY/BY status flag
= 1?

Check full status

Page program
completed

n = n + 2

NO

YES

NO

YES

Figure 3.1.3 Page Program Flowchart

3

70

M16C/62 Group

3.1 Outline of Hardware

Block Erase Command (20 16/D016)

By writing the command code “2016” in the first bus cycle and the confirm command code “D016” in the

second bus cycle that follows to the block address of a flash memory block, the system initiates an auto

erase (erase and erase verify) operation.

Whether the auto erase operation is completed can be confirmed by reading the status register or the flash

memory control register 0. At the same time the auto erase operation starts, the read status register mode

is automatically entered, so the content of the status register can be read out. The status register bit 7

(SR7) is set to 0 at the same time the auto erase operation starts and is returned to 1 upon completion of

the auto erase operation. In this case, the read status register mode remains active until the Read Array

command (FF16) or Read Lock Bit Status command (7116) is written or the flash memory is reset using its

reset bit.

The RY/BY status flag of the flash memory control register 0 is 0 during auto erase operation and 1 when

the auto erase operation is completed as is the status register bit 7.

After the auto erase operation is completed, the status register can be read out to know the result of the

auto erase operation. For details, refer to the section where the status register is detailed.

Figure 3.1.4 shows an example of a block erase flowchart.

Each block of the flash memory can be protected against erasure by using a lock bit. For details, refer to

the section where the data protect function is detailed.

Figure 3.1.4 Block Erase Flowchart

 Write 2016

Write D016
 to block address

Check full status check

Block erase
completed

Start

RY/BY status flag
= 1?

NO

YES

3

71

M16C/62 Group

3.1 Outline of Hardware

Erase All Unlock Blocks Command (A7 16/D016)

By writing the command code “A716” in the first bus cycle and the confirm command code “D016” in the

second bus cycle that follows, the system starts erasing blocks successively.

Whether the Erase All Unlock Blocks command is terminated can be confirmed by reading the status

register or the flash memory control register 0, in the same way as for block erase. Also, the status register

can be read out to know the result of the auto erase operation.

When the lock bit disable bit of the flash memory control register 0 = 1, all blocks are erased no matter how

the lock bit is set. On the other hand, when the lock bit disable bit = 0, the function of the lock bit is effective

and only unlocked blocks (where lock bit data = 1) are erased.

Lock Bit Program Command (77 16/D016)

By writing the command code “7716” in the first bus cycle and the confirm command code “D016” in the

second bus cycle that follows to the block address of a flash memory block, the system sets the lock bit for

the specified block to 0 (locked).

Figure 3.1.5 shows an example of a lock bit program flowchart. The status of the lock bit (lock bit data) can

be read out by a Read Lock Bit Status command.

Whether the lock bit program command is terminated can be confirmed by reading the status register or

the flash memory control register 0, in the same way as for page program.

For details about the function of the lock bit and how to reset the lock bit, refer to the section where the data

protect function is detailed.

Figure 3.1.5 Lock Bit Program Flowchart

Write 7716

Write D016
to block address

SR4 = 0?
NO

Lock bit program
completed

Lock bit program in
error

YES

Start

RY/BY status flag
= 1?

NO

YES

3

72

M16C/62 Group

3.1 Outline of Hardware

Read Lock Bit Status Command (71 16)

By writing the command code “7116” in the first bus cycle and then the block address of a flash memory

block in the second bus cycle that follows, the system reads out the status of the lock bit of the specified

block on to the data (D6).

Figure 3.1.6 shows an example of a read lock bit program flowchart.

Figure 3.1.6 Read Lock Bit Program Flowchart

Data Protect Function (Block Lock)

Each block in Figure 3.1.1 has a nonvolatile lock bit to specify that the block be protected (locked) against

erase/write. The Lock Bit Program command is used to set the lock bit to 0 (locked). The lock bit of each

block can be read out using the Read Lock Bit Status command.

Whether block lock is enabled or disabled is determined by the status of the lock bit and how the flash

memory control register 0’s lock bit disable bit is set.

(1) When the lock bit disable bit = 0, a specified block can be locked or unlocked by the lock bit status (lock

bit data). Blocks whose lock bit data = 0 are locked, so they are disabled against erase/write.

On the other hand, the blocks whose lock bit data = 1 are not locked, so they are enabled for erase/

write.

(2) When the lock bit disable bit = 1, all blocks are unlocked regardless of the lock bit data, so they are

enabled for erase/write. In this case, the lock bit data that is 0 (locked) is set to 1 (unlocked) after

erasure, so that the lock bit-actuated lock is removed.

Write 7116

Enter block address

D6 = 0?
NO

Blocks locked Blocks not locked

YES

Start

(Note)

Note: Data bus bit 6.

3

73

M16C/62 Group

3.1 Outline of Hardware

Status Register

The status register indicates the operating status of the flash memory and whether an erase or program

operation has terminated normally or in an error. The content of this register can be read out by only

writing the read status register command (7016). Table 3.1.3 details the status register.

The status register is cleared by writing the Clear Status Register command (5016).

After a reset, the status register is set to “8016.”

Each bit in this register is explained below.

Write State Machine (WSM) Status (SR7)
After power-on, the write state machine (WSM) status is set to 1.

The write state machine (WSM) status indicates the operating status of the device, as for output on the

RY/BY pin. This status bit is set to 0 during auto write or auto erase operation and is set to 1 upon

completion of these operations.

Erase Status (SR5)
The erase status informs the operating status of auto erase operation to the CPU. When an erase error

occurs, it is set to 1.

The erase status is reset to 0 when cleared.

Program Status (SR4)
The program status informs the operating status of auto write operation to the CPU. When a write error

occurs, it is set to 1.

The program status is reset to 0 when cleared.

When an erase command is in error (which occurs if the command entered after the block erase com-

mand (2016) is not the confirm command (D016), both the program status and erase status (SR5) are set

to 1.

When the program status or erase status = 1, the following commands entered by command write are not

accepted.

Also, in one of the following cases, both SR4 and SR5 are set to 1 (command sequence error):

(1) When the valid command is not entered correctly

(2) When the data entered in the second bus cycle of lock bit program (7716/D016), block erase (2016/

D016), or erase all unlock blocks (A716/D016) is not the D016 or FF16. However, if FF16 is entered,

read array is assumed and the command that has been set up in the first bus cycle is canceled.

Block Status After Program (SR3)
If excessive data is written (phenomenon whereby the memory cell becomes depressed which results in

data not being read correctly), “1” is set for the program status after-program at the end of the page write

operation. In other words, when writing ends successfully, “8016” is output; when writing fails, “9016” is

output; and when excessive data is written, “8816” is output.

3

74

M16C/62 Group

3.1 Outline of Hardware

Full Status Check

By performing full status check, it is possible to know the execution results of erase and program operations.

Figure 3.1.7 shows a full status check flowchart and the action to be taken when each error occurs.

Figure 3.1.7 Full Status Check Flowchart and Remedial Procedure for Errors

Read status register

SR4=1 and SR5
=1 ?

NO

Command
sequence error

YES

SR5=0?

YES

Block erase error
NO

SR4=0?

YES

Program error (page
or lock bit)

NO

SR3=0?

YES

Program error
(block)

NO

End (block erase, program)

Execute the clear status register command (5016)
to clear the status register. Try performing the
operation one more time after confirming that the
command is entered correctly.

Should a block erase error occur, the block in error
cannot be used.

Execute the read lock bit status command (7116)
to see if the block is locked. After removing lock,
execute write operation in the same way. If the
error still occurs, the page in error cannot be
used.

After erasing the block in error, execute write
operation one more time. If the same error still
occurs, the block in error cannot be used.

Note: When one of SR5 to SR3 is set to 1, none of the page program, block erase,
erase all unlock blocks and lock bit program commands is accepted. Execute the
clear status register command (5016) before executing these commands.

Table 3.1.4 Definition of Each Bit in Status Register

Each bit of
SRD

SR4 (bit4)

SR5 (bit5)

SR7 (bit7)

SR6 (bit6)

Status name
Definition

SR1 (bit1)

SR2 (bit2)

SR3 (bit3)

SR0 (bit0)

"1" "0"

Program status

Erase status

Write state machine (WSM) status

Reserved

Reserved

Reserved

Block status after program

Reserved

Ready Busy

Terminated in error

Terminated in error

Terminated in error

Terminated normally

Terminated normally

Terminated normally

-

-

-

-

-

-

-

-

3
M16C/62 Group

75

3.2 Developing The Boot Program

3.2 Developing The Boot Program

The standard boot program that was built into the boot ROM area of the flash microcomputer when shipped

from the factory can be used to program/erase the flash memory. In this case, the hardware resources

(internal functions) used for control are fixed. Therefore, if you want to control flash memory in the way

suitable for your system, you need to create a boot program for yourself.

This section shows an algorithm for the boot program (e.g., for erase and program) that you must at least

have in order to control the flash memory of the M16C/62 group.

System Example

By using the internal peripheral function of UART1 and a serial programmer to control flash memory, the

following shows an example of device connections is shown in Figure 3.2.1. Assignments of internal

peripheral functions are listed in Table 3.2.1.

Figure 3.2.1 Example of Device Connection

Table 3.2.1 Assignments of Internal Peripheral Functions

Usage Setting example

UART1 Used for transfer/receive of serial
programmer and data

• Clock synchronous serial I/O
• External clock is used

Timer A0 Used for time-over judgment of serial
transfer/receive

• One-shot timer mode
• 300 µs(when 20MHz)

Peripheral function

RTS1(BUSY)

CLK1

RXD1

TXD1

CNVss

Clock input

BUSY output

Data input

Data output

P50(CE)

P55(EPM)

M16C/62 flash
memory version

(1) Control pins and external circuitry will vary according to peripheral unit (programmer). For more
information, see the peripheral unit (programmer) manual.

(2) In this example, the microprocessor mode and standard serial I/O mode are switched via a switch

NMI

M16C/62 Group
3

76

3.2 Developing The Boot Program

Flow of The Main Processing

Figure 3.2.2 shows a flow of the main processing.

After initializing the CPU, transfer the write control program to RAM. When transfer is finished, jump to

RAM and execute the write control program from RAM.

Figure 3.2.2 Flow of The Main Processing

Initial setting 2
Initial setting 1

Transfer to RAM

JMP to
RAM

RAM transfer program on ROM Write control program on RAM

CPU programming mode

Data receive

Command processing

Data transfer

Time out processing

3
M16C/62 Group

77

3.2 Developing The Boot Program

Initialization 1 (CPU, Memory)

The CPU and RAM are initialized. Figure 3.2.3 shows a flow of initialization 1. To clear RAM, use of string

instructions will prove effective.

Figure 3.2.3 Initialization 1

Initial setting 1

Set ISP and SB

Set 'H" to BUSY pin

Protect release

Set system clock
control register

Set processor mode
register

Set protect

Port 6 (P6: address 03EC16)
b4

Protect register (PRCR: address 000A16)

11

Port 6 direction register (PD6: address 03EE16)

1
b4

System clock write enabled
Processor mode register write enabled

0 0 0 0 0 0 0 0

System clock control register 0 (CM0: address 000616)

System clock control register 1(CM1: address 000716)

Processor mode register 0(PM0: address 000416)

Processor mode register 1(PM1: address 000516)

1

Set 'H' data

Set output port

b1 b0

CM16 and CM17 is enabled

0 0 1 0 0 0 0 0

No divided mode

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0

b7 b6 b5 b4 b3 b2 b1 b0

1 0 0 0 0 0 0 0

1 wait

END

RAM clear R0 #0000H

A1 #0400H

R3

Set initial value

Set top address of RAM

Programing control program size /2+α

After setting these registers, execute SSTR.W

M16C/62 Group
3

78

3.2 Developing The Boot Program

Transfer to RAM Area

The version information of write program and write control program are transferred to RAM. After transferring,

jump to write control program on RAM. To transfer, use of string instructions will prove effective.

Figure 3.2.4 shows the algorithm.

Figure 3.2.4 Transfer to RAM Area

 Initialization 2

Set of write to Flash memory and initialization of serial communication are executed. To switch erase/write

mode, clear the CPU rewrite mode select bit (bit 1 of address 3B716), then set 1.

Figure 3.2.5 shows a algorithm.

Figure 3.2.5 Initialization 2

Transfer to RAM

Transfer preparing

Transfer

Jump to RAM area

A0

A1

R3

Set source address (low-order 16 bits)

Set destination address

Execute SMOVF.W

R0H Set source address (high-order 4 bits)

JMP

END

Transfer version information

Programing control program size /2+a

Initial setting 2

Select user ROM area b7 b6 b5 b4 b3 b2 b1 b0

 1

Select user ROM area

Flash memory control register 0(address 03B716)

Change to CPU rewrite
mode

b7 b6 b5 b4 b3 b2 b1 b0

 0

CPU rewrite mode

Flash memory control register 0(address 03B716)

 1

Write '0', and then '1' in
succession.

Go to initial setting of
peripheral function

3
M16C/62 Group

79

3.2 Developing The Boot Program

Set UART1

Set timer

UART1 transmit/receive mode register (U1MR: address 03A816)
b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 1 0 0 1

Clock synchronous serial I/O mode
External clock

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 1 0 0

(f1)
RTS function
CTS/RTS function enabled
TxD CMOS output
LSB first

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 1 0 1

Transfer enabled
Receive enabled

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 1 0

One-shot timer mode
No pulse output
One-shot start flag is valid
f1

#6000-1 When 20MHz, 300µs

UART1 transmit/receive control register 0 (U1C0: address 03AC16)

UART transmit/receive control register 1 (U0C1: address 03A516)

Timer A0 mode register (TA0MR: address 039616)

Timer A0 register (TA0: address 038716,038616)

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0

(Transfer buffer empty)
(Continuous receive mode disabled)

CLK1 clock output
CLK normal mode first
CTS/RTS shared pin

UART transmit/receive control register 2 (UCON: address 03B016)

From initial setting 2

END

Initialization 2 (Peripheral Function)

The peripheral functions used for programming flash memory is initialized. Figure 3.2.6 shows initialization

of UART1 for data transmit and timer A0 for time-out calculation.

Figure 3.2.6 Initialization 2 (Peripheral Function)

M16C/62 Group
3

80

3.2 Developing The Boot Program

Receiving Commands

Commands are received from the serial programmer.

Write dummy data to the transmit buffer, enable reception (the BUSY signal = low), and wait for data from

the serial programmer. At the timing of start reception (the BUSY signal = high), the timer used to check

data reception time-out is started. When data is not received within 300 msec, a time-out error is judged

and time-out processing flag is set.

When command reception flag is set (cmd_flg = "1"), processing jumps to data reception cycle number

check processing. When it is not set (cmd_flg = "0"), command reception flag is set. After that, jump

address is set based on the received serial command and processing jumps to the corresponding process.

When the serial command is not matched, serial initialization flag is set and processing is ended. When

the number of receive cycle matches to the prescribed number of serial reception command, command

reception flag is initialized (cmd_flg = "0") and processing is ended.

Figure 2.2.7 shows a processing flow.

3
M16C/62 Group

81

3.2 Developing The Boot Program

Flag initialization

RTS

Flag initialization

> 300 µsec?

Y

NSet time-out
processing flag

Loop counter + 1

Set jump address

Address setting
finished?

Command?

ID command receive

Reception cycle
completed?

Over

FFh

N

Is command
receive flag set?

Is reception
completed?

Set serial
initialization flag

Write to transfer buffer
register

Start one-shot timer

Read receive buffer
r3<=3

Y

N

Set write address

Write to data buffer

Set reception cycle

BUSY = 'H' ?

Data receive

Is command receive
flag set ?

Set command receive
flag

Except command

Command except FFh

A

A

A

Y

N

N

Y

Y

N

Figure 3.2.7 Data Reception

M16C/62 Group
3

82

3.2 Developing The Boot Program

ID Check Receive Processing

ID check data is received. Transferred ID data is saved to RAM.

Figure 3.2.8 shows a processing flow.

Figure 3.2.8 ID Data Receive Process

Receive Cycle Setting Processing

Data receive cycle is set by referring to transferred serial command.

Figure 3.2.9 shows processing flow.

Figure 3.2.9 Receive Cycle Setting Processing

End

r3=a1

r3=/a1

r3=/4

r3=4

ID check receive
processing

r3=r3+1

Write to transmit buffer
register

Start one-shot timer

>300 µsec?Over

r3=ID size(a1)?

Set ID size (a1)
temporarily

Read the receive buffer
register

Reception
completed?

Y

N

Store reception data to
RAM

r3=4?

Set "ID size+4" to a1

Transfer/receive cycles
r3=0

Set time-out
processing flag

N

Reception cycle setting

Set the prescribed receive
cycle to receive cycle buffer

End

3
M16C/62 Group

83

3.2 Developing The Boot Program

Command Processing

Flash control command is written into memory by referring to received serial programmer command.

The ID check is checked as to whether it has been completed or not. (ID check completed bits:

SR10 = 1, SR11 = 1) When the ID check has been completed, decisions are made on commands such as

page read and page program, and processing branches to the process in the match commands.

When the ID check has not been completed, decisions are made on 3 types of commands such as ID

processing, and processing jumps to the process in the match commands. With mismatch commands,

processing returns to main part.

Figure 3.2.10 shows processing flow.

Figure 3.2.10 Command Process

FBh

Page readFFh

Page program
41h

Block erase20h

Erase all unlock blocksA7h

Clear status register50h

Read lock bit status71h

Lock bit program77h

Lock bit valid
7Ah

Lock bit invalid75h

70h

Read receive buffer
register

other

Y

N

Time-out processing
flag set?

Command?

NG

OK

ID check completed?
SR11=1?

Command process

ID checkF5h

Read status register

Version information
output

End

M16C/62 Group
3

84

3.2 Developing The Boot Program

Page Read

To read data from the user area in blocks of 256 bytes, read address is stored to RAM and Read Array

command (FF16) is written. The address of the read area is changed from xxx0016 to xxxFF16, and the

data following xxx0016 is transferred in succession.

Figure 3.2.11 shows processing flowchart.

Figure 3.2.11 Page Read

r3<2

r3=2

Write read array
command

End

Page read

Receive cycles r3=0

r3=r3+1

Set low-order address,
addr_l=0

Set reception address

Set transfer flag

Store reception data to
address buffer

r3=2?

Read data buffer

3
M16C/62 Group

85

3.2 Developing The Boot Program

Page Program

Data is written into the user area in blocks of 256 bytes.

Read 258 bytes data from RAM: 2 bytes of address and 256 bytes of write data received from serial

programer. Status data is read from the flash memory. The read status is checked. When it is under error

state, processing does not write but returns to the main part.

When it is not under error state, the page program command (4116) is written in the flash memory, then 256

bytes of data is written. After data has been written, the read array command (FF16) is written and processing

returns to the main part.

Figure 3.2.12 shows processing flow.

Figure 3.2.12 Page Program

r3<258

r3=r3+1

Set reception address

Read the receive buffer
register

r3=258?

Write cycles r3=0

Write the page program
command

r3=258

End

r3>=255

r3<255

Read RAM data

Write data to flash

Read array command

Read status command

Read array command

OK

ErrorStatus error?

Page program

Store the reception data
to RAM

r3=255?

Increase write address
by 2

r3 = r3 + 2

Receive cycles
r3=0

Set low-order address,
addr_l=0

M16C/62 Group
3

86

3.2 Developing The Boot Program

Block Erase

A specified block area of the flash memory is erased. However, blocks that are locked by Lock Bit Program

command cannot be erased. To erase these blocks, you need to disable the lock bit.

After confirming the two bytes of address and one byte of confirm command (D016) received from the serial

programmer and stored in RAM, write Block Erase command (2016) and confirm command (D016) to the

area specified by the received address for block erase processing.

If the received confirm command is incorrect, block erase processing cannot be performed. In this case,

write Read Array command (FF16) to the flash memory to return the processing to the main routine.

Figure 3.2.13 shows a processing flow.

Figure 3.2.13 Block Erase

Block erase

r3=r3+1

Set reception address

r3=4?

Set low-order address,
addr_l=0FEh

r3 < 4

r3 = 4

Read the receive buffer
register

Store reception data to
RAM

Confirm the
confirm

command
OK

NG

Write confirm
command

Write the block erase
command

Write read array
command

End

Receive cycles
r3=1

Initialize transfer flag

3
M16C/62 Group

87

3.2 Developing The Boot Program

Erase All Unlock Block

A specified block area of the flash memory is erased. However, blocks that are locked by Lock Bit Program

command cannot be erased. To erase these blocks, you need to disable the lock bit.

When the all erase command is received from a serial programmer, receive more 1 byte data in succession.

After the second data is checked to see if it is confirm command (D016), write Erase All Unlock command

(2016) and confirm command (D016) to the area specified by the received address for erase all unlock

block processing.

If the received confirm command is incorrect, erase all unlock block processing cannot be performed. In

this case, write Read Array command (FF16) to the flash memory to end the processing.

Figure 3.2.14 shows a processing flow.

Figure 3.2.14 Erase All Unlock Block

Erase all unlock blocks

Confirm the
confirm command

OK

NG

Read the receive
buffer register

Write confirm
command

Write the erase all
unlock block command

Write read array
command

End

Set dummy address

Initialize transfer flag

Set read address

M16C/62 Group
3

88

3.2 Developing The Boot Program

Read Status Register

Two bytes of status data indicating the flash memory's operating status is stored to RAM to transmit via

serial I/O.

Write the Read Array command (FF16) to the flash memory, then write the Read Status command (7016).

After status register reception, write the Read Array command and return to the main routine.

Figure 3.2.15 shows a processing flow.

Figure 3.2.15 Read Status Register

Read status register

Transfer/receive cycles
r3=0

Set dummy address

End

Clear timer interrupt
request flag

Read SRD

Write read array
command

Initialize transfer flag

Write read array
command

Write read status
register command

3
M16C/62 Group

89

3.2 Developing The Boot Program

Clear Status Register

Status register error information is cleared.

The Read Array command (FF16), Clear Status command (5016) and Read Array command (FF16) are

written into the flash memory in succession.

The logic sum for the status register 1 (SRD1) is obtained on #9C16 and the error flag is cleared. Processing

returns to the main part.

Figure 3.2.16 shows a processing flow.

Figure 3.2.16 Clear Status Register

Clear status register

End

Clear SRD1 error flag

Set dummy address

Write read array
command

Write clear status
register command

Write read array
command

Initialize transfer flag

M16C/62 Group
3

90

3.2 Developing The Boot Program

Read Lock Bit Status

One byte of data indicating the lock status of each individual block in the flash memory is saved via serial

I/O. Of the 1-byte data, the 6th bit indicates lock status. When "1", the block is unlocked. When "0", the

block is locked.

After receiving two byte of data indicating address, store specified address in the address buffer. At this

time, set #FE16 to the low order address.

The Read Array command (FF16) and the Read Lock Bit command (7116) are written and, there after, the

lock bit information is read from the flash memory. After the lock bit information has been read, the read

array command (FF16) is written again. Processing then returns to main part.

Figure 3.2.17 shows a processing flow.

Figure 3.2.17 Read Lock Bit Status

Read the read lock
bit data

Write the read array
command

Write the read lock bit
status command

End

r3<3

Read lock bit status

r3=r3+1

Set read address

Set low-order address,
addr_l=0FEh

Read the receive buffer
register

Store the reception data
to address buffer

r3<3?

r3=3

Transfer/receive cycles
r3=1

Set transfer flag

3
M16C/62 Group

91

3.2 Developing The Boot Program

Write the confirm
command

Write the read array
command

Write the lock bit
program command

End

NG

OK

r3<4

r3=4

Lock bit program

r3=r3+1

Transfer/receive cycles
r3=1

Confirm confirm
command

Set low-order address,
addr_l=0FEh

Read the receive buffer
register

Store reception data to
address buffer

r3=4?

Initialize transfer flag

Set read address

Lock Bit Program

Blocks in the flash memory is locked. Locked block areas cannot be erased.

After receiving two byte of data indicating address, store specified address in the address buffer. At this

time, set #FE16 to the low order address.

If the received confirm command is incorrect, lock bit program processing cannot be performed. If correct,

for lock bit program processing, write the Lock Bit Program command (7716) to the flash memory and the

Confirm command (D016) in succession. Write Read Array command (FF16) and processing returns to the

main part.

Figure 3.2.18 shows a processing flow.

Figure 3.2.18 Lock Bit Program

M16C/62 Group
3

92

3.2 Developing The Boot Program

Lock Bit Enable/Disable

Enables/disables the lock bit function of flash memory. The lock bit disable command cancels the lock on

all blocks.

To enable the lock bit, "0" is written for the lock bit cancel bit. To disable the lock bit, "0" followed by "1" is

written for the lock bit cancel bit.

Figure 3.2.19 shows a processing flow.

Figure 3.2.19 Lock Bit Enable/Disable

Lock bit valid

End

Clear the lock bit
cancel bit

Lock bit invalid

Set the lock bit
cancel bit to "1"

End

Clear the lock bit
cancel bit

Initialize transfer flag

Initialize transfer flag

3
M16C/62 Group

93

3.2 Developing The Boot Program

OK

Blank flag?Blank

Not blank

Check address & ID
size

Error

Read ID data from flash

ID check

r3=r3+1

r3=8?

ID check cycles r3=1

ID check completed
SR11=1, SR10=1

End

OK

Error

r3=8

r3<8

ID check

Initialize transfer flag

ID check error
SR11=0, SR10=1

ID Check

The ID data stored in the flash memory is compared with the data received by serial I/O. This process

judges whether the flash memory is blank or not. When blank, the ID check is ended and processing

returns to the main part. When something is written in the ROM, the received ID address, the ID data size

and ID data contents are checked. When mismatch, ID check error is generated (SR10 = 1, SR11 = 0) and

processing returns to the main part. When match, the ID check is ended (SR10 = 1, SR11 = 1) and

processing returns to the main part.

Figure 3.2.20 shows a processing flow.

Figure 3.2.20 ID Check

M16C/62 Group
3

94

3.2 Developing The Boot Program

Initialize transfer flag

Timer initialization

Command?

Is timer-out
processing flag

set?

Read receive
command

Is transfer flag set?

Data transfer

N

Y

FBh

Page read outputFFh

Read status register output70h

Read lock bit status output71h

other

End

Version information output

N

Y

Version Information Output

Transfer flag is set to transfer the version information of the boot program via serial I/O.

Figure 3.2.21 shows a processing flow.

Figure 3.2.21 Version Information Output

Data Transfer Processing

The result of process after receiving a control command from serial programer is transfered via serial I/O.

When transfer flag is 0, or time-out flag is 1, the processing returns to the main part. Otherwise next

process is executed. Command buffer is read, the serial command is compared, and processing branches

to the process in the match commands. After processing, initialize the transfer flag and return to main part.

With mismatch command, initialize the transfer flag and return to main part.

Figure 3.2.22 shows a processing flow.

Figure 3.2.22 Data Transfer

Version information
output

End

Set transfer flag

3
M16C/62 Group

95

3.2 Developing The Boot Program

Page Read Transfer Processing

Data from the user area in blocks of 256 bytes is read and the read data is sent via serial I/O.

Data is read from the flash memory and set to transfer buffer register. The timer used to check data

reception time-out is started. When data is not received within 300 msec, a time-out error is judged, time-

out processing flag is set and processing jumps to data transfer processing. After 256 bytes of data is sent,

processing jumps to data transfer processing.

Figure 3.2.23 shows a processing flow.

Figure 3.2.23 Page Read Transfer Processing

End
r3=256

r3=/256

Page read

r3=r3+1

Transfer/receive cycles
r3=0

Write to transmit buffer
register

Start one-shot timer

>300 µsec?Over

Read data

Read the receive buffer
register

Reception
completed?

Y

N
Set time-out

processing flag

Address = address + 1

r3=256?

M16C/62 Group
3

96

3.2 Developing The Boot Program

Read Status Register Transfer Processing

The two-byte status data (SRD: status register and SRD1: status register 1) that indicates flash memory

operating status is sent via serial I/O.

The SRD is read from flash memory and written into transmit buffer register. The timer used to check data

reception time-out is started. When data is not received within 300 msec, a time-out error is judged, time-

out processing flag is set and processing jumps to data transfer processing. After data reception is

completed, receive buffer register is read.

The SRD1 is read from flash memory and written into transmit buffer register. The timer used to check

data reception time-out is started. When data is not received within 300 msec, a time-out error is judged,

time-out processing flag is set and processing jumps to data transfer processing. After data reception is

completed, reception buffer register is read and processing returns to data transfer processing.

Figure 3.2.24 shows a processing flow.

Figure 3.2.24 Read Status Register Transfer Processing

Read status register
output

Transfer/receive cycles
r3=0

End

r3<2

r3=2

r3=r3+1

Write to transmit buffer
register

Start one-shot timer

>300 µsec?Over

Read the receive buffer
register

Reception
completed?

Y

N
Set time-out

processing flag

Read SRD1

r3=2?

Clear timer interrupt
request flag

3
M16C/62 Group

97

3.2 Developing The Boot Program

Read Lock Bit Status Transfer Processing

The lock bit status that set in command processing is sent via serial I/O.

The lock bit status data that set in command processing is read from RAM and written into transmit buffer

register. The timer used to check data reception time-out is started. When data is not received within 300

msec, a time-out error is judged, time-out processing flag is set and processing jumps to data transfer

processing. After data reception is completed, processing jumps to data transfer processing.

Figure 3.2.25 shows a processing flow.

Figure 3.2.25 Read Lock Bit Data Transfer Processing

End

Read lock bit status
output

Write to transmit buffer
register

Start one-shot timer

>300 µsec?
Over

Read the receive buffer
register

Reception
completed?

Y

N
Jump to time-out

processing

M16C/62 Group
3

98

3.2 Developing The Boot Program

Version Information Output Processing

The version information of boot program is sent via serial I/O.

Version information is read and written in the transmit buffer register.

The timer used to check data reception time-out is started. When data is not received within 300 msec, a

time-out error is judged, time-out processing flag is set and processing jumps to data transfer processing.

After all version information is send, processing jumps to data transfer processing.

Figure 3.2.26 shows a processing flow.

Figure 3.2.26 Version Information Output Processing

Version information
output

Transfer/receive cycles
a0=0

End

a0<8

a0=8

a0=a0+1

Write version information
to transfer buffer register

Start one-shot timer

>300 µsec?Over

Read the receive buffer
register

Reception
completed?

Y

N
Set time-out

processing flag

a0=8?

3
M16C/62 Group

99

3.2 Developing The Boot Program

Time-Out Processing

When time-out flag is set, serial I/O and time-out flag are initialized.

Figure 3.2.27 shows a processing flow.

Figure 3.2.27 Time-Out Processing

Command Write

Commands are written in the flash memory. Commands are accepted when the flash memory is in the

ready state (RY/BY signal status flag [bit 0 in address 03B716 of the flash memory

control register] is "1").

Figure 3.2.28 shows a processing flow.

Figure 3.2.28 Command Write

Time-out process

Time-out flag
(SRD1)=1

Initial setting 2
UART1 setting

End

Is serial initialization
flag set?

Y

NIs time-out
processing flag set?

Y

Initialize time-out
processing flag

Initialize serial I/O
initiallization flag

N

Write command

RY/BY=1?

Y

N

Set address

Write command

RTS

M16C/62 Group
3

100

3.2 Developing The Boot Program

Status Register (SRD)

The status register indicates operating status of the flash memory and status such as whether an erase

operation or a program ended successfully or in error. It can be read by writing the Read Status Register

command (7016). Also, the status register is cleared by writing the Clear Status Register command (5016).

Table 3.2.2 shows the definition of each status register bit. After clearing the reset, the status register

outputs "8016".

Table 3.2.2 Status Register (SRD)

Write State Machine (WSM) Status (SR7)
The write state machine (WSM) status indicates the operating status of the flash memory. When power is

turned on, "1" (ready) is set for it. The bit is set to "0" (busy) during an auto write or auto erase operation,

but it is set back to "1" when the operation ends.

Erase Status (SR5)
The erase status reports the operating status of the auto erase operation. If an erase error occurs, it is set

to "1". When the erase status is cleared, it is set to "0".

Program Status (SR4)
The program status reports the operating status of the auto write operation. If a write error occurs, it is set

to "1". When the program status is cleared, it is set to "0".

Block Status After Program (SR3)
If excessive data is written (phenomenon whereby the memory cell becomes depressed which results in

data not being read correctly), "1" is set for the block status after-program at the end of the page write

operation. In other words, when writing ends successfully, "8016" is output; when writing fails, "9016" is

output; and when excessive data is written, "8816" is output.

If "1" is written for any of the SR5, SR4 or SR3 bits, the Page Program, Block Erase, Erase All Unlocked

Blocks and Lock Bit Program commands are not accepted. Before executing these commands, execute

the Clear Status Register command (5016) and clear the status register.

Each bit of
SRD

SR4 (bit4)

SR5 (bit5)

SR7 (bit7)

SR6 (bit6)

Status name
Definition

SR1 (bit1)

SR2 (bit2)

SR3 (bit3)

SR0 (bit0)

"1" "0"

Program status

Erase status

Write state machine (WSM) status

Reserved

Reserved

Reserved

Block status after program

Reserved

Ready Busy

Terminated in error

Terminated in error

Terminated in error

Terminated normally

Terminated normally

Terminated normally

-

-

-

-

-

-

-

-

3
M16C/62 Group

101

3.2 Developing The Boot Program

Each bit of
SRD1

SR12 (bit4)

SR13 (bit5)

SR15 (bit7)

SR14 (bit6)

Status name
Definition

SR9 (bit1)

SR10 (bit2)
SR11 (bit3)

SR8 (bit0)

"1" "0"

Checksum match bit

Reserved

Boot update completed bit

Reserved

Data receive time out

ID check completed bits

Reserved

Update completed Not update

-

Match

-

Mismatch

-

Time out

-

Normal operation

-

-

00 Not verified
01 Verification mismatch
10 Reserved
11 Verified

Status Register 1 (SRD1)

Status register 1 indicates the status of serial communications, results from ID checks and results from

check sum comparisons. It can be read after the SRD by writing the Read Status Register command

(7016). Also, status register 1 is cleared by writing the Clear Status Register command (5016).

Table 3.2.3 gives the definition of each status register 1 bit. "0016" is output when power is turned ON and

the flag status is maintained even after the reset.

Table 3.2.3 Status Register 1 (SRD1)

Boot Update Completed Bit (SR15)
This flag indicates whether the control program was downloaded to the RAM or not, using the download

function.

Checksum Match Bit (SR12)
This flag indicates whether the check sum matches or not when a program, is downloaded for execution

using the download function.

ID Check Completed Bits (SR11 and SR10)
These flags indicate the result of ID checks. Some commands cannot be accepted without an ID check.

Data Reception Time Out (SR9)
This flag indicates when a time out error is generated during data reception. If this flag is attached during

data reception, the received data is discarded and the microcomputer returns to the command wait state.

M16C/62 Group
3

102

3.3 Sample List

;;***
;* System Name : Sample Program for M16C/62 Flash *
;* File Name : M624SAMP.a30 *
;* Version : 1.00 *
;* Original Ver : 2.02 *
;* MCU : M30624FG(L)FP/GP *
;* : M30625FG(L)GP *
;* Xin : 2MHz - 16MHz (for UART mode) *
;* Assembler : AS30 ver 3.00 *
;* Linker : LN30 ver 3.00 *
;* Programmer : T.Sawa *
;*--*
;* Copyright,1999,2000 MITSUBISHI ELECTRIC CORPORATION *
;* AND MITSUBISHI SEMICONDUCTOR SYSTEMS CORPORATION *
;*--*
;* History : 1999. 2.26 Ver.0.00 (1.08) *
;* : 1998. 4.23 Ver.0.00 (1.09) *
;* : 1999. 8.18 Ver.0.01 (2.02) *
;* : 1999.10.28 Ver.1.00 (2.02) *
;* : 2000. 2.24 Ver.1.01 (2.03) *
;**
;++
;+ Include file +
;++
 .list off
 .include sfr62.inc
 .include flash624.inc
 .list on

;
;++
;+ Version table +
;++
;
 .section rom,code
 .org Version
 .byte 'VER.1.01(VER.2.03)'
;
;++
;+ Program section start +
;++
 .section prog,code
 .org Boot_TOP
 .sb SB_base
 .sbsym SRD
 .sbsym SRD1
 .sbsym ver
 .sbsym SF
 .sbsym addr_l
 .sbsym addr_m
 .sbsym addr_h

3.3 Sample List

This section shows a sample list of the program described in Section 3.2.

In addition to the processing explained in Section 3.2, the sample shown below includes the programmer

command processing used by a synchronous serial programmer and the command processing used by an

asynchronous serial communication programmer (M16C Flash Start).

Source

3
M16C/62 Group

103

3.3 Sample List

;==
;+ Boot program start +
;==
Reset:
;--------------------------------------
;+ Initialize_1 +
;--------------------------------------
 ldc #Istack,ISP ; stack pointer set
 ldc #SB_base,SB ; SB register set

 bset busy
 bset busy_d ; BUSY "H"output
 bclr s_mode_d ; Serial mode select input
;
;---------------------------------------
;+ Hot start & RAM clear +
;---------------------------------------
;----- RAM Check -----
RAM_Check:
 mov.b #0,r1l
 cmp.b SRD1,SRD1_bak ; check1
 jeq RAM_Check2
 cmp.b SRD1_bak,SRD1_bak+2 ; check2
 jeq RAM_Check3
 cmp.b SRD1,SRD1_bak+2 ;check3
 jne CRC_Check
;
RAM_Check2:
 mov.b SRD1,r1l ; r1l <- SRD1
 jmp CRC_Check
;
RAM_Check3:
 mov.b SRD1_bak,r1l ; r1l <- SRD1_bak
 jmp CRC_Check
;
;---------------------------------------
;+ CRC Check +
;---------------------------------------
;;----- CRC Check -----
CRC_Check:
 jsr SUB_CRC ; Ram data CRC
;
 mov.b Ram_progTOP[a0],r0l ; old CRC code
 mov.b R0L,crcin
 mov.b Ram_progTOP+1[a0],r0l
 mov.b r0l,crcin ; CRC input data
 mov.w crcd,r0
 cmp.w #0,r0
 jne RAM_clear ; jump RAM clear
;
;--------------------------------------
;+ UPDATE Check +
;--------------------------------------
;
 bset ram_check ; RAM Check OK flag set
 jmp CPU_set
;
RAM_clear:
 mov.w #0,r0
 mov.w #(Ram_END+1-Ram_TOP)/2,r3
 mov.w #Ram_TOP,a1
 sstr.w
 and.b #0ch,r1l

M16C/62 Group
3

104

3.3 Sample List

;
;--------------------------------------
;+ Processor mode register +
;+ & System clock control register +
;--------------------------------------
CPU_set:
 mov.b #3,prcr ; Protect off
 mov.w #8000h,pm0 ; 1 wait
 mov.w #6008h,cm0 ; f2
 mov.b #0,prcr ; Protect on
;
Reload_chack:
 btst sr15 ; Update ?
 jc Transfer_end
 btst ram_check ; Reload ?
 jz Version_inf ; Yes
;
;--------------------------------------
;+ SI/O Mode Check +
;--------------------------------------
;
 btst s_mode ; SI/O Mode old = new ?
 bxor old_mode
 jnc Transfer_end ; Yes, jump Transfer_end
;
;--------------------------------------
;+ Version information +
;--------------------------------------
Version_inf:
 bclr dwn_flg
 mov.w #0,a0 ; a0=0
Ver_loop:
 lde.w Version+9[a0],ver[a0] ; Version data store
 add.w #2,a0 ; address increment
 cmp.w #8,a0 ; a0=8 ?
 jltu Ver_loop ; jump Ver_loop at a0<8
;
;--------------------------------------
;+ Program_transfer +
;--------------------------------------
 btst s_mode ; Serial I/O mode select
 jz Transfmcr2 ; UART mode
;
Transfmcr1:
 bset old_mode ; clock synchronous mode
 mov.w #(Trans_TOP1 & 0ffffh),a0 ; Transfer source address (Low)
 mov.b #(Trans_TOP1 >> 16),r1h ; Transfer source address (high)
 mov.w #Ram_progTOP,a1 ; Transfer destination address
 mov.w #(Trans_END1 - Trans_TOP1)/2,r3 ; Transfer number
 smovf.w ; String move
 jmp Transfer_end0
;
Transfmcr2:
 bclr old_mode ; UART mode
 mov.w #(Trans_TOP2 & 0ffffh),a0 ; Transfer source address (Low)
 mov.b #(Trans_TOP2 >> 16),r1h ; Transfer source address (high)
 mov.w #Ram_progTOP,a1 ; Transfer destination address
 mov.w #(Trans_END2 - Trans_TOP2)/2,r3 ; Transfer number
 smovf.w ; String move
;
Transfer_end0:
 jsr SUB_CRC ; Transfer data CRC
 mov.w crcd,r0 ; CRC code --> r0
 mov.w r0,Ram_progTOP[a0]

3
M16C/62 Group

105

3.3 Sample List

;
Transfer_end:
;--------------------------------------
;+ Jump to RAM +
;--------------------------------------
 jmp Ram_progTOP
;
;++
;+ Subroutine : SUB_CRC +
;++
SUB_CRC:
 mov.w #0FFFFh,crcd ; CRC data register set
 mov.w #0,a0
?:
 mov.b Ram_progTOP[a0],r0l ; Ram data --> rol
 mov.b r0l,crcin ; CRC input register
 inc.w a0
 cmp.w #Ram_progEND-Ram_progTOP-2,a0
 jne ?-
 rts
;
;--------------------------------------
;+ Download program +
;--------------------------------------
 .org Download_program
;
 jsr set_TA0
;
 mov.w #0,r3 ; receive number (r3=0)
 mov.w #0,a1 ; sumcheck buffer
 bclr sr15 ; Download flag reset
 bclr sr12 ; Check sum flag reset
Download_loop:
 jsr SIO_D_rcv
 btst tout_flg ; time out error ?
 jc Download_err ; jump Download_err at time out
 mov.w rcv_d,r0 ; receive data read --> r0
 add.w #1,r3 ; r3 +1 increment
 cmp.w #3,r3 ; r3=3 ?
 jgtu Version_store ; jump Version_store at r3>3
 mov.w r3,a0 ; r3 --> a0
 mov.b r0l,addr_l[a0] ; Store program size
 mov.w #0,a0 ; a0 initialize
 cmp.w #3,r3 ; r3 = 3?
 jne Download_loop ; No, jump Download_loop
 cmp.w #0,addr_m ; program size = 0 ?
 jz Version_inf ; jump to Version_inf at program size error
 jmp Download_loop ; jump Download_loop
Version_store:
 cmp.w #11,r3 ; r3=11 ?
 jgtu Program_store ; jump Program_store at r3 >11
 mov.b r0l,ver[a0] ; version data store to RAM
 jmp Program_store_1
;
Program_store:
 mov.b r0l,Ram_progTOP-8[a0] ; program data store to RAM
Program_store_1:
 add.b r0l,a1 ; add data to a1
 add.w #1,a0 ; a0(downloa0 offset) +1 increment
 cmp.w addr_m,a0 ; a0 = program size (addr_m,h)?
 jltu Download_loop ; jump Download_loop at a0< program size
 jmp Download_CRC ; jump Download_CRC
;
Download_err:

M16C/62 Group
3

106

3.3 Sample List

 bset busy ; busy "H"
 bset busy_d ; busy output
 mov.b #0,u1c1 ; transmit/receive disable
 mov.b #0,u1mr ; u1mr reset
 jmp Version_inf
;
;--------------------------------------
;+ Download program - UART mode - +
;--------------------------------------
 .org U_Download_program
;
 mov.w #0,r3 ; receive number (r3=0)
 mov.w #0,a1 ; sumcheck buffer
 bclr sr15 ; Download flag reset
 bclr sr12 ; Check sum flag reset
U_Download_loop:
 jsr U_SIO_D_rcv
 mov.w rcv_d,r0
 add.w #1,r3 ; r3 +1 increment
 cmp.w #3,r3 ; r3=3 ?
 jgtu U_Version_store ; jump U_Version_store at r3>3
 mov.w r3,a0 ; r3 --> a0
 mov.b r0l,addr_l[a0] ; Store program size
 mov.w #0,a0 ; a0 initialize
 cmp.w #3,r3 ; r3 = 3?
 jne U_Download_loop ; No, jump U_Download_loop
 cmp.w #0,addr_m ; program size = 0?
 jz Version_inf ; jump to Version_inf at program size error
 jmp U_Download_loop
U_Version_store:
 cmp.w #11,r3 ; r3=11 ?
 jgtu U_Program_store ; jump U_Program_store at r3 >11
 mov.b r0l,ver[a0] ; version data store to RAM
 jmp U_Program_store_1
;
U_Program_store:
 mov.b r0l,Ram_progTOP-8[a0] ; program data store to RAM
U_Program_store_1:
 add.b r0l,a1 ; add data to a1
 add.w #1,a0 ; a0(downloa0 offset) +1 increment
 cmp.w addr_m,a0 ; a0 = program size (addr_m,h)?
 jltu U_Download_loop ; jump Download_loop at a0< program size
;

Download_CRC:
 mov.w a1,r0
 cmp.b data,r0l ; compare check sum
 bmeq sr12 ; check sum flag set at data=r0l
 jne Version_inf ; jump Version_inf at check sum error
 bset sr15 ; Download flag set
;
 jsr SUB_CRC ; Download data CRC
 mov.w crcd,r0
 mov.w r0,Ram_progTOP[a0]
 jmp Ram_progTOP ; jump Ram_progTOP

;++
;+ Subroutine : a synchronized signal I/O receive dwn+
;++
SIO_D_rcv:
 mov.b r1l,u1tb
 bset ta0os ; ta0 start
?:
 btst ir_ta0ic ; time out error ?

3
M16C/62 Group

107

3.3 Sample List

 bmc sr9 ; time out flag set
 jc SIO_D_rcv_err ; jump SIO_D_rcv_err
 btst ri_u1c1 ; receive complete ?
 jnc ?-
 mov.w u1rb,rcv_d ; receive data read --> r0
SIO_D_rcv_end:
 rts

SIO_D_rcv_err:
 bset tout_flg
 jmp SIO_D_rcv_end
;
;++
;+ Subroutine : UART receive dwn +
;++
U_SIO_D_rcv:
 btst ri_u1c1 ; receive complete ?
 jnc U_SIO_D_rcv
 mov.w u1rb,rcv_d ; receive data read --> r0
 rts

;==
;+ Transfer Program -- clock synchronous serial I/O mode +
;+ (1) Main flow +
;+ (2) Flash control program +
;+ Read,Program,Erase,All_erase,etc. +
;+ (3) Other program +
;+ ID_check,Download,Version_output etc. +
;==
 .section dump,code
 .org Trans_TOP1
;++
;+ Main flow - clock synchronous serial I/O mode - +
;++
Main:
 jsr Initialize_2 ; clock synchronous serial I/O mode
 mov.b #0,data
Loop_main:
 mov.b SRD1,SRD1_bak ; SRD1 back up
 mov.b SRD1,SRD1_bak+2
;
 jsr time_init
 jsr SIO_rcv_first_data
 jsr Flash_func
 jsr SIO_send_data
 jsr Time_out
 jmp Loop_main
;
;--------------------------------------
;+ initialize SIO +
;--------------------------------------
time_init:
 bclr tout_flg
 bclr tint_flg
 bset ta0os
 mov.b #0,ta0ic
Loop_main1:
 btst ir_ta0ic ; 300 usec ?
 jz Loop_main1
 bset rcv_flg
 rts
;
;--------------------------------------

M16C/62 Group
3

108

3.3 Sample List

;+ SI/O time out +
;--------------------------------------
Time_out:
 btst tint_flg
 jc Time_out_init
 btst tout_flg
 jnc Time_out_end
 bset sr9 ; SRD1 time out flag set
 bclr tout_flg
Time_out_init:
 bclr tint_flg
 jsr Initialize_21 ; command error,UART1 reset
Time_out_end:
 rts
;
;--------------------------------------
;+ SI/O recieve data +
;--------------------------------------
SIO_rcv_first_data:
 mov.b #0,cmd_d
 bclr cmd_flg
 btst rcv_flg
 jnc SIO_rcv_end
 btst tout_flg
 jc SIO_rcv_end
 mov.b #0,ta0ic
 mov.w #0,r2
;
SIO_rcv_first_data_loop:
 mov.b #0ffh,r1l ; #ffh --> r1l (transfer data)
 mov.b r1l,u1tb
 btst cmd_flg
 jc SIO_rcv_first_data_loop1
 bclr busy_d ; busy input
?: btst busy ; Reception start?
 jz ?-
SIO_rcv_first_data_loop1:
 bset ta0os ; 300 usec timer start
;
SIO_rcv_first_data_loop2:
 btst ir_ta0ic ; 300 usec ?
 jnc ?+
 bset tout_flg ; time out
?: btst tout_flg
 jc SIO_rcv_end
 btst ri_u1c1 ; receive complete ?
 jz SIO_rcv_first_data_loop2
 mov.w u1rb,r0 ; receive data --> r0
 mov.w r2,a0
 mov.b r0l,data[a0]
 add.w #1,r2
;
 btst cmd_flg
 jc SIO_loop_chk
 bset cmd_flg
 mov.b r0l,cmd_d
;
 mov.w #15,a0
SIO_rcv_command_chk:
 lde.b Index_tbl-Trans_TOP1+Ram_progTOP-1[a0],r0h
 cmp.b r0h,r0l
 jeq SIO_cmd_jmp_2
 sbjnz.w #1,a0,SIO_rcv_command_chk
 jmp SIO_rcv_end_1

3
M16C/62 Group

109

3.3 Sample List

;
SIO_cmd_jmp_2:
 shl.w #1,a0
 lde.w jmp_tbl_2-Trans_TOP1+Ram_progTOP-2[a0],r0
SIO_cmd_jmp_2_1:
 jmpi.w r0
;
SIO_2:
 mov.w #2,loop_cnt
 jmp SIO_loop_chk
SIO_259:
 mov.w #259,loop_cnt
 jmp SIO_loop_chk
SIO_4:
 mov.w #4,loop_cnt
 jmp SIO_loop_chk
SIO_3:
 mov.w #3,loop_cnt
 jmp SIO_loop_chk
;
;--------------------------------------
;+ ID check SI/O +
;--------------------------------------
SIO_rcv_ID_check:
 mov.w #0,r3 ; receive number (r3=0)
 mov.w #0ffh,a1 ; ID size (dummy data = ffh)
 mov.b #0,ta0ic
SIO_ID_data_store:
 cmp.w a1,r3 ; r3=a1(ID size)
 jeq SIO_ID_address_check; jump ID_address_check at r3=ID size
 mov.b r1l,u1tb ; data transfer
 bset ta0os ; ta0 start
SIO_ID_data_loop:
 btst ir_ta0ic ; 300 usec ?
 jnc ?+
 bset tout_flg ; time out
?: btst tout_flg
 jc SIO_ID_address_check
 btst ri_u1c1 ; receive complete ?
 jnc SIO_ID_data_loop
 mov.w u1rb,r0 ; receive data read --> r0
 mov.w r3,a0 ; r3 --> a0
 mov.b r0l,addr_l[a0] ; Store address
 add.w #1,r3 ; r3 +1 increment
 cmp.w #4,r3 ; r3=4 ?
 jne SIO_ID_data_store ; jump ID_data_store at r3 not= 4
 mov.b data,a1 ; ID size --> a1
 add.w #4,a1 ; a1=a1+4
 jmp SIO_ID_data_store ; jump ID_data_store
SIO_ID_address_check:
 jmp SIO_rcv_end
;
SIO_rcv_end_1:
 bset tint_flg
 jmp SIO_rcv_end

SIO_loop_chk:
 cmp.w loop_cnt,r2
 jltu SIO_rcv_first_data_loop

SIO_rcv_end:
 bclr cmd_flg
 bclr rcv_flg
 rts

M16C/62 Group
3

110

3.3 Sample List

;
;--------------------------------------
;+ SIO_send data +
;--------------------------------------
SIO_send_data:
 jsr set_TA0
 btst send_flg
 jnc SIO_send_data_end
 btst tout_flg
 jc SIO_send_data_end
 mov.b cmd_d,r1h
;
 cmp.b #0ffh,r1h ; Read(ffh)
 jeq Read_data
 cmp.b #070h,r1h ; Read SRD (70h)
 jeq Read_SRD_data
 cmp.b #071h,r1h ; Read LB (71h)
 jeq Read_LB_data
 cmp.b #0fbh,r1h ; Version_output(fbh)
 jeq Ver_output_data
 cmp.b #0fdh,r1h ; Read_check(fdh)
 jeq Read_check_data
 cmp.b #0fch,r1h ; Boot_check(fch)
 jeq Boot_data
 jmp SIO_send_func
;
Read_check_data:
 mov.w #0,r3
 mov.w sum,r1
Read_check_data_loop:
 mov.b r1l,u1tb
 bset ta0os ; ta0 start
Read_check_data_check:
 btst ir_ta0ic
 jnc ?+
 bset tout_flg
?:
 btst tout_flg
 jc SIO_send_data_end
 btst ri_u1c1 ; receive complete ?
 jnc Read_check_data_check
 mov.w u1rb,r0 ; receive data read --> r0
 mov.b r1h,r1l
 add.w #1,r3
 cmp.w #2,r3
 jltu Read_check_data_loop
Read_check_data_end:
 mov.w #0,sum ; reset
 jmp SIO_send_data_end
;
Read_data:
 mov.w #0,r3
Read_data_loop:
 lde.b [a1a0],r1l ; Flash memory read
 mov.b r1l,u1tb
 bset ta0os ; ta0 start
Read_data_chk:
 btst ir_ta0ic ; 300 usec ?
 jnc ?+
 bset tout_flg ; time out
?:
 btst tout_flg
 jc Read_data_end
 btst ri_u1c1 ; receive complete ?

3
M16C/62 Group

111

3.3 Sample List

 jnc Read_data_chk
 mov.w u1rb,r0 ; receive data read --> r0
 add.w #1,r3
 add.w #1,a0
 cmp.w #256,r3 ; r3 = 256 ?
 jne Read_data_loop
Read_data_end:
 jmp SIO_send_data_end
;
Ver_output_data:
 mov.w #0,a0 ; Version address offset (a0=0)
Ver_output_data_loop:
 mov.b ver[a0],u1tb ;send_data set
 bset ta0os ; ta0 start
Ver_output_data_check:
 btst ir_ta0ic ; 300 usec ?
 jnc ?+
 bset tout_flg ; time out
?:
 btst tout_flg
 jc Ver_output_data_end
 btst ri_u1c1 ; receive complete ?
 jnc Ver_output_data_check
 mov.w u1rb,r0 ; receive data read --> r0
 add.w #1,a0
 cmp.w #8,a0 ; a0 = 8 ?
 jne Ver_output_data_loop
Ver_output_data_end:
 jmp SIO_send_data_end
;
Read_SRD_data:
 mov.w #0,r3
Read_SRD_data_loop:
 mov.b r1l,u1tb ; data transfer
 bset ta0os ; ta0 start ; test
 bclr tout_flg ; clear time out
 mov.b #0,ta0ic ; clear time out
Read_SRD_data_check:
 btst ir_ta0ic ; 300 usec ?
 jnc ?+
 bset tout_flg ; time out
?: btst tout_flg
 jc Read_SRD_data_end
 btst ri_u1c1 ; receive complete ?
 jnc Read_SRD_data_check
 mov.w u1rb,r0 ; receive data read --> r0
 mov.b SRD1,r1l ; SRD1 data --> r1l
 add.w #1,r3
 cmp.w #2,r3 ; r3 = 2 ?
 jltu Read_SRD_data_loop ; jump Read_SRD_loop at r3<2
Read_SRD_data_end:
 jmp SIO_send_data_end
;
Read_LB_data:
Read_LB_data_loop:
 mov.b r1l,u1tb ; data transfer
 bset ta0os ; ta0 start
Read_LB_data_check:
 btst ir_ta0ic ; 300 usec ?
 jnc ?+
 bset tout_flg ; time out
?:
 btst tout_flg
 jc Read_LB_data_end

M16C/62 Group
3

112

3.3 Sample List

 btst ri_u1c1 ; receive complete ?
 jnc Read_LB_data_check
 mov.w u1rb,r0 ; receive data read --> r0
Read_LB_data_end:
 jmp SIO_send_data_end
;
Boot_data:
 bclr fmcr5
 mov.w addr_l,a0
 mov.b addr_h,a1
 mov.w #0,r3
Boot_data_loop:
 lde.b [a1a0],r1l ; Flash memory read
 mov.b r1l,u1tb
 bset ta0os ; ta0 start
Boot_data_chk:
 btst ir_ta0ic ; 300 usec ?
 jnc ?+
 bset tout_flg ; time out
?:
 btst tout_flg
 jc Boot_data_end
 btst ri_u1c1 ; receive complete ?
 jnc Boot_data_chk
 mov.w u1rb,r0 ; receive data read --> r0
 add.w #1,r3
 add.w #1,a0
 cmp.w #256,r3 ; r3 = 256 ?
 jne Boot_data_loop
Boot_data_end:
 bset fmcr5
 jmp SIO_send_data_end
;
SIO_send_func:
 mov.w start_cnt,r3
SIO_send_data_loop:
 mov.w r3,a0
 mov.b data[a0],r1l
 mov.b r1l,u1tb ; data transfer
 bset ta0os ; ta0 start
SIO_send_chk:
 btst ir_ta0ic ; 300 usec ?
 jnc ?+
 bset tout_flg ; time out
?: btst tout_flg
 jc SIO_send_data_end
 btst ri_u1c1 ; receive complete ?
 jnc SIO_send_chk
 mov.w u1rb,r0 ; receive data read --> r0
 add.w #1,r3
 cmp.w send_cnt,r3 ; r3 = send_cnt ?
 jne SIO_send_data_loop
 mov.w r3,r0
SIO_send_data_end:
 bclr send_flg
 rts
;
;++
;+ Subroutine : Time_over_flg +
;++
Time_over_flg:
 bset tout_flg
 rts

3
M16C/62 Group

113

3.3 Sample List

;++
;+ jump table for Flash_func +
;++
jmp_tbl:
 .word Read - cmd_jmp
 .word Program - cmd_jmp
 .word Erase - cmd_jmp
 .word All_erase - cmd_jmp
 .word Clear_SRD - cmd_jmp
 .word Read_LB - cmd_jmp
 .word Program_LB - cmd_jmp
 .word LB_enable - cmd_jmp
 .word LB_disable - cmd_jmp
 .word Download - cmd_jmp
 .word Boot_output - cmd_jmp
 .word Read_check - cmd_jmp

;++
;+ jump table for SIO_rcv_first_data +
;++
jmp_tbl_2:
 .word SIO_3 - SIO_cmd_jmp_2_1 ; Read
 .word SIO_259 - SIO_cmd_jmp_2_1 ; Program
 .word SIO_4 - SIO_cmd_jmp_2_1 ; erase
 .word SIO_2 - SIO_cmd_jmp_2_1 ; All erase
 .word SIO_rcv_end - SIO_cmd_jmp_2_1 ; Clear SRD
 .word SIO_3 - SIO_cmd_jmp_2_1 ; Read LB
 .word SIO_4 - SIO_cmd_jmp_2_1 ; LB Program
 .word SIO_rcv_end - SIO_cmd_jmp_2_1 ; LB enable
 .word SIO_rcv_end - SIO_cmd_jmp_2_1 ; LB disable
 .word SIO_rcv_end - SIO_cmd_jmp_2_1 ; Download
 .word SIO_3 - SIO_cmd_jmp_2_1 ; Boot output
 .word SIO_rcv_end - SIO_cmd_jmp_2_1 ; Read check
 .word SIO_rcv_end - SIO_cmd_jmp_2_1 ; Read SRD
 .word SIO_rcv_ID_check - SIO_cmd_jmp_2_1 ; ID check
 .word SIO_rcv_end - SIO_cmd_jmp_2_1 ; Version out
;
;++
;+ serch table for Flash_func,SIO_rcv_first_data +
;++
Index_tbl:
 .byte 0ffh ; Read(ffh)
 .byte 041h ; Program(41h)
 .byte 020h ; Erase(20h)
 .byte 0a7h ; All_erase(a7h)
 .byte 050h ; Clear SRD(50h)
 .byte 071h ; Read LBS(71h)
 .byte 077h ; LB program(77h)
 .byte 07ah ; LB enable (7ah)
 .byte 075h ; LB disable(75h)
 .byte 0fah ; Download (fah)
 .byte 0fch ; Boot output(fch)
 .byte 0fdh ; Read check(fdh)
 .byte 070h ; Read SRD(70h)
 .byte 0f5h ; ID check(f5h)
 .byte 0fbh ; Version output(fbh)
;
;++
;+ Subroutine : Initialize_2 +
;++
Initialize_2:
;--------------------------------------
;+ Flash mode set +

M16C/62 Group
3

114

3.3 Sample List

;--------------------------------------
;
 bset fmcr5 ; User ROM select
 bclr fmcr1 ; Flash entry bit clear
 bset fmcr1 ; Flash entry bit set (E/W mode)
;
;--------------------------------------
;+ Blank check +
;--------------------------------------
 lde.w 0ffffch,r0 ; Reset vector read
 lde.w 0ffffeh,r1 ; Reset vector read
 and.w r1,r0 ; r0 & r1
 cmp.w #0ffffh,r0 ; r0=ffffh ?
 jne blank_end
 bset sr10 ; check complete at r0=ffffh
 bset sr11
 bset blank ; blank flag set
blank_end:
;--------------------------------------
;+ UART1 +
;--------------------------------------
Initialize_21:
;----- UART1 transmit/receive mode register
;
 bset busy ; busy "H"
 bset busy_d ; busy output
 mov.b #0,u1c1 ; transmit/receive disable
 mov.b #0,u1mr ; u1mr reset
;
 mov.b #00001001b,u1mr
; |||||+++------- clock synchronous SI/O
; ||||+---------- external clock
; ++++----------- fixed
;
;----- UART1 transmit/receive control register 0
;
 mov.b #00000100b,u1c0
; |||| |++------ f1 select
; |||| +-------- RTS select
; |||+---------- CTS/RTS enabled
; ||+----------- CMOS output(TxD)
; |+------------ falling edge select
; +------------- LSB first
;
;----- UART transmit/receive control register 2
;
 mov.b #00000000b,ucon
; ||||||++------ Transmit buffer empty
; ||||++-------- Continuous receive mode disabled
; ||++---------- CLK/CLKS normal
; |+------------ CTS/RTS shared
; +------------- fixed
;
;----- UART1 transmit/receive control register 1
;
 mov.b #00000101b,u1c1
; |||| | +------ Transmission enabled
; |||| +-------- Reception enabled
; +++++--------- fixed
;
;--------------------------------------
;+ Timer A1 +
;--------------------------------------
set_TA0:

3
M16C/62 Group

115

3.3 Sample List

;----- Timer A1 mode register
;
 mov.b #00000010b,ta0mr
; |||| |++------- One-shot mode
; |||| +--------- Pulse not output
; |||+----------- One-shot start flag
; ||+------------ fixed
; ++------------- f1 select
;
 mov.w #6000-1,ta0 ; set 300 usec at 20 MHz
 bset ta0s
 mov.b #0,ta0ic ; clear TA0 interrupt flag
;
 rts
;
;--------------------------------------
;+ FLASH function main +
;--------------------------------------
Flash_func:
 btst tout_flg
 jc Flash_func_end
 bclr ta0s
 mov.b cmd_d,r0l ; receive data --> r0l
;
 mov.b #0ch,r0h ; #00001100b sr10,11 mask data
 and.b SRD1,r0h ; sr10,11 pick up
 cmp.b #0ch,r0h ; ID check OK?
 jne Command_check_2 ; jump Command_check_2 at ID unchecked
 mov.w #12,a0
;
Command_check:
 lde.b Index_tbl-Trans_TOP1+Ram_progTOP-1[a0],r0h
 cmp.b r0h,r0l
 jeq cmd_jmp_1
 sbjnz.w #1,a0,Command_check
 jmp Command_check_2
;
cmd_jmp_1:
 shl.w #1,a0
 lde.w jmp_tbl-Trans_TOP1+Ram_progTOP-2[a0],r0
cmd_jmp:
 jmpi.w r0
;
Command_check_2:
?: cmp.b #070h,r0l ; Read SRD (70h)
 jne ?+
 jmp Read_SRD
?: cmp.b #0f5h,r0l ; ID check (f5h)
 jne ?+
 jmp ID_check
?: cmp.b #0fbh,r0l ; Version out (fbh)
 jne Flash_func_end
 jmp Ver_output
;
Flash_func_end:
 rts
;
;--------------------------------------
;+ Read +
;--------------------------------------
Read:
 mov.w #0,r3 ; receive number
 mov.b #0,addr_l ; addr_l = 0
Read_loop:

M16C/62 Group
3

116

3.3 Sample List

 add.w #1,r3 ; r3 +1 increment
 mov.w r3,a0 ; r3 --> a0
 mov.w data[a0],r0
 mov.b r0l,addr_l[a0] ; Store address
 cmp.w #2,r3 ; r3 = 2 ?
 jltu Read_loop ; jump Read_loop at r3<2
 mov.w #00ffh,r2 ; Read array command
 jsr Command_write ; command_write
 bset send_flg
 mov.w #3,start_cnt
 mov.w #258,send_cnt
 jmp Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ Program +
;--------------------------------------
Program:
 mov.w #0,r3 ; receive number
 mov.b #0,addr_l ; addr_l = 0
 mov.w sum,crcd ; for Read check command
Program_loop_1:
 add.w #1,r3 ; r3 +1 increment
 mov.w r3,a0 ; r3 --> a0
 mov.b data[a0],r0l
 mov.b r0l,addr_l[a0] ; Store address
 cmp.w #259,r3 ; r3 = 259 ?
 jltu Program_loop_1 ; jump Program_loop_1 at r3<258
;
 mov.w #00ffh,r2 ; Read array command
 jsr Command_write ; command_write
 mov.w #0070h,r2 ; Read SRD command
 jsr Command_write ; Command write
 lde.w [a1a0],r1 ; SRD read
 mov.w #00ffh,r2 ; Read array command
 jsr Command_write ; command_write
 cmp.b #80h,r1l ; error check
 jne Program_end
;
 mov.w #0041h,r2 ; Page program command
 jsr Command_write ; command_write
 mov.w #0,r3 ; writing number (r3=0)
 mov.b addr_h,a1 ; addr_h --> a1
Program_loop_2:
 mov.w r3,a0 ; r3 --> a0
 mov.w data[a0],r1 ; data --> r1
 mov.w addr_l,a0 ; addr_l,m --> a0
 ste.w r1,[a1a0] ; data write
;
 mov.b r1l,crcin ; for Read check command
 mov.b r1h,crcin
;
 add.w #2,addr_l ; address +2 increment
 add.w #2,r3 ; writing number +2 increment
 cmp.w #255,r3 ; r3 = 255 ?
 jltu Program_loop_2 ; jump Program_loop_2 at r3<255
Program_end:
 mov.w crcd,sum ; for Read check command
 bclr send_flg
 mov.w #0,send_cnt
 mov.w #0,start_cnt
 jmp Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ Block erase +
;--------------------------------------

3
M16C/62 Group

117

3.3 Sample List

Erase:
 mov.w #1,r3 ; receive number (r3=1)
 mov.b #0feh,addr_l ; addr_l = ffh
Erase_loop:
 mov.w r3,a0 ; r3 --> a0
 mov.b data[a0],r0l
 mov.b r0l,addr_l[a0] ; Store address
 add.w #1,r3 ; r3 +1 increment
 cmp.w #4,r3 ; r3=4 ?
 jltu Erase_loop ; jump Erase_loop at r3<4
 cmp.b #0d0h,data ; Confirm command check
 jne Erase_end ; jump Erase_end at Confirm command error
 mov.w #0020h,r2 ; Erase command
 jsr Command_write ; command write
 mov.w #00d0h,r2 ; Confirm command
 ste.w r2,[a1a0] ; command write
Erase_end:
 mov.w #00ffh,r2 ; Read array command
 jsr Command_write ; command_write
 bclr send_flg
 mov.w #0,send_cnt
 mov.w #0,start_cnt
 jmp Flash_func_end ; jump Flash_func_end
;
;---------------------------------------
;+ All erase (unlock block) +
;---------------------------------------
All_erase:
 mov.w #1,a0
 mov.b data[a0],r0l ; receive data read --> r0
 cmp.b #0d0h,r0l ; Confirm command check
 jne All_erase_end ; jump All_erase_end at Confirm command
error
 mov.w #0000h,addr_l ; 0f0000h --> addr
 mov.b #000fh,addr_h
 mov.w #00a7h,r2 ; All erase command
 jsr Command_write ; command write
 mov.w #00d0h,r2 ; Confirm command
 ste.w r2,[a1a0] ; command write
All_erase_end:
 mov.w #00ffh,r2 ; Read array command
 jsr Command_write ; command_write
 bclr send_flg
 mov.w #0,send_cnt
 mov.w #0,start_cnt
 jmp Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ Read SRD +
;--------------------------------------
Read_SRD:
 mov.w #0,r3 ; receive number (r3=0)
 mov.w #0000h,addr_l ; 0f0000h --> addr
 mov.b #000fh,addr_h
 mov.w #00ffh,r2 ; Read array command
 jsr Command_write ; command_write
 mov.w #0070h,r2 ; Read SRD command
 jsr Command_write ; command write
 lde.w [a1a0],r1 ; SRD read
 mov.w #00ffh,r2 ; Read array command
 jsr Command_write ; command_write
 mov.w #1,start_cnt
 mov.w #3,send_cnt
 bset send_flg

M16C/62 Group
3

118

3.3 Sample List

 jmp Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ Clear SRD +
;--------------------------------------
Clear_SRD:
 mov.w #0000h,addr_l ; 0f0000h --> addr
 mov.b #000fh,addr_h
 mov.w #00ffh,r2 ; Read array command
 jsr Command_write ; command write
 mov.w #0050h,r2 ; Clear SRD command
 jsr Command_write ; command write
 mov.w #00ffh,r2 ; Read array command
 jsr Command_write ; command write
 and.b #10011100b,SRD1 ; SRD1 clear
 mov.w #0,start_cnt
 mov.w #0,send_cnt
 bclr send_flg
 jmp Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ Read Lock Bit +
;--------------------------------------
Read_LB:
 mov.w #1,r3 ; receive number (r3=1)
 mov.b #0feh,addr_l ; addr_l = ffh
Read_LB_loop:
 mov.w r3,a0 ; r3 --> a0
 mov.b data[a0],r0l
 mov.b r0l,addr_l[a0] ; Store address
 add.w #1,r3 ; r3 +1 increment
 cmp.w #3,r3 ; r3=3 ?
 jltu Read_LB_loop ; jump Read_LB_loop at r3<3
 mov.w #0071h,r2 ; Read LB command
 jsr Command_write ; command write
 lde.w [a1a0],r1 ; read LB
 mov.w #00ffh,r2 ; Read array command
 jsr Command_write ; command write
Read_LB_end:
 mov.w #1,start_cnt
 mov.w #1,send_cnt
 bset send_flg
 jmp Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ Program Lock Bit +
;--------------------------------------
Program_LB:
 mov.w #1,r3 ; receive number (r3=1)
 mov.b #0feh,addr_l ; addr_l = ffh
Program_LB_loop:
 mov.w r3,a0 ; r3 --> a0
 mov.b data[a0],r0l
 mov.b r0l,addr_l[a0] ; Store address
 add.w #1,r3 ; r3 +1 increment
 cmp.w #4,r3 ; r3=4 ?
 jltu Program_LB_loop ; jump Program_LB_loop at r3<4
 cmp.b #0d0h,data ; Confirm command check
 jne Program_LB_end ; jump Program_LB_end at Confirm command error
 mov.w #0077h,r2 ; Program LB command
 jsr Command_write ; command write
 mov.w #00d0h,r2 ; Confirm command
 ste.w r2,[a1a0] ; command write
 mov.w #00ffh,r2 ; Read array command

3
M16C/62 Group

119

3.3 Sample List

 jsr Command_write ; command write
Program_LB_end:
 mov.w #0,start_cnt
 mov.w #0,send_cnt
 bclr send_flg
 jmp Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ Lock Bit enable +
;--------------------------------------
LB_enable:
 bclr fmcr2 ; Lock disable bit = 0
 mov.w #0,start_cnt
 mov.w #0,send_cnt
 bclr send_flg
 jmp Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ Lock Bit disable +
;--------------------------------------
LB_disable:
 bclr fmcr2 ; Lock disable bit = 0
 bset fmcr2 ; Lock disable Bit = 1
 mov.w #0,start_cnt
 mov.w #0,send_cnt
 bclr send_flg
 jmp Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ ID check +
;--------------------------------------
ID_check:
 btst blank ; blank flag check
 jc ID_check_end ; jump ID_check_end at blank
 cmp.w #0ffdfh,addr_l ; lower ID address check
 jne ID_error ; jump ID_error at ID address error
 cmp.w #0070fh,addr_h ; higher ID address check
 jne ID_error ; jump ID_error at ID address error
ID_data_check:
 mov.w #0000fh,a1 ; ID higher address --> a1
 mov.w #0ffdfh,r1 ; ID lower address --> r1
 mov.w #1,r3 ; check loop number (r3=1)
ID_check_loop:
 mov.w r1,a0 ; r1 --> a0
 lde.b [a1a0],r0l ; ID data read from Flash memory
 mov.w r3,a0 ; r3 --> a0
 cmp.b r0l,data[a0] ; compare ID data
 jne ID_error ; jump ID_error at ID error
 add.w #4,r1 ; r1 +4 increment (next ID address)
 cmp.w #0ffe7h,r1 ; r1=0ffefh ?
 jne ?+ ; jump ? at not equal
 mov.w #0ffebh,r1 ; r1=0ffeb at equal
?:
 add.w #1,r3 ; r3 +1 increment
 cmp.w #8,r3 ; r3=8 ?
 jltu ID_check_loop ; jump ID_check_loop at r3<8
ID_OK:
 bset sr10
 bset sr11 ; ID check OK (sr11=1,sr10=1)
 jmp ID_check_end ; jump ID_check_end
ID_error:
 bset sr10
 bclr sr11 ; ID error (sr11=0,sr10=1)
ID_check_end:

M16C/62 Group
3

120

3.3 Sample List

 mov.w #0,start_cnt
 mov.w #0,send_cnt
 bclr send_flg
 jmp Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ Boot output +
;--------------------------------------
Boot_output:
 bclr fmcr5 ; Boot ROM select
 mov.w #0,r3 ; receive number
 mov.b #0,addr_l ; addr_l = 0
Boot_loop:
 add.w #1,r3 ; r3 +1 increment
 mov.w r3,a0 ; r3 --> a0
 mov.w data[a0],r0
 mov.b r0l,addr_l[a0] ; Store address
 cmp.w #2,r3 ; r3 = 2 ?
 jltu Boot_loop ; jump Read_loop at r3<2
 bset send_flg
 mov.w #3,start_cnt
 mov.w #258,send_cnt
 jmp Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ Read check +
;--------------------------------------
Read_check:
 mov.w #0,start_cnt
 mov.w #2,send_cnt
 bset send_flg
 jmp Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ Download +
;--------------------------------------
Download:
 bclr fmcr5 ; Boot ROM select
 jmp.a Download_program ; jump Download_program
;
;--------------------------------------
;+ Version output +
;--------------------------------------
Ver_output:
 mov.w #0,start_cnt
 mov.w #8,send_cnt
 bset send_flg
 jmp Flash_func_end ; jump Flash_func_end
;
;++
;+ Subroutine : Command write +
;++
Command_write:
 btst fmcr0 ; RY/BY status check
 jz Command_write
 mov.w addr_l,a0 ; addr_l,m --> a0
 mov.b addr_h,a1 ; addr_h --> a1
 ste.w r2,[a1a0] ; command write
 rts
;
;+++
;+ Subroutine : a synchronized signal I/O receive data+
;+++
SIO_rcv_data:

3
M16C/62 Group

121

3.3 Sample List

 jsr set_TA0
SIO_rcv_data_1:
 btst ir_ta0ic ; time out error ?
 jnc ?+
 jsr Time_over_flg ; jump Time_over at time out
?:
 btst ri_u1c1 ; receive complete ?
 jnc SIO_rcv_data_1
 mov.w u1rb,rcv_d ; receive data read --> r0
 rts
;
;+++
;+ Subroutine : a synchronized signal I/O receive data+
;+++
SIO_rcv_data_rom:
 jsr set_TA0
SIO_rcv_data_rom_1:
 btst ir_ta0ic ; time out error ?
 bmc fmcr5 ; time out, User ROM select
 jnc ?+
 jsr Time_over_flg ; jump Time_over at time out
?:
 btst ri_u1c1 ; receive complete ?
 jnc SIO_rcv_data_rom_1
 mov.w u1rb,rcv_d ; receive data read --> r0
 rts
;
;++
;+ Subroutine : a synchronized signal I/O send +
;++
SIO_send:
 jsr set_TA0
 jsr SIO_send_data
 jsr SIO_rcv_data
 rts
;
;++
;+ Subroutine : a synchronized signal I/O send +
;++
SIO_send_rom:
 jsr set_TA0
 jsr SIO_send_data
 jsr SIO_rcv_data_rom
 rts
;
;==
;+ Transfer Program -- UART mode +
;+ (1) Main flow +
;+ (2) Flash control program +
;+ Read,Program,All_erase,Read_SRD,Clear_SRD +
;+ (3) Other program +
;+ ID_check +
;==
;
 .org Trans_TOP2
;
;++
;+ Main flow - UART mode - +
;++
U_Main:
 jmp U_SIO_init_first
;
U_Loop_main:
 mov.b SRD1,SRD1_bak ; SRD1 back up
 mov.b SRD1,SRD1_bak+2

M16C/62 Group
3

122

3.3 Sample List

;
 jsr U_SIO_rcv
 mov.w rcv_d,r0
 mov.b r0l,cmd_d
 mov.w #0,r2
 mov.w r2,a0
 mov.b r0l,data[a0]
 bclr cmd_flg
;
 jmp U_SIO_freq

 jsr U_time_init

 jmp U_SIO_rcv_first_data
U_Flash_set:
 jmp U_Flash_func
U_Flash_send:
 jmp U_SIO_send_data
U_Flash_int:
 btst tint_flg
 jnc U_Main_end
 jsr Initialize_31 ; command error,UART mode Initialize
;
U_Main_end:
 jmp U_Loop_main ; jump U_Loop_main
;
;--------------------------------------
;+ initialize SIO +
;--------------------------------------
U_time_init:
 bset rcv_flg
 bclr tint_flg
 rts
;
;--------------------------------------
;+ SI/O recieve data +
;--------------------------------------
U_SIO_rcv_first_data:
 btst rcv_flg
 jnc U_SIO_rcv_end
 jc U_SIO_rcv_first_data_set

U_SIO_rcv_first_data_loop:
 jsr U_SIO_rcv_only
 mov.w rcv_d,r0 ; receive data --> r0
U_SIO_rcv_first_data_set:
 mov.w r2,a0
 mov.b r0l,data[a0]
 add.w #1,r2
;
 btst cmd_flg
 jc U_SIO_loop_chk
 bset cmd_flg
 mov.b r0l,cmd_d
;
 mov.w #19,a0
U_SIO_rcv_command_chk:
 lde.b U_Index_tbl-Trans_TOP2+Ram_progTOP-1[a0],r0h
 cmp.b r0h,r0l
 jeq U_SIO_cmd_jmp_2
 sbjnz.w #1,a0,U_SIO_rcv_command_chk
 jmp U_SIO_rcv_end

U_SIO_cmd_jmp_2:
 shl.w #1,a0

3
M16C/62 Group

123

3.3 Sample List

 lde.w U_jmp_tbl_2-Trans_TOP2+Ram_progTOP-2[a0],r0
U_SIO_cmd_jmp_2_1:
 jmpi.w r0

U_SIO_2:
 mov.w #2,loop_cnt
 jmp U_SIO_loop_chk
U_SIO_259:
 mov.w #259,loop_cnt
 jmp U_SIO_loop_chk
U_SIO_4:
 mov.w #4,loop_cnt
 jmp U_SIO_loop_chk
U_SIO_3:
 mov.w #3,loop_cnt
 jmp U_SIO_loop_chk
;

;--------------------------------------
;+ ID check SI/O +
;--------------------------------------
U_SIO_rcv_ID_check:
 mov.w #0,r3 ; receive number (r3=0)
 mov.w #0ffh,a1 ; ID size (dummy data = ffh)
 mov.b #0,ta0ic
U_SIO_ID_data_store:
 cmp.w a1,r3 ; r3=a1(ID size)
 jeq U_SIO_ID_address_check; jump ID_address_check at r3=ID size
 jsr U_SIO_rcv_only
 mov.w rcv_d,r0
 mov.w r3,a0 ; r3 --> a0
 mov.b r0l,addr_l[a0] ; Store address
 add.w #1,r3 ; r3 +1 increment
 cmp.w #4,r3 ; r3=4 ?
 jne U_SIO_ID_data_store ; jump ID_data_store at r3 not= 4
 mov.b data,a1 ; ID size --> a1
 add.w #4,a1 ; a1=a1+4
 jmp U_SIO_ID_data_store ; jump ID_data_store
U_SIO_ID_address_check:
 jmp U_SIO_rcv_end
;
U_SIO_rcv_end_1:
 bset tint_flg
 jmp U_SIO_rcv_end

U_SIO_loop_chk:
 cmp.w loop_cnt,r2
 jltu U_SIO_rcv_first_data_loop
U_SIO_rcv_end:
 bclr cmd_flg
 bclr rcv_flg
 jmp U_Flash_set
;
;--------------------------------------
;+ SIO_send data +
;--------------------------------------
U_SIO_send_data:
 btst send_flg
 jnc U_SIO_send_data_end
 mov.b cmd_d,r1h

 cmp.b #0ffh,r1h ; Read(ffh)
 jeq U_Read_data
 cmp.b #070h,r1h ; Read SRD (70h)
 jeq U_Read_SRD_data

M16C/62 Group
3

124

3.3 Sample List

 cmp.b #071h,r1h ; Read LB (71h)
 jeq U_Read_LB_data
 cmp.b #0fbh,r1h ; Version_output(fbh)
 jeq U_Ver_output_data
 cmp.b #0fdh,r1h ; Read_check(fdh)
 jeq U_Read_check_data
 cmp.b #0fch,r1h ; Boot_check(fch)
 jeq U_Boot_data
 cmp.b #0b0h,r1h ; BPS SET(b0h)
 jeq U_BPS_B0_data
 cmp.b #0b1h,r1h ; BPS SET(b1h)
 jeq U_BPS_B1_data
 cmp.b #0b2h,r1h ; BPS SET(b2h)
 jeq U_BPS_B2_data
 cmp.b #0b3h,r1h ; BPS SET(b3h)
 jeq U_BPS_B3_data
 jmp U_SIO_send_func

U_Read_check_data:
 mov.w #0,r3
 mov.w sum,r1
U_Read_check_data_loop:
 mov.b r1l,send_d
 jsr U_SIO_send
 mov.b r1h,r1l
 add.w #1,r3
 cmp.w #2,r3
 jltu U_Read_check_data_loop
U_Read_check_data_end:
 mov.w #0,sum ; reset
 jsr U_SIO_exit
 jmp U_SIO_send_data_end

U_Read_data:
 mov.w #0,r3
U_Read_data_loop:
 lde.b [a1a0],r1l ; Flash memory read
 mov.b r1l,send_d
 jsr U_SIO_send
 add.w #1,r3
 add.w #1,a0
 cmp.w #256,r3 ; r3 = 256 ?
 jne U_Read_data_loop
U_Read_data_end:
 jsr U_SIO_exit
 jmp U_SIO_send_data_end

U_Ver_output_data:
 mov.w #0,a0 ; Version address offset (a0=0)
U_Ver_output_data_loop:
 mov.b ver[a0],send_d ; send_data set
 jsr U_SIO_send
 add.w #1,a0
 cmp.w #8,a0 ; a0 = 8 ?
 jne U_Ver_output_data_loop
U_Ver_output_data_end:
 jsr U_SIO_exit
 jmp U_SIO_send_data_end

U_Read_SRD_data:
 mov.w #0,r3
U_Read_SRD_data_loop:
 mov.b r1l,send_d ; data transfer
 jsr U_SIO_send

3
M16C/62 Group

125

3.3 Sample List

 mov.b SRD1,r1l ; SRD1 data --> r1l
 add.w #1,r3
 cmp.w #2,r3 ; r3 = 2 ?
 jltu U_Read_SRD_data_loop; jump Read_SRD_loop at r3<2
U_Read_SRD_data_end:
 jsr U_SIO_exit
 jmp U_SIO_send_data_end

U_Read_LB_data:
 mov.b r1l,send_d ; data transfer
 jsr U_SIO_send
U_Read_LB_data_end:
 jsr U_SIO_exit
 jmp U_SIO_send_data_end

U_Boot_data:
 bclr fmcr5
 mov.w addr_l,a0
 mov.b addr_h,a1
 mov.w #0,r3
U_Boot_data_loop:
 lde.b [a1a0],r1l ; Flash memory read
 mov.b r1l,send_d
 jsr U_SIO_send
 add.w #1,r3
 add.w #1,a0
 cmp.w #256,r3 ; r3 = 256 ?
 jne U_Boot_data_loop
U_Boot_data_end:
 bset fmcr5
 jsr U_SIO_exit
 jmp U_SIO_send_data_end

U_BPS_B0_data:
 mov.b buff,data_BPS ; Baud rate 9600bps
 jmp U_BPS_SET_data
U_BPS_B1_data:
 mov.b buff+1,data_BPS ; Baud rate 19200bps
 jmp U_BPS_SET_data
U_BPS_B2_data:
 mov.b buff+2,data_BPS ; Baud rate 38400bps
 jmp U_BPS_SET_data
U_BPS_B3_data:
 mov.b buff+3,data_BPS ; Baud rate 57600bps
U_BPS_SET_data:
 mov.b r0l,send_d
 jsr U_SIO_send
 jsr U_SIO_exit
 jsr U_blank_end ; UART mode Initialize
 jmp U_SIO_send_data_end
;
U_SIO_send_func:
 mov.w start_cnt,r3
U_SIO_send_data_loop:
 mov.w r3,a0
 mov.b data[a0],r1l
 mov.b r1l,send_d
 jsr U_SIO_send
 add.w #1,r3
 cmp.w send_cnt,r3 ; r3 = send_cnt ?
 jne U_SIO_send_data_loop
 mov.w r3,r0
U_SIO_send_data_end:
 bclr send_flg

M16C/62 Group
3

126

3.3 Sample List

 jmp U_Flash_int
;
;++
;+ jump table for Flash_func +
;++
U_jmp_tbl:
 .word U_Read - U_cmd_jmp
 .word U_Program - U_cmd_jmp
 .word U_Erase - U_cmd_jmp
 .word U_All_erase - U_cmd_jmp
 .word U_Clear_SRD - U_cmd_jmp
 .word U_Read_LB - U_cmd_jmp
 .word U_Program_LB - U_cmd_jmp
 .word U_LB_enable - U_cmd_jmp
 .word U_LB_disable - U_cmd_jmp
 .word U_Download - U_cmd_jmp
 .word U_Boot_output - U_cmd_jmp
 .word U_Read_check - U_cmd_jmp
;
;++
;+ jump table for SIO_rcv_first_data +
;++
U_jmp_tbl_2:
 .word U_SIO_3 - U_SIO_cmd_jmp_2_1 ; Read
 .word U_SIO_259 - U_SIO_cmd_jmp_2_1 ; Program
 .word U_SIO_4 - U_SIO_cmd_jmp_2_1 ; erase
 .word U_SIO_2 - U_SIO_cmd_jmp_2_1 ; All erase
 .word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; Clear SRD
 .word U_SIO_3 - U_SIO_cmd_jmp_2_1 ; Read LB
 .word U_SIO_4 - U_SIO_cmd_jmp_2_1 ; LB Program
 .word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; LB enable
 .word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; LB disable
 .word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; Download
 .word U_SIO_3 - U_SIO_cmd_jmp_2_1 ; Boot output
 .word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; Read check
 .word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; Read SRD
 .word U_SIO_rcv_ID_check - U_SIO_cmd_jmp_2_1 ; ID check
 .word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; Version out
 .word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; U_BPS_B0
 .word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; U_BPS_B1
 .word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; U_BPS_B2
 .word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; U_BPS_B3
;
;++
;+ serch table for Flash_func,SIO_rcv_first_data +
;++
U_Index_tbl:
 .byte 0ffh ; Read(ffh)
 .byte 041h ; Program(41h)
 .byte 020h ; Erase(20h)
 .byte 0a7h ; All_erase(a7h)
 .byte 050h ; Clear SRD(50h)
 .byte 071h ; Read LBS(71h)
 .byte 077h ; LB program(77h)
 .byte 07ah ; LB enable (7ah)
 .byte 075h ; LB disable(75h)
 .byte 0fah ; Download (fah)
 .byte 0fch ; Boot output(fch)
 .byte 0fdh ; Read check(fdh)
 .byte 070h ; Read SRD(70h)
 .byte 0f5h ; ID check(f5h)
 .byte 0fbh ; Version output(fbh)
 .byte 0b0h ; BPS_SET 9600 (b0h)
 .byte 0b1h ; BPS_SET 19200 (b1h)
 .byte 0b2h ; BPS_SET 38400(b2h)

3
M16C/62 Group

127

3.3 Sample List

 .byte 0b3h ; BPS_SET 57600(b3h)
;
;++
;+ Subroutine : Initialize_3 - UART mode +
;++
Initialize_3:
;--------------------------------------
;+ Flash mode set +
;--------------------------------------
;
 bset fmcr5 ; User ROM select
 bclr fmcr1 ; Flash entry bit clear
 bset fmcr1 ; Flash entry bit set (E/W mode)
;
;--------------------------------------
;+ Blank check +
;--------------------------------------
 lde.w 0ffffch,r0 ; Reset vector read
 lde.w 0ffffeh,r1 ; Reset vector read
 and.w r1,r0 ; r0 & r1
 cmp.w #0ffffh,r0 ; r0=ffffh ?
 jne U_blank_end
 bset sr10 ; check complete at r0=ffffh
 bset sr11
 bset blank ; blank flag set
U_blank_end:
;--------------------------------------
;+ UART1 +
;--------------------------------------
;----- UART nit rate generator
;
 mov.w data_BPS,u1brg
;
Initialize_31:
;
;----- UART1 transmit/receive mode register
;
 mov.b #0,u1c1 ; transmit/receive disable
 mov.b #0,u1mr ; u1mr reset
 mov.b #00000101b,u1mr
; ||||||++---------- transfer data 8 bit long
; |||||+------------ Internal clock
; ||||+------------- one stop bit
; ||++-------------- parity disabled
; |+---------------- sleep mode deselected
;
;----- UART1 transmit/receive control register 0
;
 mov.b #00000100b,u1c0
; ||||||++---------- f1 select
; ||||++------------ RTS select
; |||+-------------- CRT/RTS enabled
; ||+--------------- CMOS output(TxD)
; ++---------------- Must always be "0"
;
;----- UART transmit/receive control register 2
;
 mov.b #00000000b,ucon
; ||||||++---------- Transmit buffer empty
; |||+++------------ Invalid
; ||+--------------- Must always be "0"
; |+---------------- CTS/RTS shared
; +----------------- fixed
;
;----- UART1 transmit/received control register 1

M16C/62 Group
3

128

3.3 Sample List

;
 mov.b #00000000b,u1c1
; |||||||+---------- Transmission disabled
; ||||||+----------- Transmission enabled
; |||||+------------ Reception disabled
; ||||+------------- Reception enabled
; ++++-------------- fixed
;
 rts
;
;--------------------------------------
;+ FLASH function main +
;--------------------------------------
U_Flash_func:
 mov.b cmd_d,r0l ; receive data --> r0l

 mov.b #0ch,r0h ; #00001100b sr10,11 mask data
 and.b SRD1,r0h ; sr10,11 pick up
 cmp.b #0ch,r0h ; ID check OK?
 jne U_Command_check_2 ; jump Command_check_2 at ID unchecked
 mov.w #12,a0

U_Command_check:
 lde.b U_Index_tbl-Trans_TOP2+Ram_progTOP-1[a0],r0h
 cmp.b r0h,r0l
 jeq U_cmd_jmp_1
 sbjnz.w #1,a0,U_Command_check
 jmp U_Command_check_2

U_cmd_jmp_1:
 shl.w #1,a0
 lde.w U_jmp_tbl-Trans_TOP2+Ram_progTOP-2[a0],r0
U_cmd_jmp:
 jmpi.w r0

U_Command_check_2:
?: cmp.b #070h,r0l ; Read SRD (70h)
 jne ?+
 jmp U_Read_SRD
?: cmp.b #0f5h,r0l ; ID check (f5h)
 jne ?+
 jmp U_ID_check
?: cmp.b #0b0h,r0l ; BPS_SET 9600 (b0h)
 jne ?+
 jmp U_BPS_B0
?: cmp.b #0b1h,r0l ; BPS_SET 19200 (b1h)
 jne ?+
 jmp U_BPS_B1
?: cmp.b #0b2h,r0l ; BPS_SET 38400 (b2h)
 jne ?+
 jmp U_BPS_B2
?: cmp.b #0b3h,r0l ; BPS_SET 57600 (b3h)
 jne ?+
 jmp U_BPS_B3
?: cmp.b #0fbh,r0l ; Version out (fbh)
 jne U_Flash_func_end
 jmp U_Ver_output
;
U_Flash_func_end:
 jmp U_Flash_send
;
;--------------------------------------
;+ Read +
;--------------------------------------

3
M16C/62 Group

129

3.3 Sample List

U_Read:
 mov.w #0,r3 ; receive number
 mov.b #0,addr_l ; addr_l = 0
U_Read_loop:
 add.w #1,r3 ; r3 +1 increment
 mov.w r3,a0 ; r3 --> a0
 mov.w data[a0],r0
 mov.b r0l,addr_l[a0] ; Store address
 cmp.w #2,r3 ; r3 = 2 ?
 jltu U_Read_loop ; jump Read_loop at r3<2
 mov.w #00ffh,r2 ; Read array command
 jsr U_Command_write ; command_write
 bset send_flg
 mov.w #3,start_cnt
 mov.w #258,send_cnt
 jmp U_Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ Program +
;--------------------------------------
U_Program:
 mov.w #0,r3 ; receive number
 mov.b #0,addr_l ; addr_l = 0
 mov.w sum,crcd ; for Read check command
U_Program_loop_1:
 add.w #1,r3 ; r3 +1 increment
 mov.w r3,a0 ; r3 --> a0
 mov.b data[a0],r0l
 mov.b r0l,addr_l[a0] ; Store address
 cmp.w #259,r3 ; r3 = 259 ?
 jltu U_Program_loop_1 ; jump Program_loop_1 at r3<258
;
 mov.w #00ffh,r2 ; Read array command
 jsr U_Command_write ; command_write
 mov.w #0070h,r2 ; Read SRD command
 jsr U_Command_write ; Command write
 lde.w [a1a0],r1 ; SRD read
 mov.w #00ffh,r2 ; Read array command
 jsr U_Command_write ; command_write
 cmp.b #80h,r1l ; error check
 jne U_Program_end
;
 mov.w #0041h,r2 ; Page program command
 jsr U_Command_write ; command_write
 mov.w #0,r3 ; writing number (r3=0)
 mov.b addr_h,a1 ; addr_h --> a1
U_Program_loop_2:
 mov.w r3,a0 ; r3 --> a0
 mov.w data[a0],r1 ; data --> r1
 mov.w addr_l,a0 ; addr_l,m --> a0
 ste.w r1,[a1a0] ; data write
;
 mov.b r1l,crcin ; for Read check command
 mov.b r1h,crcin
;
 add.w #2,addr_l ; address +2 increment
 add.w #2,r3 ; writing number +2 increment
 cmp.w #255,r3 ; r3 = 255 ?
 jltu U_Program_loop_2 ; jump Program_loop_2 at r3<255
U_Program_end:
 mov.w crcd,sum ; for Read check command
 bclr send_flg
 mov.w #0,send_cnt
 mov.w #0,start_cnt

M16C/62 Group
3

130

3.3 Sample List

 jmp U_Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ Block erase +
;--------------------------------------
U_Erase:
 mov.w #1,r3 ; receive number (r3=1)
 mov.b #0feh,addr_l ; addr_l = ffh
U_Erase_loop:
 mov.w r3,a0 ; r3 --> a0
 mov.b data[a0],r0l
 mov.b r0l,addr_l[a0] ; Store address
 add.w #1,r3 ; r3 +1 increment
 cmp.w #4,r3 ; r3=4 ?
 jltu U_Erase_loop ; jump Erase_loop at r3<4
 cmp.b #0d0h,data ; Confirm command check
 jne U_Erase_end ; jump Erase_end at Confirm command error
 mov.w #0020h,r2 ; Erase command
 jsr U_Command_write ; command write
 mov.w #00d0h,r2 ; Confirm command
 ste.w r2,[a1a0] ; command write
U_Erase_end:
 mov.w #00ffh,r2 ; Read array command
 jsr U_Command_write ; command_write
 bclr send_flg
 mov.w #0,send_cnt
 mov.w #0,start_cnt
 jmp U_Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ All erase (unlock block) +
;--------------------------------------
U_All_erase:
 mov.w #1,a0
 mov.b data[a0],r0l ; receive data read --> r0
 cmp.b #0d0h,r0l ; Confirm command check
 jne U_All_erase_end ; jump All_erase_end at Confirm command
error
 mov.w #0000h,addr_l ; 0f0000h --> addr
 mov.b #000fh,addr_h
 mov.w #00a7h,r2 ; All erase command
 jsr U_Command_write ; command write
 mov.w #00d0h,r2 ; Confirm command
 ste.w r2,[a1a0] ; command write
U_All_erase_end:
 mov.w #00ffh,r2 ; Read array command
 jsr U_Command_write ; command_write
 bclr send_flg
 mov.w #0,send_cnt
 mov.w #0,start_cnt
 jmp U_Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ Read SRD +
;--------------------------------------
U_Read_SRD:
 mov.w #0,r3 ; receive number (r3=0)
 mov.w #0000h,addr_l ; 0f0000h --> addr
 mov.b #000fh,addr_h
 mov.w #00ffh,r2 ; Read array command
 jsr U_Command_write ; command_write
 mov.w #0070h,r2 ; Read SRD command
 jsr U_Command_write ; command write
 lde.w [a1a0],r1 ; SRD read
 mov.w #00ffh,r2 ; Read array command

3
M16C/62 Group

131

3.3 Sample List

 jsr U_Command_write ; command_write
 mov.w #1,start_cnt
 mov.w #3,send_cnt
 bset send_flg
 jmp U_Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ Clear SRD +
;--------------------------------------
U_Clear_SRD:
 mov.w #0000h,addr_l ; 0f0000h --> addr
 mov.b #000fh,addr_h
 mov.w #00ffh,r2 ; Read array command
 jsr U_Command_write ; command write
 mov.w #0050h,r2 ; Clear SRD command
 jsr U_Command_write ; command write
 mov.w #00ffh,r2 ; Read array command
 jsr U_Command_write ; command write
 and.b #10011100b,SRD1 ; SRD1 clear
 mov.w #0,start_cnt
 mov.w #0,send_cnt
 bclr send_flg
 jmp U_Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ Read Lock Bit +
;--------------------------------------
U_Read_LB:
 mov.w #1,r3 ; receive number (r3=1)
 mov.b #0feh,addr_l ; addr_l = ffh
U_Read_LB_loop:
 mov.w r3,a0 ; r3 --> a0
 mov.b data[a0],r0l
 mov.b r0l,addr_l[a0] ; Store address
 add.w #1,r3 ; r3 +1 increment
 cmp.w #3,r3 ; r3=3 ?
 jltu U_Read_LB_loop ; jump Read_LB_loop at r3<3
 mov.w #0071h,r2 ; Read LB command
 jsr U_Command_write ; command write
 lde.w [a1a0],r1 ; read LB
 mov.w #00ffh,r2 ; Read array command
 jsr U_Command_write ; command write
U_Read_LB_end:
 mov.w #1,start_cnt
 mov.w #1,send_cnt
 bset send_flg
 jmp U_Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ Program Lock Bit +
;--------------------------------------
U_Program_LB:
 mov.w #1,r3 ; receive number (r3=1)
 mov.b #0feh,addr_l ; addr_l = ffh
U_Program_LB_loop:
 mov.w r3,a0 ; r3 --> a0
 mov.b data[a0],r0l
 mov.b r0l,addr_l[a0] ; Store address
 add.w #1,r3 ; r3 +1 increment
 cmp.w #4,r3 ; r3=4 ?
 jltu U_Program_LB_loop ; jump Program_LB_loop at r3<4
 cmp.b #0d0h,data ; Confirm command check
 jne U_Program_LB_end ; jump Program_LB_end at Confirm command
error

M16C/62 Group
3

132

3.3 Sample List

 mov.w #0077h,r2 ; Program LB command
 jsr U_Command_write ; command write
 mov.w #00d0h,r2 ; Confirm command
 ste.w r2,[a1a0] ; command write
 mov.w #00ffh,r2 ; Read array command
 jsr U_Command_write ; command write
U_Program_LB_end:
 mov.w #0,start_cnt
 mov.w #0,send_cnt
 bclr send_flg
 jmp U_Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ Lock Bit enable +
;--------------------------------------
U_LB_enable:
 bclr fmcr2 ; Lock disable bit = 0
 mov.w #0,start_cnt
 mov.w #0,send_cnt
 bclr send_flg
 jmp U_Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ Lock Bit disable +
;--------------------------------------
U_LB_disable:
 bclr fmcr2 ; Lock disable bit = 0
 bset fmcr2 ; Lock disable Bit = 1
 mov.w #0,start_cnt
 mov.w #0,send_cnt
 bclr send_flg
 jmp U_Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ ID check +
;--------------------------------------
U_ID_check:
 btst blank ; blank flag check
 jc U_ID_check_end ; jump ID_check_end at blank
 cmp.w #0ffdfh,addr_l ; lower ID address check
 jne U_ID_error ; jump ID_error at ID address error
 cmp.w #0070fh,addr_h ; higher ID address check
 jne U_ID_error ; jump ID_error at ID address error
U_ID_data_check:
 mov.w #0000fh,a1 ; ID higher address --> a1
 mov.w #0ffdfh,r1 ; ID lower address --> r1
 mov.w #1,r3 ; check loop number (r3=1)
U_ID_check_loop:
 mov.w r1,a0 ; r1 --> a0
 lde.b [a1a0],r0l ; ID data read from Flash memory
 mov.w r3,a0 ; r3 --> a0
 cmp.b r0l,data[a0] ; compare ID data
 jne U_ID_error ; jump ID_error at ID error
 add.w #4,r1 ; r1 +4 increment (next ID address)
 cmp.w #0ffe7h,r1 ; r1=0ffefh ?
 jne ?+ ; jump ? at not equal
 mov.w #0ffebh,r1 ; r1=0ffeb at equal
?:
 add.w #1,r3 ; r3 +1 increment
 cmp.w #8,r3 ; r3=8 ?
 jltu U_ID_check_loop ; jump ID_check_loop at r3<8
U_ID_OK:
 bset sr10
 bset sr11 ; ID check OK (sr11=1,sr10=1)

3
M16C/62 Group

133

3.3 Sample List

 jmp U_ID_check_end ; jump ID_check_end
U_ID_error:
 bset sr10
 bclr sr11 ; ID error (sr11=0,sr10=1)
U_ID_check_end:
 mov.w #0,start_cnt
 mov.w #0,send_cnt
 bclr send_flg
 jmp U_Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ Boot output +
;--------------------------------------
U_Boot_output:
 bclr fmcr5 ; Boot ROM select
 mov.w #0,r3 ; receive number
 mov.b #0,addr_l ; addr_l = 0
U_Boot_loop:
 add.w #1,r3 ; r3 +1 increment
 mov.w r3,a0 ; r3 --> a0
 mov.w data[a0],r0
 mov.b r0l,addr_l[a0] ; Store address
 cmp.w #2,r3 ; r3 = 2 ?
 jltu U_Boot_loop ; jump Read_loop at r3<2
 bset send_flg
 mov.w #3,start_cnt
 mov.w #258,send_cnt
 jmp U_Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ Read check +
;--------------------------------------
U_Read_check:
 mov.w #0,start_cnt
 mov.w #2,send_cnt
 bset send_flg
 jmp U_Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ Download +
;--------------------------------------
U_Download:
 bclr fmcr5 ; Boot ROM select
 jmp.a U_Download_program ; jump Download_program
;
;--------------------------------------
;+ Version output +
;--------------------------------------
U_Ver_output:
 mov.w #0,start_cnt
 mov.w #8,send_cnt
 bset send_flg
 jmp U_Flash_func_end ; jump Flash_func_end
;
;++
;+ Subroutine : Command write +
;++
U_Command_write:
 btst fmcr0 ; RY/BY status check
 jz U_Command_write
 mov.w addr_l,a0 ; addr_l,m --> a0
 mov.b addr_h,a1 ; addr_h --> a1
 ste.w r2,[a1a0] ; command write
 rts

M16C/62 Group
3

134

3.3 Sample List

;
;--------------------------------------
;+ Main Init first - UART mode - +
;--------------------------------------
U_SIO_init_first:
 bclr freq_set0 ; freq set flag clear
 bclr freq_set1
 bclr freq_set2
 mov.b #100,data_BPS ; 9600bps for 16MHz
;
 jsr Initialize_3 ; UART mode Initialize
 jsr U_SIO_rcv
;
 mov.w rcv_d,r0
 cmp.b #0b0h,r0l
 jeq U_Freq_Get1
 cmp.b #0f4h,r0l
 jne U_Freq_Get3
;------ 10MHz ------------------;
 mov.b #64,buff ; 9600bps
 mov.b #32,buff+1 ; 19200bps
 mov.b #15,buff+2 ; 38400bps
 mov.b #10,buff+3 ; 57600bps
 mov.b #0b0h,r0l
 jmp U_Freq_Get2
;------ 16MHz ------------------;
U_Freq_Get1:
 mov.b #103,buff ; 9600bps
 mov.b #50,buff+1 ; 19200bps
 mov.b #25,buff+2 ; 38400bps
 mov.b #17,buff+3 ; 57600bps
;
U_Freq_Get2:
 mov.b #0b0h,r0l
 mov.b buff,data_BPS
 jsr U_blank_end ; UART mode Initialize
 bset freq_set0 ; "B0h" get flag set
 mov.b #0b0h,cmd_d
 jmp U_Flash_set
;
U_Freq_Get3:
 mov.b #80h,data_BPS
 mov.b #01000000b,r1l ; counbter1,2 reset
 mov.b #10000000b,r1h
 jsr U_blank_end
 jmp U_Loop_main
;
;--------------------------------------
;+ SIO Init - UART mode - +
;--------------------------------------
U_SIO_freq:
 btst freq_set2 ; freq fixed ?
 jc U_SIO_rcv_first_data_set ; jump Command_check_2 at data
 btst freq_set0
 jz U_Freq_check ; jump U_Freq_check
 cmp.b #00h,r0l ; "00h" get?
 bmgtu freq_set2
 jne U_SIO_rcv_first_data_set ; jump U_Freq_check
 bclr freq_set0
 mov.b #0ffh,r0l ; dummy data set
 mov.b #01000000b,r1l ; counbter1,2 reset
 mov.b #10000000b,r1h
 mov.b #80h,data_BPS
 jmp U_Freq_check

3
M16C/62 Group

135

3.3 Sample List

;++
;+ Freq check - UART mode - +
;++
U_Freq_check:
 bclr re_u1c1 ; Reception disabled
 btst 8,r1 ; counter = 8 times
 jc U_Freq_check_4
;
 btst freq_set1
 jc U_Freq_check_1
 cmp.b #00h,r0l ; "00h"?
 jeq U_Freq_check_3
 jmp U_Freq_check_2
U_Freq_check_1:
 btst 13,r0 ; fer_u1rb
 jz U_Freq_check_3
U_Freq_check_2:
 or.b r1h,r1l ; r1l = counter1 or counter2
U_Freq_check_3:
 xor.b data_BPS,r1l ; Baud = Baud xor r1l
 mov.b r1l,data_BPS ; data set
 mov.b r1h,r1l
 rot.b #-1,r1l
 rot.b #-1,r1h ; counter sift
 rot.b #-1,r1l
 jmp U_Freq_check_6
;
U_Freq_check_4:
 btst freq_set1 ; Min-Baud get ?
 jc U_Freq_set_1 ; Yes , finished
 bset freq_set1
 cmp.b #00h,r0l ; "00h"?
 jeq U_Freq_check_5
 xor.b data_BPS,r1h
 mov.b r1h,data_BPS
U_Freq_check_5:
 mov.b data_BPS,data_BPS+1 ; Min Baud --> data+1
 mov.b #01000000b,r1l ; counter reset
 mov.b #10000000b,r1h
 mov.b #01111111b,data_BPS ; Reset
U_Freq_check_6:
 jsr U_blank_end ; UART mode Initialize
?:
 btst p6_6
 jz ?-
 bset re_u1c1 ; Reception enabled
 jmp U_Loop_main
;
U_Freq_set_1:
 btst 13,r0 ; fer_u1rd
 jz U_Freq_set_2

;--------------------------------------
;+ Baud rate change - UART mode +
;--------------------------------------
U_BPS_B0:
U_BPS_B1:
U_BPS_B2:
U_BPS_B3:
 mov.w #0,start_cnt
 mov.w #1,send_cnt
 bset send_flg
 jmp U_Flash_func_end ; jump Flash_func_end
;

M16C/62 Group
3

136

3.3 Sample List

 xor.b data_BPS,r1h
 mov.b r1h,data_BPS
U_Freq_set_2:
 bset freq_set2
 mov.b data_BPS+1,r1l
 sub.b data_BPS,r1l
 shl.b #-1,r1l
 add.b data_BPS,r1l
;
 mov.b r1l,buff ; 9600bps
 shl.b #-1,r1l ; 19200bps
 mov.b r1l,buff+1
 shl.b #-1,r1l ; 38400bps
 mov.b r1l,buff+2
 mov.b buff,r0l ; 57600bps
 mov.b #0,r0h
 divu.b #6
 mov.b r0l,buff+3
 mov.b buff,data_BPS
 mov.b #0b0h,r0l ; "B0h" set
 jsr U_blank_end ; UART mode Initialize
 jmp U_BPS_SET_data
;
;++
;+ Subroutine : serial I/O send - UART mode +
;++
U_SIO_send:
 bclr re_u1c1
 bset te_u1c1
 mov.b send_d,u1tb ; transmit buffer register
?:
 btst ti_u1c1 ; transmit buffer empty?
 jnc ?-
 rts
;
;++
;+ Subroutine : serial I/O send - UART mode +
;++
U_SIO_send_only:
 mov.b send_d,u1tb ; transmit buffer register
?:
 btst ti_u1c1 ; transmit buffer empty?
 jnc ?-
 rts

;++
;+ Subroutine : serial I/O receive - UART mode +
;++
U_SIO_rcv:
 bclr te_u1c1
 bset re_u1c1
?:
 btst ri_u1c1 ; receive complete?
 jnc ?-
 mov.w u1rb,rcv_d
 rts
;
;++
;+ Subroutine : serial I/O receive - UART mode +
;++
U_SIO_rcv_only:
?:
 btst ri_u1c1 ; receive complete?
 jnc ?-

3
M16C/62 Group

137

3.3 Sample List

 mov.w u1rb,rcv_d
 rts
;
;++
;+ Subroutine : serial I/O receive - UART mode +
;++
U_SIO_exit:
 btst txept_u1c0
 jnc U_SIO_exit
 rts
;
;==
;+ Vector Table +
;==
 .section inter,romdata
 .org Vector+(5*4)
 .lword Reset|0ff000000h ; WDT
;
 .org Vector+(7*4)
 .lword Reset|0ff000000h ; NMI
 .lword Reset ; Reset
;
 .end

M16C/62 Group
3

138

3.3 Sample List

Header

;**
;* file name : definition of M16C/62 Flash *
;**
;---
; BUSY output
;---
busy .btequ 4,03ECh ; p6_4
busy_d .btequ 4,03EEh ; pd6_4
;
;---
; Serial I/O select bit
;---
s_mode .btequ 5,03ECh ; p6_5
s_mode_d .btequ 5,03EEh ; pd6_5
;
;---
; define of symbols
;---
Ram_TOP .equ 000400h
Ram_END .equ 00fffh
Istack .equ 003000h
;
Version .equ 0fe000h
Boot_TOP .equ 0fe020h
Trans_TOP1 .equ 0fe310h
Trans_END1 .equ 0feb90h
Trans_TOP2 .equ 0fed00h
Trans_END2 .equ 0ff630h
Vector .equ 0fffdch
;
Download_program .equ 0fe200h
U_Download_program .equ 0fe270h
;
SB_base .equ 000400h
Ram_progTOP .equ 000600h
Ram_progEND .equ 000e00h
;
 .section memory,data
 .org Ram_TOP
;
SRD: .blkb 1
SRD1: .blkb 1
ver: .blkb 10
SF: .blkb 1
unuse: .blkb 4
addr_l: .blkb 1
addr_m: .blkb 1
addr_h: .blkb 1
data: .blkb 300
buff: .blkb 20
ID_err: .blkb 1
sum: .blkb 2
;
rcv_d: .blkb 2
send_d: .blkb 1
t_flg: .blkb 1
cmd_d: .blkb 1
loop_cnt: .blkw 1
send_cnt: .blkw 1
start_cnt: .blkw 1

3
M16C/62 Group

139

3.3 Sample List

SRD1_bak: .blkb 3
data_BPS: .blkb 2
;
sr0 .btequ 0,SRD
sr1 .btequ 1,SRD
sr2 .btequ 2,SRD
sr3 .btequ 3,SRD
sr4 .btequ 4,SRD
sr5 .btequ 5,SRD
sr6 .btequ 6,SRD
sr7 .btequ 7,SRD
sr8 .btequ 0,SRD1
sr9 .btequ 1,SRD1
sr10 .btequ 2,SRD1
sr11 .btequ 3,SRD1
sr12 .btequ 4,SRD1
sr13 .btequ 5,SRD1
sr14 .btequ 6,SRD1
sr15 .btequ 7,SRD1
;
ram_check .btequ 0,SF
blank .btequ 1,SF
old_mode .btequ 2,SF
freq_set0 .btequ 3,SF
freq_set1 .btequ 4,SF
freq_set2 .btequ 5,SF
;
tout_flg .btequ 0,t_flg
dwn_flg .btequ 1,t_flg
cmd_flg .btequ 2,t_flg
send_flg .btequ 3,t_flg
rcv_flg .btequ 4,t_flg
tint_flg .btequ 5,t_flg
;

M16C/62 Group
3

140

3.4 Precautions

3.4 Precautions

This section describes precautions to be observed when controlling the M16C/62's internal flash memory.

When Powering On/Off

When powering on/off, pay attention to the following:

(1) Be careful that noise will not get into the control pins (WE, CE, OE). If a noise pulse is applied to the

control pins when turning the power on or off, a program/erase error will occur, which in the worst case

may destroy the memory data.

(2) A finite wait time is required before you can start read or program/erase operation after power-on.

Specifically, a wait time of 2 µs is required before read or program/erase operation can be started after

Vcc reached Vccmin (3.0 V).

Chapter 4

M16C/80 Group
4.1 Outline of Hardware

4.2 Developing Boot Program

4.3 Sample Program List

4.4 Precautions

4

142

M16C/80 Group

4.1 Outline of Hardware

4.1 Outline of Hardware

The M16C/80 group contains DINOR-type flash memory.

This section shows hardware information about the M16C/80 group which we think is necessary to create a

boot program.

Internal Flash Memory Outline

Table 4.1.1 shows the outline performance of M30800FC/M30803FC of the M16C/80 group.

Table 4.1.1. Outline Performance of M30800FC and M30803FC

Item

Power supply voltage

Program/erase voltage

Flash memory operation mode

Erase block
division

Program method

Erase method

Program/erase control method

Protect method

Number of commands

Program/erase count

ROM code protect

Performance

5V version:
f(XIN)=20MHz, without wait, 4.2V to 5.5V

 f(XIN)=10MHz, without wait, 2.7V to 5.5V (under planning)

5V version: 4.2V to 5.5 V
f(XIN)=12.5MHz, with one wait

 f(XIN)=6.25MHz, without wait, 2.7 to 5.5V

Three modes (parallel I/O, standard serial I/O, CPU rewrite)

See Figure 4.1.1

One division (8 Kbytes) (Note 1)

In units of pages (in units of 256 bytes)

Collective erase/block erase

Program/erase control by software command

Protected for each block by lock bit

8 commands

100 times

Parallel I/O and standard serial modes are supported.

Note: The boot ROM area contains a standard serial I/O mode control program which is stored in
it when shipped from the factory. This area can be erased and programmed in only parallel
I/O mode.

User ROM area

Boot ROM area

4

143

M16C/80 Group

4.1 Outline of Hardware

0FC000016

0FD000016

Block 6 : 64K bytes

Block 5 : 64K bytes

0FE000016
Block 4 : 64K bytes

0FF000016
Block 3 : 32K bytes

0FF800016
Block 2 : 8K bytes

0FFA00016
Block 1 : 8K bytes

Block 0 : 16K bytes
0FFC00016

User ROM area

8K bytes
0FFE00016

0FFFFFF16 0FFFFFF16

Boot ROM area

Flash memory
start address

0FE000016

0FC000016

Note 1: The boot ROM area can be rewritten in
only parallel input/output mode. (Access
to any other areas is inhibited.)

Note 2: To specify a block, use the maximum
address in the block that is an even
address.

Flash memory
size

256Kbytes

128Kbytes

Memory Map

The user ROM of M30800FC has six blocks as block 0 to block 5 and that of M30803FC has seven blocks

as block 0 to block 6. Figure 4.1.1 shows the memory map.

Figure 4.1.1 Memory Map

4

144

M16C/80 Group

4.1 Outline of Hardware

Flash memory control register 0
Symbol Address When reset
FMR0 037716 XX0000012

WR

b7 b6 b5 b4 b3 b2 b1 b0

FMR00

Bit symbol Bit name Function R W

0: Busy (being written or erased)
1: Ready

CPU rewrite mode
select bit (Note 1)

0: Normal mode
 (Software commands invalid)
1: CPU rewrite mode
 (Software commands acceptable)

FMR01

0: Boot ROM area is accessed
1: User ROM area is accessed

Lock bit disable bit
(Note 2)

0: Block lock by lock bit data is
enabled

1: Block lock by lock bit data is
disabled

Flash memory reset bit
(Note 3)

0: Normal operation
1: Reset

Nothing is assigned.
When write, set "0". When read, values are indeterminate.

User ROM area select bit (
Note 4) (Effective in only
boot mode)

FMR02

FMR03

FMR05

0

Note 1: For this bit to be set to “1”, the user needs to write a “0” and then a “1” to it in
succession. When it is not this procedure, it is not enacted in “1”. This is necessary to
ensure that no interrupt or DMA transfer will be executed during the interval. Use the
control program except in the internal flash memory for write to this bit.

Note 2: For this bit to be set to “1”, the user needs to write a “0” and then a “1” to it in succession
when the CPU rewrite mode select bit = “1”. When it is not this procedure, it is not
enacted in “1”. This is necessary to ensure that no interrupt or DMA transfer will be
executed during the interval.

Note 3: Effective only when the CPU rewrite mode select bit = 1. Set this bit to 0 subsequently
after setting it to 1 (reset).

Note 4: Use the control program except in the internal flash memory for write to this bit.

A

AAA

AAA

A
A
AA
AA

AAA

AAA

RY/BY status flag

Flash memory control register 1

Symbol Address When reset
FMR1 037616 XXXX0XXX2

WR

b7 b6 b5 b4 b3 b2 b1 b0

Bit symbol Bit name Function R W

Flash memory power
supply-OFF bit (Note)

0: Flash memory power supply is
 connected
1: Flash memory power supply-off

FMR13

0

Note : For this bit to be set to “1”, the user needs to write a “0” and then a “1” to it in
succession. When it is not this procedure, it is not enacted in “1”. This is necessary to
ensure that no interrupt or DMA transfer will be executed during the interval. Use the
control program except in the internal flash memory for write to this bit.
During parallel I/O mode,programming,erase or read of flash memory is not controlled by
this bit,only by external pins.

A

AA

000 00

Reserved bit Must always be set to “0”

AReserved bit Must always be set to “0”

Reserved bit Must always be set to “0”

0

Related Register Configuration

Figure 4.1.2 shows related registers for making user boot program.

Figure 4.1.2 Related Register Configuration

ê´î\äTóv

4

145

M16C/80 Group

4.1 Outline of Hardware

Command

Page program

Clear status register

Read array

Read status register

X

X

X

X(Note 3)

First bus cycle Second bus cycle Third bus cycle

FF16

7016

5016

4116

Write

Write

Write

Write

X SRDRead

Write

Lock bit program X 7716Write BA D016Write

Erase all unlock block X A716Write X D016Write

WA1 WD1Write

(Note 2)

WA0(Note 3) WD0 (Note 3)

Block erase X 2016Write D016Write BA (Note 4)

Read lock bit status X 7116Write BA D6Read (Note 5)

Mode Address Mode Address Mode Address
Data

(D0 to D7)
Data

(D0 to D7)
Data

(D0 to D7)

(Note 6)

Note 1: When a software command is input, the high-order byte of data (D8 to D15) is ignored.
Note 2: SRD = Status Register Data
Note 3: WA = Write Address, WD = Write Data

WA and WD must be set sequentially from 0016 to FE16 (byte address; however, an even address). The page size is
256 bytes.

Note 4: BA = Block Address (Enter the maximum address of each block that is an even address.)
Note 5: D6 corresponds to the block lock status. Block not locked when D6 = 1, block locked when D6 = 0.
Note 6: X denotes a given address in the user ROM area (that is an even address).

Flash Control Circuit
The M16C/80's flash control circuit controls the block erase and page program operations performed on the

internal flash memory. Operation modes are selected by entering software commands to the flash control

circuit. The status shows the status of the flash control circuit, as well as the status of program and block

erase operations performed by the flash control circuit.

To enter commands to the flash control circuit, write the command to flash memory address.

Software commands

Flash memory operations are selected by writing a software command to the flash control circuit. The

table below lists the operations performed by software commands.

Table 4.1.2 Software Command List

Flash memory address

The table below shows the flash memory capacity of each block (address space, number of pages) and

the block addresses of each block.

Table 4.1.3 Flash Memory Address

Block 6

Block 5

Block 4

Block 3

Block 2

Block 1

Block 0 16 Kbytes

Page No.

256

256

256

128

32

32

64

Address

FC000016–FCFFFF16

FD000016–FDFFFF16

FE000016–FEFFFF16

FF000016–FF7FFF16

FF800016–FF9FFF16

FFA00016–FFBFFF16

FFC00016–FFFFFF16

Block address

FCFFFE16

FDFFFE16

FEFFFE16

FF7FFE16

FF9FFE16

FFBFFE16

FFFFFE16

8 Kbytes

8 Kbytes

32 Kbytes

64 Kbytes

64 Kbytes

64 Kbytes

Size

4

146

M16C/80 Group

4.1 Outline of Hardware

Read Array Command (FF 16)

The read array mode is entered by writing the command code “FF16” in the first bus cycle. When an even

address to be read is input in one of the bus cycles that follow, the content of the specified address is read

out at the data bus (D0–D15), 16 bits at a time. The read array mode is retained intact until another

command is written.

Read Status Register Command (70 16)

When the command code “7016” is written in the first bus cycle, the content of the status register is read out

at the data bus (D0–D7) by a read in the second bus cycle.

The status register is explained in the next section.

Clear Status Register Command (50 16)

This command is used to clear the bits SR3 to 5 of the status register after they have been set. These bits

indicate that operation has ended in an error. To use this command, write the command code “5016” in the

first bus cycle.

Page Program Command (41 16)

Page program allows for high-speed programming in units of 256 bytes. Page program operation starts

when the command code “4116” is written in the first bus cycle. In the second bus cycle through the 129th

bus cycle, the write data is sequentially written 16 bits at a time. At this time, the addresses A0-A7 need to

be increased by 2 from “0016” to “FE16.” When the system finishes loading the data, it starts an auto write

operation (data program and verify operation).

Whether the auto write operation is completed can be confirmed by reading the status register or the flash

memory control register 0. At the same time the auto write operation starts, the read status register mode

is automatically entered.

After the auto write operation is completed, the status register can be read out to know the result of the

auto write operation. For details, refer to the section where the status register is detailed.

The status register bit 7 (SR7) is set to 0 at the same time the auto write operation starts and is returned to

1 upon completion of the auto write operation. In this case, the read status register mode remains active

until the Read Array command (FF16) or Read Lock Bit Status command (7116) is written or the flash

memory is reset using its reset bit.

The RY/BY status flag of the flash memory control register 0 is 0 during auto write operation and 1 when

the auto write operation is completed as is the status register bit 7.

Figure 4.1.3 shows an example of a page program flowchart.

Each block of the flash memory can be write protected by using a lock bit. For details, refer to the section

where the data protect function is detailed.

Additional writes to the already programmed pages are prohibited.

4

147

M16C/80 Group

4.1 Outline of Hardware

n = FE16

Start

Write 4116

n = 0

Write address n and
data n

RY/BY status flag
= 1?

Check full status

Page program
completed

n = n + 2

NO

YES

NO

YES

Figure 4.1.3 Page Program Flowchart

4

148

M16C/80 Group

4.1 Outline of Hardware

Block Erase Command (20 16/D016)

By writing the command code “2016” in the first bus cycle and the confirm command code “D016” in the

second bus cycle that follows to the block address of a flash memory block, the system initiates an auto

erase (erase and erase verify) operation.

Whether the auto erase operation is completed can be confirmed by reading the status register or the flash

memory control register 0. At the same time the auto erase operation starts, the read status register mode

is automatically entered, so the content of the status register can be read out. The status register bit 7

(SR7) is set to 0 at the same time the auto erase operation starts and is returned to 1 upon completion of

the auto erase operation. In this case, the read status register mode remains active until the Read Array

command (FF16) or Read Lock Bit Status command (7116) is written or the flash memory is reset using its

reset bit.

The RY/BY status flag of the flash memory control register 0 is 0 during auto erase operation and 1 when

the auto erase operation is completed as is the status register bit 7.

After the auto erase operation is completed, the status register can be read out to know the result of the

auto erase operation. For details, refer to the section where the status register is detailed.

Figure 4.1.4 shows an example of a block erase flowchart.

Each block of the flash memory can be protected against erasure by using a lock bit. For details, refer to

the section where the data protect function is detailed.

Figure 4.1.4 Block Erase Flowchart

Write 7716

Write D016
to block address

SR4 = 0?
NO

Lock bit program
completed

Lock bit program in
error

YES

Start

RY/BY status flag
= 1?

NO

YES

4

149

M16C/80 Group

4.1 Outline of Hardware

Erase All Unlock Blocks Command (A7 16/D016)

By writing the command code “A716” in the first bus cycle and the confirm command code “D016” in the

second bus cycle that follows, the system starts erasing blocks successively.

Whether the Erase All Unlock Blocks command is terminated can be confirmed by reading the status

register or the flash memory control register 0, in the same way as for block erase. Also, the status register

can be read out to know the result of the auto erase operation.

When the lock bit disable bit of the flash memory control register 0 = 1, all blocks are erased no matter how

the lock bit is set. On the other hand, when the lock bit disable bit = 0, the function of the lock bit is effective

and only unlocked blocks (where lock bit data = 1) are erased.

Lock Bit Program Command (77 16/D016)

By writing the command code “7716” in the first bus cycle and the confirm command code “D016” in the

second bus cycle that follows to the block address of a flash memory block, the system sets the lock bit for

the specified block to 0 (locked).

Figure 4.1.5 shows an example of a lock bit program flowchart. The status of the lock bit (lock bit data) can

be read out by a Read Lock Bit Status command.

Whether the lock bit program command is terminated can be confirmed by reading the status register or

the flash memory control register 0, in the same way as for page program.

For details about the function of the lock bit and how to reset the lock bit, refer to the section where the data

protect function is detailed.

Figure 4.1.5 Lock Bit Program Flowchart

Write 7716

Write D016
to block address

SR4 = 0?
NO

Lock bit program
completed

Lock bit program in
error

YES

Start

RY/BY status flag
= 1?

NO

YES

4

150

M16C/80 Group

4.1 Outline of Hardware

Read Lock Bit Status Command (71 16)

By writing the command code “7116” in the first bus cycle and then the block address of a flash memory

block in the second bus cycle that follows, the system reads out the status of the lock bit of the specified

block on to the data (D6).

Figure 4.1.6 shows an example of a read lock bit program flowchart.

Figure 4.1.6 Read Lock Bit Program Flowchart

Data Protect Function (Block Lock)

Each block in Figure 4.1.1 has a nonvolatile lock bit to specify that the block be protected (locked) against

erase/write. The Lock Bit Program command is used to set the lock bit to 0 (locked). The lock bit of each

block can be read out using the Read Lock Bit Status command.

Whether block lock is enabled or disabled is determined by the status of the lock bit and how the flash

memory control register 0’s lock bit disable bit is set.

(1) When the lock bit disable bit = 0, a specified block can be locked or unlocked by the lock bit status (lock

bit data). Blocks whose lock bit data = 0 are locked, so they are disabled against erase/write.

On the other hand, the blocks whose lock bit data = 1 are not locked, so they are enabled for erase/

write.

(2) When the lock bit disable bit = 1, all blocks are unlocked regardless of the lock bit data, so they are

enabled for erase/write. In this case, the lock bit data that is 0 (locked) is set to 1 (unlocked) after

erasure, so that the lock bit-actuated lock is removed.

Write 7116

Enter block address

D6 = 0?
NO

Blocks locked Blocks not locked

YES

Start

(Note)

Note: Data bus bit 6.

4

151

M16C/80 Group

4.1 Outline of Hardware

Status Register

The status register indicates the operating status of the flash memory and whether an erase or program

operation has terminated normally or in an error. The content of this register can be read out by only

writing the read status register command (7016). Table 4.1.3 details the status register.

The status register is cleared by writing the Clear Status Register command (5016).

After a reset, the status register is set to “8016.”

Each bit in this register is explained below.

Write state machine (WSM) status (SR7)
After power-on, the write state machine (WSM) status is set to 1.

The write state machine (WSM) status indicates the operating status of the device, as for output on the

RY/BY pin. This status bit is set to 0 during auto write or auto erase operation and is set to 1 upon

completion of these operations.

Erase status (SR5)
The erase status informs the operating status of auto erase operation to the CPU. When an erase error

occurs, it is set to 1.

The erase status is reset to 0 when cleared.

Program status (SR4)
The program status informs the operating status of auto write operation to the CPU. When a write error

occurs, it is set to 1.

The program status is reset to 0 when cleared.

When an erase command is in error (which occurs if the command entered after the block erase com-

mand (2016) is not the confirm command (D016), both the program status and erase status (SR5) are set

to 1.

When the program status or erase status = 1, the following commands entered by command write are not

accepted.

Also, in one of the following cases, both SR4 and SR5 are set to 1 (command sequence error):

(1) When the valid command is not entered correctly

(2) When the data entered in the second bus cycle of lock bit program (7716/D016), block erase (2016/

D016), or erase all unlock blocks (A716/D016) is not the D016 or FF16. However, if FF16 is entered,

read array is assumed and the command that has been set up in the first bus cycle is canceled.

Block status after program (SR3)
If excessive data is written (phenomenon whereby the memory cell becomes depressed which results in

data not being read correctly), “1” is set for the program status after-program at the end of the page write

operation. In other words, when writing ends successfully, “8016” is output; when writing fails, “9016” is

output; and when excessive data is written, “8816” is output.

4

152

M16C/80 Group

4.1 Outline of Hardware

Full Status Check

By performing full status check, it is possible to know the execution results of erase and program operations.

Figure 4.1.7 shows a full status check flowchart and the action to be taken when each error occurs.

Figure 4.1.7 Full Status Check Flowchart and Remedial Procedure for Errors

Read status register

SR4=1 and SR5
=1 ?

NO

Command
sequence error

YES

SR5=0?

YES

Block erase error
NO

SR4=0?

YES

Program error (page
or lock bit)

NO

SR3=0?

YES

Program error
(block)

NO

End (block erase, program)

Execute the clear status register command (5016)
to clear the status register. Try performing the
operation one more time after confirming that the
command is entered correctly.

Should a block erase error occur, the block in error
cannot be used.

Execute the read lock bit status command (7116)
to see if the block is locked. After removing lock,
execute write operation in the same way. If the
error still occurs, the page in error cannot be
used.

After erasing the block in error, execute write
operation one more time. If the same error still
occurs, the block in error cannot be used.

Note: When one of SR5 to SR3 is set to 1, none of the page program, block erase,
erase all unlock blocks and lock bit program commands is accepted. Execute the
clear status register command (5016) before executing these commands.

Table 4.1.4 Definition of Each Bit in Status Register

Each bit of
SRD

SR4 (bit4)

SR5 (bit5)

SR7 (bit7)

SR6 (bit6)

Status name
Definition

SR1 (bit1)

SR2 (bit2)

SR3 (bit3)

SR0 (bit0)

"1" "0"

Program status

Erase status

Write state machine (WSM) status

Reserved

Reserved

Reserved

Block status after program

Reserved

Ready Busy

Terminated in error

Terminated in error

Terminated in error

Terminated normally

Terminated normally

Terminated normally

-

-

-

-

-

-

-

-

4
M16C/80 Group

153

4.2 Developing The Boot Program

4.2 Developing The Boot Program

The standard boot program that was built into the boot ROM area of the flash microcomputer when shipped

from the factory can be used to program/erase the flash memory. In this case, the hardware resources

(internal functions) used for control are fixed. Therefore, if you want to control flash memory in the way

suitable for your system, you need to create a boot program for yourself.

This section shows an algorithm for the boot program (e.g., for erase and program) that you must at least

have in order to control the flash memory of the M16C/80 group.

System Example

By using the internal peripheral function of UART0 and a serial programmer to control flash memory, the

following shows an example of device connections is shown in Figure 4.2.1. Assignments of internal

peripheral functions are listed in Table 4.2.1.

Figure 4.2.1 Example of Device Connection

Table 4.2.1 Assignments of Internal Peripheral Functions

Usage Setting example

UART1 Used for transfer/receive of serial
programmer and data

• Clock synchronous serial I/O
• External clock is used

Timer A0 Used for time-over judgment of serial
transfer/receive

• One-shot timer mode
• 300 µs(when 20MHz)

Peripheral function

RTS1(BUSY)

CLK1

RXD1

TXD1

CNVss

Clock input

BUSY output

Data input

Data output

P50(CE)

P55(EPM)

M16C/80 flash
memory version

(1) Control pins and external circuitry will vary according to peripheral unit (programmer). For more
information, see the peripheral unit (programmer) manual.

(2) In this example, the microprocessor mode and standard serial I/O mode are switched via a switch

NMI

M16C/80 Group
4

154

4.2 Developing The Boot Program

Flow of The Main Processing

Figure 4.2.2 shows a flow of the main processing.

After initializing the CPU, transfer the write control program to RAM. When transfer is finished, jump to

RAM and execute the write control program from RAM.

Figure 4.2.2 Flow of The Main Processing

Initial setting 2
Initial setting 1

Transfer to RAM

JMP to
RAM

RAM transfer program on ROM Write control program on RAM

CPU programming mode

Data receive

Command processing

Data transfer

Time out processing

4
M16C/80 Group

155

4.2 Developing The Boot Program

Initialization 1 (CPU, Memory)

The CPU and RAM are initialized. Figure 4.2.3 shows a flow of initialization 1. To clear RAM, use of string

instructions (e.g., SSTR.W) will prove effective.

Figure 4.2.3 Initialization 1

Initial setting 1

Set ISP and SB

Set 'H" to BUSY pin

Protect release

Set system clock
control register

Set processor mode
register

Set protect

Port 6 (P6: address 03EC16)
b4

Protect register (PRCR: address 000A16)

11

Port 6 direction register (PD6: address 032C16)

1
b4

System clock write enabled
Processor mode register write enabled

0 0 0 0 1 0 0 0

System clock control register 0 (CM0: address 000616)

System clock control register 1(CM1: address 000716)

Processor mode register 0(PM0: address 000416)

Processor mode register 1(PM1: address 000516)

1

Set 'H' data

Set output port

b1 b0

0 0 1 0 0 0 0 0

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0

b7 b6 b5 b4 b3 b2 b1 b0

1 1 0 0 0 0 0 0

1 wait

END

RAM clear R0 #0000H

A1 #0400H

R3

Set initial value

Set top address of RAM

Programing control program size /2+α

After setting these registers, execute SSTR.W

Function select register A0 (PS0: address 03B016)
b4

1

Set P64 I/O port

System clock control register 1(CM1: address 000C16)

0 0 0 0 0 1 0 0

Divided by-4 mode

b7 b6 b5 b4 b3 b2 b1 b0

M16C/80 Group
4

156

4.2 Developing The Boot Program

Transfer to RAM Area

The version information of write program and write control program are transferred to RAM. After transferring,

jump to write control program on RAM. To transfer, use of string instructions will prove effective.

Figure 4.2.4 shows the algorithm.

Figure 4.2.4 Transfer to RAM Area

 Initialization 2

Set of write to Flash memory and initialization of serial communication are executed. To switch erase/write

mode, clear the CPU rewrite mode select bit (bit 1 of address 37716), then set 1.

Figure 4.2.5 shows a algorithm.

Figure 4.2.5 Initialization 2

Transfer to RAM

Transfer preparing

Transfer

Jump to RAM area

A0

A1

R3

Set source address (low-order 16 bits)

Set destination address

Execute SMOVF.W

R0H Set source address (high-order 4 bits)

JMP

END

Transfer version information

Programing control program size /2+a

Initial setting 2

Select user ROM area b7 b6 b5 b4 b3 b2 b1 b0

 1

Select user ROM area

Flash memory control register 0 (address 037716)

Change to CPU rewrite
mode

b7 b6 b5 b4 b3 b2 b1 b0

 0

CPU rewrite mode

Flash memory control register 0 (address 037716)

 1

Write '0', and then '1'.

Go to initial setting of
peripheral function

4
M16C/80 Group

157

4.2 Developing The Boot Program

Set UART1

Set timer

UART1 transmit/receive mode register (U1MR: address 036816)
b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 1 0 0 1

Clock synchronous serial I/O mode
External clock

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 1 0 0

(f1)
RTS function
CTS/RTS function enabled
TxD CMOS output
LSB first

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 1 0 1

Transfer enabled
Receive enabled

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 1 0

One-shot timer mode
No pulse output
One-shot start flag is valid
f1

#6000-1 When 20MHz, 300µs

UART1 transmit/receive control register 0 (U1C0: address 036C16)

UART1 transmit/receive control register 1 (U1C1: address 036D16)

Timer A0 mode register (TA0MR: address 035616)

Timer A0 register (TA0: address 034716,034616)

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0

(Transfer buffer empty)
(Continuous receive mode disabled)
CLK1 clock output
CLK normal mode first
CTS/RTS shared pin

UART transmit/receive control register 2 (UCON: address 037016)

From initial setting 2

END

b7 b6 b5 b4 b3 b2 b1 b0

0 0 0 0 0 0 0 0

RTS1 output

Function select register B0 (PSL0: address 03B216)

b7 b6 b5 b4 b3 b2 b1 b0

1 0 0 1 0 0 0 0

P64 peripheral function output (PSL0_4 enabled)
P65 I/O port
P67 TxD1 output

Function select register A0 (PS0: address 03B016)

Initialization 2 (Peripheral Function)

The peripheral functions used for programming flash memory is initialized. Figure 4.2.6 shows initialization

of UART1 for data transmit and timer A0 for time-out calculation.

Figure 4.2.6 Initialization 2 (Peripheral Function)

M16C/80 Group
4

158

4.2 Developing The Boot Program

Receiving Commands

Commands are received from the serial programmer.

Write dummy data to the transmit buffer, enable reception (the BUSY signal = low), and wait for data from

the serial programmer. At the timing of start reception (the BUSY signal = high), the timer used to check

data reception time-out is started. When data is not received within 300 µsec, a time-out error is judged

and time-out processing flag is set.

When command reception flag is set (cmd_flg = "1"), processing jumps to data reception cycle

number check processing. When it is not set (cmd_flg = "0"), command reception flag is set. After that,

jump address is set based on the received serial command and processing jumps to the corresponding

process. When the serial command is not matched, serial initialization flag is set and processing is ended.

When the number of receive cycle matches to the prescribed number of serial reception command, command

reception flag is initialized (cmd_flg = "0") and processing is ended.

Figure 4.2.7 shows a processing flow.

4
M16C/80 Group

159

4.2 Developing The Boot Program

Flag initialization

RTS

Flag initialization

> 300 µsec?

Y

NSet time-out
processing flag

Loop counter + 1

Set jump address

Address setting
finished?

Command?

ID command receive

Reception cycle
completed?

Over

FFh

N

Is command
receive flag set?

Is reception
completed?

Set serial
initialization flag

Write to transfer buffer
register

Start one-shot timer

Read receive buffer
r3<=3

Y

N

Set write address

Write to data buffer

Set reception cycle

BUSY = 'H' ?

Data receive

Is command receive
flag set ?

Set command receive
flag

Except command

Command except FFh

A

A

A

Y

N

N

Y

Y

N

Figure 4.2.7 Data Reception

M16C/80 Group
4

160

4.2 Developing The Boot Program

ID Check Receive Process

ID check data is received. Transferred ID data is saved to RAM.

Figure 4.2.8 shows a process flow.

Figure 4.2.8 ID Data Receive Process

Receive Cycle Setting Process

Data receive cycle is set by referring to transferred serial command.

Figure 4.2.9 shows process flow.

Figure 4.2.9 Receive Cycle Setting Process

End

r3=a1

r3=/a1

r3=/4

r3=4

ID check receive
processing

r3=r3+1

Write to transmit buffer
register

Start one-shot timer

>300 µsec?Over

r3=ID size(a1)?

Set ID size (a1)
temporarily

Read the receive buffer
register

Reception
completed?

Y

N

Store reception data to
RAM

r3=4?

Set "ID size+4" to a1

Transfer/receive cycles
r3=0

Set time-out
processing flag

N

Reception cycle setting

Set the prescribed receive
cycle to receive cycle buffer

End

4
M16C/80 Group

161

4.2 Developing The Boot Program

Command Processing

Flash control command is written into memory by referring to received serial programmer command.

The ID check is checked as to whether it has been completed or not. (ID check completed bits:

SR10 = 1, SR11 = 1) When the ID check has been completed, decisions are made on commands such as

page read and page program, and processing branches to the process in the match commands.

When the ID check has not been completed, decisions are made on 3 types of commands such as ID

processing, and processing jumps to the process in the match commands. With mismatch commands,

processing returns to main part.

Figure 4.2.10 shows processing flow.

Figure 4.2.10 Command Processing

FBh

Page readFFh

Page program
41h

Block erase20h

Erase all unlock blocksA7h

Clear status register50h

Read lock bit status71h

Lock bit program77h

Lock bit valid
7Ah

Lock bit invalid75h

70h

Read receive buffer
register

other

Y

N

Time-out processing
flag set?

Command?

NG

OK

ID check completed?
SR11=1?

Command process

ID checkF5h

Read status register

Version information
output

End

M16C/80 Group
4

162

4.2 Developing The Boot Program

Page Read

To read data from the user area in blocks of 256 bytes, read address is stored to RAM and Read Array

command (FF16) is written. The address of the read area is changed from xxxx0016 to xxxxFF16, and the

data following xxxx0016 is transferred in succession.

Figure 4.2.11 shows processing flowchart.

Figure 4.2.11 Page Read

r3<2

r3=2

Write read array
command

End

Page read

Receive cycles r3=0

r3=r3+1

Set low-order address,
addr_l=0

Set reception address

Set transfer flag

Store reception data to
address buffer

r3=2?

Read data buffer

4
M16C/80 Group

163

4.2 Developing The Boot Program

Page Program

Data is written into the user area in blocks of 256 bytes.

Read 258 bytes data from RAM: 2 bytes of address and 256 bytes of write data received from serial

programer. Status data is read from the flash memory. The read status is checked. When it is under error

state, processing does not write but returns to the main part.

When it is not under error state, the page program command (4116) is written in the flash memory, then 256

bytes of data is written. After data has been written, the read array command (FF16) is written and processing

returns to the main part.

Figure 4.2.12 shows processing flow.

Figure 4.2.12 Page Program

r3<258

r3=r3+1

Set reception address

Read the receive buffer
register

r3=258?

Write cycles r3=0

Write the page program
command

r3=258

End

r3>=255

r3<255

Read RAM data

Write data to flash

Read array command

Read status command

Read array command

OK

ErrorStatus error?

Page program

Store the reception data
to RAM

r3=255?

Increase write address
by 2

r3 = r3 + 2

Receive cycles
r3=0

Set low-order address,
addr_l=0

M16C/80 Group
4

164

4.2 Developing The Boot Program

Block Erase

A specified block area of the flash memory is erased. However, blocks that are locked by Lock Bit Program

command cannot be erased. To erase these blocks, you need to disable the lock bit.

After confirming the two bytes of address and one byte of confirm command (D016) received from the serial

programmer and stored in RAM, write Block Erase command (2016) and confirm command (D016) to the

area specified by the received address for block erase processing.

If the received confirm command is incorrect, block erase processing cannot be performed. In this case,

write Read Array command (FF16) to the flash memory to return the processing to the main routine.

Figure 4.2.13 shows a processing flow.

Figure 4.2.13 Block Erase

Block erase

r3=r3+1

Set reception address

r3=4?

Set low-order address,
addr_l=0FEh

r3 < 4

r3 = 4

Read the receive buffer
register

Store reception data to
RAM

Confirm the
confirm

command
OK

NG

Write confirm
command

Write the block erase
command

Write read array
command

End

Receive cycles
r3=1

Initialize transfer flag

4
M16C/80 Group

165

4.2 Developing The Boot Program

Erase All Unlock Blocks

A specified block area of the flash memory is erased. However, blocks that are locked by Lock Bit Program

command cannot be erased. To erase these blocks, you need to disable the lock bit.

When the all erase command is received from a serial programmer, receive more 1 byte data in succession.

After the second data is checked to see if it is confirm command (D016), write Erase All Unlock command

(2016) and confirm command (D016) to the area specified by the received address for erase all unlock

blocks processing.

If the received confirm command is incorrect, erase all unlock blocks processing cannot be performed. In

this case, write Read Array command (FF16) to the flash memory to end the processing.

Figure 4.2.14 shows a processing flow.

Figure 4.2.14 Erase All Unlock Block

Erase all unlock blocks

Confirm the
confirm command

OK

NG

Read the receive
buffer register

Write confirm
command

Write the erase all
unlock block command

Write read array
command

End

Set dummy address

Initialize transfer flag

Set read address

M16C/80 Group
4

166

4.2 Developing The Boot Program

Read Status Register

Two bytes of status data indicating the flash memory's operating status is stored to RAM to transmit via

serial I/O.

Write the Read Array command (FF16) to the flash memory, then write the Read Status command (7016).

After status register reception, write the Read Array command and return to the main routine.

Figure 4.2.15 shows a processing flow.

Figure 4.2.15 Read Status Register

Read status register

Transfer/receive cycles
r3=0

Set dummy address

End

Clear timer interrupt
request flag

Read SRD

Write read array
command

Initialize transfer flag

Write read array
command

Write read status
register command

4
M16C/80 Group

167

4.2 Developing The Boot Program

Clear Status Register

Status register error information is cleared.

The Read Array command (FF16), Clear Status command (5016) and Read Array command (FF16) are

written into the flash memory in succession.

The logic sum for the status register 1 (SRD1) is obtained on 9C16 and the error flag is cleared. Processing

returns to the main part.

Figure 4.2.16 shows a processing flow.

Figure 4.2.16 Clear Status Register

Clear status register

End

Clear SRD1 error flag

Set dummy address

Write read array
command

Write clear status
register command

Write read array
command

Initialize transfer flag

M16C/80 Group
4

168

4.2 Developing The Boot Program

Read Lock Bit Status

One byte of data indicating the lock status of each individual block in the flash memory is saved via serial

I/O. Of the 1-byte data, the 6th bit indicates lock status. When "1", the block is unlocked. When "0", the

block is locked.

After receiving two byte of data indicating address, store specified address in the address buffer. At this

time, set #FE16 to the low order address.

The Read Array command (FF16) and the Read Lock Bit command (7116) are written and, there after, the

lock bit information is read from the flash memory. After the lock bit information has been read, the Read

Array command (FF16) is written again. Processing then returns to main part.

Figure 4.2.17 shows a processing flow.

Figure 4.2.17 Read Lock Bit Status

Read the read lock
bit data

Write the read array
command

Write the read lock bit
status command

End

r3<3

Read lock bit status

r3=r3+1

Set read address

Set low-order address,
addr_l=0FEh

Read the receive buffer
register

Store the reception data
to address buffer

r3<3?

r3=3

Transfer/receive cycles
r3=1

Set transfer flag

4
M16C/80 Group

169

4.2 Developing The Boot Program

Write the confirm
command

Write the read array
command

Write the lock bit
program command

End

NG

OK

r3<4

r3=4

Lock bit program

r3=r3+1

Transfer/receive cycles
r3=1

Confirm confirm
command

Set low-order address,
addr_l=0FEh

Read the receive buffer
register

Store reception data to
address buffer

r3=4?

Initialize transfer flag

Set read address

Lock Bit Program

Blocks in the flash memory is locked. Locked block areas cannot be erased.

After receiving two byte of data indicating address, store specified address in the address buffer. At this

time, set #FE16 to the low order address.

If the Received Confirm command is incorrect, lock bit program processing cannot be performed. If correct,

for lock bit program processing, write the Lock Bit Program command (7716) to the flash memory and the

Confirm command (D016) in succession. Write Read Array command (FF16) and processing returns to the

main part.

Figure 4.2.18 shows a processing flow.

Figure 4.2.18 Lock Bit Program

M16C/80 Group
4

170

4.2 Developing The Boot Program

Lock Bit Enable/Disable

Enables/disables the lock bit function of flash memory. The lock bit disable command cancels the lock on

all blocks.

To enable the lock bit, "0" is written for the lock bit cancel bit. To disable the lock bit, "0" followed by "1" is

written for the lock bit cancel bit.

Figure 4.2.19 shows a processing flow.

Figure 4.2.19 Lock Bit Enable/Disable

Lock bit valid

End

Clear the lock bit
cancel bit

Lock bit invalid

Set the lock bit
cancel bit to "1"

End

Clear the lock bit
cancel bit

Initialize transfer flag

Initialize transfer flag

4
M16C/80 Group

171

4.2 Developing The Boot Program

OK

Blank flag?Blank

Not blank

Check address & ID
size

Error

Read ID data from flash

ID check

r3=r3+1

r3=8?

ID check cycles r3=1

ID check completed
SR11=1, SR10=1

End

OK

Error

r3=8

r3<8

ID check

Initialize transfer flag

ID check error
SR11=0, SR10=1

ID Check

The ID data stored in the flash memory is compared with the data received by serial I/O. This process

judges whether the flash memory is blank or not. When blank, the ID check is ended and processing

returns to the main part. When something is written in the ROM, the received ID address, the ID data size

and ID data contents are checked. When mismatch, ID check error is generated (SR10 = 1, SR11 = 0) and

processing returns to the main part. When match, the ID check is ended (SR10 = 1, SR11 = 1) and

processing returns to the main part.

Figure 4.2.20 shows a processing flow.

Figure 4.2.20 ID Check

M16C/80 Group
4

172

4.2 Developing The Boot Program

Initialize transfer flag

Timer initialization

Command?

Is timer-out
processing flag

set?

Read receive
command

Is transfer flag set?

Data transfer

N

Y

FBh

Page read outputFFh

Read status register output70h

Read lock bit status output71h

other

End

Version information output

N

Y

Version Information Output

Transfer flag is set to transfer the version information of the boot program via serial I/O.

Figure 4.2.21 shows a processing flow.

Figure 4.2.21 Version Information Output

Data Transfer Processing

The result of process after receiving a control command from serial programer is transfered via serial I/O.

When transfer flag is 0, or time-out flag is 1, the processing returns to the main part. Otherwise next

process is executed. Command buffer is read, the serial command is compared, and processing branches

to the process in the match commands. After processing, initialize the transfer flag and return to main part.

With mismatch command, initialize the transfer flag and return to main part.

Figure 4.2.22 shows a processing flow.

Figure 4.2.22 Data Transfer

Version information
output

End

Set transfer flag

4
M16C/80 Group

173

4.2 Developing The Boot Program

Page Read Transfer Processing

Data from the user area in blocks of 256 bytes is read and the read data is sent via serial I/O.

Data is read from the flash memory and set to transfer buffer register. The timer used to check data

reception time-out is started. When data is not received within 300 msec, a time-out error is judged, time-

out processing flag is set and processing jumps to data transfer processing. After 256 bytes of data is

received, processing jumps to data transfer processing.

Figure 4.2.23 shows a processing flow.

Figure 4.2.23 Page Read Transfer Processing

End
r3=256

r3=/256

Page read

r3=r3+1

Transfer/receive cycles
r3=0

Write to transmit buffer
register

Start one-shot timer

>300 µsec?Over

Read data

Read the receive buffer
register

Reception
completed?

Y

N
Set time-out

processing flag

Address = address + 1

r3=256?

M16C/80 Group
4

174

4.2 Developing The Boot Program

Read Status Register Transfer Processing

The two-byte status data (SRD: status register and SRD1: status register 1) that indicates flash memory

operating status is sent via serial I/O.

The SRD is read from flash memory and written into transmit buffer register. The timer used to check data

reception time-out is started. When data is not received within 300 msec, a time-out error is judged, time-

out processing flag is set and processing jumps to data transfer processing. After data reception is

completed, receive buffer register is read.

The SRD1 is read from flash memory and written into transmit buffer register. The timer used to check

data reception time-out is started. When data is not received within 300 msec, a time-out error is judged,

time-out processing flag is set and processing jumps to data transfer processing. After data reception is

completed, reception buffer register is read and processing returns to data transfer processing.

Figure 4.2.24 shows a processing flow.

Figure 4.2.24 Read Status Register Transfer Processing

Read status register
output

Transfer/receive cycles
r3=0

End

r3<2

r3=2

r3=r3+1

Write to transmit buffer
register

Start one-shot timer

>300 µsec?Over

Read the receive buffer
register

Reception
completed?

Y

N
Set time-out

processing flag

Read SRD1

r3=2?

Clear timer interrupt
request flag

4
M16C/80 Group

175

4.2 Developing The Boot Program

Read Lock Bit Status Transfer Processing

The lock bit status that set in command processing is sent via serial I/O.

The lock bit status data that set in command processing is read from RAM and written into transmit buffer

register. The timer used to check data reception time-out is started. When data is not received within 300

msec, a time-out error is judged, time-out processing flag is set and processing jumps to data transfer

processing. After data reception is completed, processing jumps to data transfer processing.

Figure 4.2.25 shows a processing flow.

Figure 4.2.25 Read Lock Bit Data Transfer Processing

End

Read lock bit status
output

Write to transmit buffer
register

Start one-shot timer

>300 µsec?
Over

Read the receive buffer
register

Reception
completed?

Y

N
Jump to time-out

processing

M16C/80 Group
4

176

4.2 Developing The Boot Program

Version Information Output Processing

The version information of boot program is sent via serial I/O.

Version information is read and written in the transmit buffer register.

The timer used to check data reception time-out is started. When data is not received within 300 msec, a

time-out error is judged, time-out processing flag is set and processing jumps to data transfer processing.

After all version information is send, processing jumps to data transfer processing.

Figure 4.2.26 shows a processing flow.

Figure 4.2.26 Version Information Output Processing

Version information
output

Transfer/receive cycles
a0=0

End

a0<8

a0=8

a0=a0+1

Write version information
to transfer buffer register

Start one-shot timer

>300 µsec?Over

Read the receive buffer
register

Reception
completed?

Y

N
Set time-out

processing flag

a0=8?

4
M16C/80 Group

177

4.2 Developing The Boot Program

Time-Out Processing

When time-out flag is set, serial I/O and time-out flag are initialized.

Figure 4.2.27 shows a processing flow.

Figure 4.2.27 Time-Out Processing

Command Write

Commands are written in the flash memory. Commands are accepted when the flash memory is in the

ready state (RY/BY signal status flag [bit 0 in address 03B716 of the flash memory

control register] is "1").

Figure 4.2.28 shows a processing flow.

Figure 4.2.28 Command Write

Time-out process

Time-out flag
(SRD1)=1

Initial setting 2
UART1 setting

End

Is serial initialization
flag set?

Y

NIs time-out
processing flag set?

Y

Initialize time-out
processing flag

Initialize serial I/O
initiallization flag

N

Write command

RY/BY=1?

Y

N

Set address

Write command

RTS

M16C/80 Group
4

178

4.2 Developing The Boot Program

Status Register (SRD)

The status register indicates operating status of the flash memory and status such as whether an erase

operation or a program ended successfully or in error. It can be read by writing the read status register

command (7016). Also, the status register is cleared by writing the clear status register command (5016).

Table 4.2.2 shows the definition of each status register bit. After clearing the reset, the status register

outputs "8016".

Table 4.2.2 Status Register (SRD)

Write State Machine (WSM) Status (SR7)
The write state machine (WSM) status indicates the operating status of the flash memory. When power is

turned on, "1" (ready) is set for it. The bit is set to "0" (busy) during an auto write or auto erase operation,

but it is set back to "1" when the operation ends.

Erase Status (SR5)
The erase status reports the operating status of the auto erase operation. If an erase error occurs, it is set

to "1". When the erase status is cleared, it is set to "0".

Program Status (SR4)
The program status reports the operating status of the auto write operation. If a write error occurs, it is set

to "1". When the program status is cleared, it is set to "0".

Block Status After Program (SR3)
If excessive data is written (phenomenon whereby the memory cell becomes depressed which results in

data not being read correctly), "1" is set for the block status after-program at the end of the page write

operation. In other words, when writing ends successfully, "8016" is output; when writing fails, "9016" is

output; and when excessive data is written, "8816" is output.

If "1" is written for any of the SR5, SR4 or SR3 bits, the Page Program, Block Erase, Erase All Unlocked

Blocks and Lock Bit Program commands are not accepted. Before executing these commands, execute

the Clear Status Register command (5016) and clear the status register.

Each bit of
SRD

SR4 (bit4)

SR5 (bit5)

SR7 (bit7)

SR6 (bit6)

Status name
Definition

SR1 (bit1)

SR2 (bit2)

SR3 (bit3)

SR0 (bit0)

"1" "0"

Program status

Erase status

Write state machine (WSM) status

Reserved

Reserved

Reserved

Block status after program

Reserved

Ready Busy

Terminated in error

Terminated in error

Terminated in error

Terminated normally

Terminated normally

Terminated normally

-

-

-

-

-

-

-

-

4
M16C/80 Group

179

4.2 Developing The Boot Program

Each bit of
SRD1

SR12 (bit4)

SR13 (bit5)

SR15 (bit7)

SR14 (bit6)

Status name
Definition

SR9 (bit1)

SR10 (bit2)
SR11 (bit3)

SR8 (bit0)

"1" "0"

Checksum match bit

Reserved

Boot update completed bit

Reserved

Data receive time out

ID check completed bits

Reserved

Update completed Not update

-

Match

-

Mismatch

-

Time out

-

Normal operation

-

-

00 Not verified
01 Verification mismatch
10 Reserved
11 Verified

Status Register 1 (SRD1)

Status register 1 indicates the status of serial communications, results from ID checks and results from

check sum comparisons. It can be read after the SRD by writing the Read Status Register command

(7016).

Also, status register 1 is cleared by writing the Clear Status Register command (5016).

Table 4.2.3 gives the definition of each status register 1 bit. "0016" is output when power is turned ON and

the flag status is maintained even after the reset.

Table 4.2.3 Status Register 1 (SRD1)

Boot Update Completed Bit (SR15)
This flag indicates whether the control program was downloaded to the RAM or not, using the download

function.

Checksum Match Bit (SR12)
This flag indicates whether the check sum matches or not when a program, is downloaded for execution

using the download function.

ID Check Completed Bits (SR11 and SR10)
These flags indicate the result of ID checks. Some commands cannot be accepted without an ID check.

Data Reception Time Out (SR9)
This flag indicates when a time out error is generated during data reception. If this flag is attached during

data reception, the received data is discarded and the microcomputer returns to the command wait state.

M16C/80 Group
4

180

4.3 Sample List

;**
;* System Name : Sample Program for M16C/80 Flash *
;* File Name : M800SAMP.a30 *
;* Version : 0.02 *
;* Original Ver : 1.01 *
;* MCU : M30800FCFP *
;* Xin : 2M-20MHz (for UART mode) *
;* Assembler : AS308 ver 1.00.00 *
;* Linker : LN308 ver 1.00.00 *
;* Converter : LMC308 ver 1.00.01 *
;* Programmer : T.Sawa *
;*--*
;* Copyright,1999,2000 MITSUBISHI ELECTRIC CORPORATION *
;* AND MITSUBISHI SEMICONDUCTOR SYSTEMS CORPORATION *
;*--*
;* History : 1999.10.28 Ver.0.01 (1.00) *
;* : 2000. 2.24 Ver.0.02 (1.01) *
;**
;++
;+ Include file +
;++
 .list off
 .include sfr800.inc
 .include flash800.inc
 .list on
;
;++
;+ Version table +
;++
;
 .section rom,code
 .org 0ffe000h
 .byte 'VER.0.02(VER.1.01)'
;
;++
;+ Program section start +
;++
 .section prog,code
 .org Boot_TOP
 .sb SB_base
 .sbsym SRD
 .sbsym SRD1
 .sbsym ver
 .sbsym SF
 .sbsym addr_l
 .sbsym addr_m
 .sbsym addr_h
;
;==
;+ Boot program start +
;==

4.3 Sample List

This section shows a sample list of the program described in Section 4.2.

In addition to the processing explained in Section 4.2, the sample shown below includes the programmer

command processing used by a synchronous serial programmer and the command processing used by an

asynchronous serial communication programmer (M16C Flash Start).

Source

4
M16C/80 Group

181

4.3 Sample List

Reset:
;--
;+ Initialize_1 +
;--
 ldc #Istack,ISP ; stack pointer set
 ldc #SB_base,SB ; SB register set
;
 bset busy
 bset busy_d ; BUSY "H"output
 bclr s_mode_d ; Serial mode select input
;
;--------------------------------------
;+ Hot start & RAM clear +
;--------------------------------------
;
 mov.w #0,a0
Start_check:
 cmp.w #55aah,buff[a0]
 jne RAM_clear
 add.w #2,a0
 cmp.w #18,a0
 jltu Start_check
 bset ram_check ; RAM check OK flag set
 jmp CPU_set
;
RAM_clear:
 mov.w #0,r0
 mov.w #(Ram_END+1-Ram_TOP)/2,r3
 mov.w #Ram_TOP,a1
 sstr.w
;
 mov.w #0,a0
Buff_set:
 mov.w #55aah,buff[a0]
 add.w #2,a0
 cmp.w #18,a0
 jltu Buff_set
;
;--------------------------------------
;+ Processor mode register +
;+ & System clock control register +
;--------------------------------------
CPU_set:
 mov.b #3,prcr ; Protect off
 mov.w #0000h,pm0 ; wait off
 mov.b #04h,mcd ; f4
 mov.b #20h,cm1
 mov.b #08h,cm0 ;
 mov.b #0,prcr ; Protect on
;
Reload_chack:
 btst sr15 ; Update ?
 jc Transfer_end
 btst ram_check ; Reload ?
 jz Version_inf ;
 btst s_mode
 bxor old_mode
 jnc Transfer_end
;
;--------------------------------------
;+ Version information +
;--------------------------------------
Version_inf:
 mov.w #0,a0 ; a0=0

M16C/80 Group
4

182

4.3 Sample List

Ver_loop:
 mov.w 0ffe000h+9[a0],ver[a0] ; Version data store
 add.w #2,a0 ; address increment
 cmp.w #8,a0 ; a0=8 ?
 jltu Ver_loop ; jump Ver_loop at a0<8
;
;--
;+ Program_transfer +
;--
 btst s_mode ; Serial I/O mode select
 jz Transfer2 ; UART mode
;
Transfer1:
 bset old_mode ; clock synchronous mode
 mov.l #Trans_TOP1,a0 ; Transfer source address
 mov.w #Ram_progTOP,a1 ; Transfer destination address
 mov.w #(Trans_END1 - Trans_TOP1)/2,r3 ; Transfer number
 smovf.w ; String move
 jmp Transfer_end
;
Transfer2:
 bclr old_mode ; UART mode
 mov.l #Trans_TOP2 ,a0 ; Transfer source address
 mov.w #Ram_progTOP,a1 ; Transfer destination address
 mov.w #(Trans_END2 - Trans_TOP2)/2,r3 ; Transfer number
 smovf.w ; String move
Transfer_end:
;--
;+ Jump to RAM +
;--
 jmp Ram_progTOP

;--
;+ Download program +
;--
 .org Download_program
;
 jsr set_TA0

 mov.w #0,r3 ; receive number (r3=0)
 mov.w #0,a1 ; sumcheck buffer
 bclr sr15 ; Download flag reset
 bclr sr12 ; Check sum flag reset
Download_loop:
 jsr SIO_D_rcv
 btst tout_flg ; time out error ?
 jc Download_err ; jump Download_err at time out
 mov.w rcv_d,r0 ; receive data read --> r0
 add.w #1,r3
 cmp.w #3,r3 ; r3=3 ?
 jgtu Version_store ; jump Version_store at r3>3
 mov.w r3,a0 ; r3 --> a0
 mov.b r0l,addr_l[a0] ; Store program size
 mov.w #0,a0 ; a0 initialize
 cmp.w #3,r3 ; r3 = 3 ?
 jne Download_loop ; No, jump to Download_loop
 cmp.w #0,addr_m ; program size = 0 ?
 jz Version_inf ; jump to Version_inf at program size error
 jmp Download_loop ; jump Download_loop
Version_store:
 cmp.w #11,r3 ; r3=11 ?
 jgtu Program_store ; jump Program_store at r3 >11
 mov.b r0l,ver[a0] ; version data store to RAM
 jmp Program_store_1

4
M16C/80 Group

183

4.3 Sample List

;
Program_store:
 mov.b r0l,Ram_progTOP-8[a0] ; program data store to RAM
Program_store_1:
 add.b r0l,a1 ; add data to a1
 add.w #1,a0 ; a0(downloa0 offset) +1 increment
 cmp.w addr_m,a0 ; a0 = program size (addr_m,h)?
 jltu Download_loop ; jump Download_loop at a0< program size
 jmp SUM_Check ; jump SUM Check
;
Download_err:
 bset busy ; busy "H"
 bset busy_d ; busy output
 mov.b #0,u1c1 ; transmit/receive disable
 mov.b #0,u1mr ; u1mr reset
 jmp Version_inf
;
;--
;+ Download program - UART mode - +
;--
 .org U_Download_program
;
 mov.w #0,r3 ; receive number (r3=0)
 mov.w #0,a1 ; sumcheck buffer
 bclr sr15 ; Download flag reset
 bclr sr12 ; Check sum flag reset
U_Download_loop:
 jsr U_SIO_D_rcv
 mov.w rcv_d,r0
 add.w #1,r3 ; r3 +1 increment
 cmp.w #3,r3 ; r3=3 ?
 jgtu U_Version_store ; jump U_Version_store at r3>3
 mov.w r3,a0 ; r3 --> a0
 mov.b r0l,addr_l[a0] ; Store program size
 mov.w #0,a0 ; a0 initialize
 cmp.w #3,r3 ; r3 = 3 ?
 jne U_Download_loop ; No, jump U_Download_loop
 cmp.w #0,addr_m ; program size = 0 ?
 jz Version_inf ; jump Version_inf at program size error
 jmp U_Download_loop
U_Version_store:
 cmp.w #11,r3 ; r3=11 ?
 jgtu U_Program_store ; jump U_Program_store at r3 >11
 mov.b r0l,ver[a0] ; version data store to RAM
 jmp U_Program_store_1
;
U_Program_store:
 mov.b r0l,Ram_progTOP-8[a0] ; program data store to RAM
U_Program_store_1:
 add.b r0l,a1 ; add data to a1
 add.w #1,a0 ; a0(downloa0 offset) +1 increment
 cmp.w addr_m,a0 ; a0 = program size (addr_m,h)?
 jltu U_Download_loop ; jump Download_loop at a0< program size
;
SUM_Check:
 mov.w a1,r0
 cmp.b data,r0l ; compare check sum
 bmeq sr12 ; check sum flag set at data=r0l
 jne Version_inf ; jump Version_inf at check sum error
 bset sr15 ; Download flag set
 jmp Ram_progTOP ; jump Ram_progTOP
;
;++
;+ Subroutine : a synchronized signal I/O receive dwn+

M16C/80 Group
4

184

4.3 Sample List

;++
SIO_D_rcv:
 mov.b r1l,u1tb
 bset ta0os ; ta0 start
?:
 btst ir_ta0ic ; time out error ?
 bmc sr9 ; time out flag set
 jc SIO_D_rcv_err ; jump SIO_D_rcv_err
 btst ri_u1c1 ; receive complete ?
 jnc ?-
 mov.w u1rb,rcv_d ; receive data read --> r0
SIO_D_rcv_end:
 rts

SIO_D_rcv_err:
 bset tout_flg
 jmp SIO_D_rcv_end
;
;++
;+ Subroutine : UART receive dwn +
;++
U_SIO_D_rcv:
 btst ri_u1c1 ; receive complete ?
 jnc U_SIO_D_rcv
 mov.w u1rb,rcv_d ; receive data read --> r0
 rts
;
;==
;+ Transfer Program -- clock synchronous serial I/O mode +
;+ (1) Main flow +
;+ (2) Flash control program +
;+ Read,Program,Erase,All_erase,etc. +
;+ (3) Other program +
;+ ID_check,Download,Version_output etc. +
;==
 .section dump,code
 .org Trans_TOP1
;++
;+ Main flow - clock synchronous serial I/O mode - +
;++
Main:
 jsr Initialize_2 ; clock synchronous serial I/O mode
 mov.b #0,data
Loop_main:
 mov.b SRD1,SRD1_bak ; SRD1 back up
 mov.b SRD1,SRD1_bak+2
;
 jsr time_init
 jsr SIO_rcv_first_data
 jsr Flash_func
 jsr SIO_send_data
 jsr Time_out
 jmp Loop_main
;
;--------------------------------------
;+ initialize SIO +
;--------------------------------------
time_init:
 bclr tout_flg
 bclr tint_flg
 bset ta0os
 mov.b #0,ta0ic
Loop_main1:
 btst ir_ta0ic ; 300 usec ?
 jz Loop_main1

4
M16C/80 Group

185

4.3 Sample List

 bset rcv_flg
 rts
;
;--------------------------------------
;+ SI/O time out +
;--------------------------------------
Time_out:
 btst tint_flg
 jc Time_out_init
 btst tout_flg
 jnc Time_out_end
 bset sr9 ; SRD1 time out flag set
 bclr tout_flg
Time_out_init:
 bclr tint_flg
 jsr Initialize_21 ; command error,UART1 reset
Time_out_end:
 rts
;
;--------------------------------------
;+ SI/O recieve data +
;--------------------------------------
SIO_rcv_first_data:
 mov.b #0,cmd_d
 bclr cmd_flg
 btst rcv_flg
 jnc SIO_rcv_end
 btst tout_flg
 jc SIO_rcv_end
 mov.b #0,ta0ic
 mov.w #0,r2
;
SIO_rcv_first_data_loop:
 mov.b #0ffh,r1l ; #ffh --> r1l (transfer data)
 mov.b r1l,u1tb
 btst cmd_flg
 jc SIO_rcv_first_data_loop1
 bclr busy_d ; busy input
?: btst busy ; Reception start?
 jz ?-
SIO_rcv_first_data_loop1:
 bset ta0os ; 300 usec timer start
;
SIO_rcv_first_data_loop2:
 btst ir_ta0ic ; 300 usec ?
 jnc ?+
 bset tout_flg ; time out
?: btst tout_flg
 jc SIO_rcv_end
 btst ri_u1c1 ; receive complete ?
 jz SIO_rcv_first_data_loop2
 mov.w u1rb,r0 ; receive data --> r0
 mov.w r2,a0
 mov.b r0l,data[a0]
 add.w #1,r2
;
 btst cmd_flg
 jc SIO_loop_chk
 bset cmd_flg
 mov.b r0l,cmd_d
;
 mov.w #15,a0
SIO_rcv_command_chk:
 mov.b Index_tbl-Trans_TOP1+Ram_progTOP-1[a0],r0h

M16C/80 Group
4

186

4.3 Sample List

 cmp.b r0h,r0l
 jeq SIO_cmd_jmp_2
 sbjnz.w #1,a0,SIO_rcv_command_chk
 jmp SIO_rcv_end_1
;
SIO_cmd_jmp_2:
 shl.w #1,a0
 mov.w jmp_tbl_2-Trans_TOP1+Ram_progTOP-2[a0],r0
SIO_cmd_jmp_2_1:
 jmpi.w r0
;
SIO_2:
 mov.w #2,loop_cnt
 jmp SIO_loop_chk
SIO_259:
 mov.w #259,loop_cnt
 jmp SIO_loop_chk
SIO_4:
 mov.w #4,loop_cnt
 jmp SIO_loop_chk
SIO_3:
 mov.w #3,loop_cnt
 jmp SIO_loop_chk
;
;--------------------------------------
;+ ID check SI/O +
;--------------------------------------
SIO_rcv_ID_check:
 mov.w #0,r3 ; receive number (r3=0)
 mov.w #0ffh,a1 ; ID size (dummy data = ffh)
 mov.b #0,ta0ic
SIO_ID_data_store:
 cmp.w a1,r3 ; r3=a1(ID size)
 jeq SIO_ID_address_check; jump ID_address_check at r3=ID size
 mov.b r1l,u1tb ; data transfer
 bset ta0os ; ta0 start
SIO_ID_data_loop:
 btst ir_ta0ic ; 300 usec ?
 jnc ?+
 bset tout_flg ; time out
?: btst tout_flg
 jc SIO_ID_address_check
 btst ri_u1c1 ; receive complete ?
 jnc SIO_ID_data_loop
 mov.w u1rb,r0 ; receive data read --> r0
 mov.w r3,a0 ; r3 --> a0
 mov.b r0l,addr_l[a0] ; Store address
 add.w #1,r3 ; r3 +1 increment
 cmp.w #4,r3 ; r3=4 ?
 jne SIO_ID_data_store ; jump ID_data_store at r3 not= 4
 mov.b data,a1 ; ID size --> a1
 add.w #4,a1 ; a1=a1+4
 jmp SIO_ID_data_store ; jump ID_data_store
SIO_ID_address_check:
 jmp SIO_rcv_end
;
SIO_rcv_end_1:
 bset tint_flg
 jmp SIO_rcv_end

SIO_loop_chk:
 cmp.w loop_cnt,r2
 jltu SIO_rcv_first_data_loop

4
M16C/80 Group

187

4.3 Sample List

SIO_rcv_end:
 bclr cmd_flg
 bclr rcv_flg
 rts
;
;--------------------------------------
;+ SIO_send data +
;--------------------------------------
SIO_send_data:
 jsr set_TA0
 btst send_flg
 jnc SIO_send_data_end
 btst tout_flg
 jc SIO_send_data_end
 mov.b cmd_d,r1h
;
 cmp.b #0ffh,r1h ; Read(ffh)
 jeq Read_data
 cmp.b #070h,r1h ; Read SRD (70h)
 jeq Read_SRD_data
 cmp.b #071h,r1h ; Read LB (71h)
 jeq Read_LB_data
 cmp.b #0fbh,r1h ; Version_output(fbh)
 jeq Ver_output_data
 cmp.b #0fdh,r1h ; Read_check(fdh)
 jeq Read_check_data
 cmp.b #0fch,r1h ; Boot_check(fch)
 jeq Boot_data
 jmp SIO_send_func
;
Read_check_data:
 mov.w #0,r3
 mov.w sum,r1
Read_check_data_loop:
 mov.b r1l,u1tb
 bset ta0os ; ta0 start
Read_check_data_check:
 btst ir_ta0ic
 jnc ?+
 bset tout_flg
?:
 btst tout_flg
 jc SIO_send_data_end
 btst ri_u1c1 ; receive complete ?
 jnc Read_check_data_check
 mov.w u1rb,r0 ; receive data read --> r0
 mov.b r1h,r1l
 add.w #1,r3
 cmp.w #2,r3
 jltu Read_check_data_loop
Read_check_data_end:
 mov.w #0,sum ; reset
 jmp SIO_send_data_end
;
Read_data:
 mov.w #0,r3

Read_data_loop:
 mov.b [a1],r1l ; Flash memory read
 mov.b r1l,u1tb
 bset ta0os ; ta0 start
Read_data_chk:
 btst ir_ta0ic ; 300 usec ?
 jnc ?+
 bset tout_flg ; time out

M16C/80 Group
4

188

4.3 Sample List

?:
 btst tout_flg
 jc Read_data_end
 btst ri_u1c1 ; receive complete ?
 jnc Read_data_chk
 mov.w u1rb,r0 ; receive data read --> r0
 add.w #1,r3
 add.l #1,a1
 cmp.w #256,r3 ; r3 = 256 ?
 jne Read_data_loop
Read_data_end:
 jmp SIO_send_data_end
;
Ver_output_data:
 mov.w #0,a0 ; Version address offset (a0=0)
Ver_output_data_loop:
 mov.b ver[a0],u1tb ;send_data set
 bset ta0os ; ta0 start
Ver_output_data_check:
 btst ir_ta0ic ; 300 usec ?
 jnc ?+
 bset tout_flg ; time out
?:
 btst tout_flg
 jc Ver_output_data_end
 btst ri_u1c1 ; receive complete ?
 jnc Ver_output_data_check
 mov.w u1rb,r0 ; receive data read --> r0
 add.w #1,a0
 cmp.w #8,a0 ; a0 = 8 ?
 jne Ver_output_data_loop
Ver_output_data_end:
 jmp SIO_send_data_end
;
Read_SRD_data:
 mov.w #0,r3
Read_SRD_data_loop:
 mov.b r1l,u1tb ; data transfer
 bset ta0os ; ta0 start ; test
 bclr tout_flg ; clear time out
 mov.b #0,ta0ic ; clear time out
Read_SRD_data_check:
 btst ir_ta0ic ; 300 usec ?
 jnc ?+
 bset tout_flg ; time out
?: btst tout_flg
 jc Read_SRD_data_end
 btst ri_u1c1 ; receive complete ?
 jnc Read_SRD_data_check
 mov.w u1rb,r0 ; receive data read --> r0
 mov.b SRD1,r1l ; SRD1 data --> r1l
 add.w #1,r3
 cmp.w #2,r3 ; r3 = 2 ?
 jltu Read_SRD_data_loop ; jump Read_SRD_loop at r3<2
Read_SRD_data_end:
 jmp SIO_send_data_end
;
Read_LB_data:
Read_LB_data_loop:
 mov.b r1l,u1tb ; data transfer
 bset ta0os ; ta0 start
Read_LB_data_check:
 btst ir_ta0ic ; 300 usec ?
 jnc ?+
 bset tout_flg ; time out

4
M16C/80 Group

189

4.3 Sample List

?:
 btst tout_flg
 jc Read_LB_data_end
 btst ri_u1c1 ; receive complete ?
 jnc Read_LB_data_check
 mov.w u1rb,r0 ; receive data read --> r0
Read_LB_data_end:
 jmp SIO_send_data_end
;
Boot_data:
 bclr fmr05
 mov.w addr_l,a0
 mov.b addr_h,a1
 mov.w #0,r3
 sha.l #16,a1
 add.l a0,a1
Boot_data_loop:
 mov.b [a1],r1l ; Boot data read
 mov.b r1l,u1tb
 bset ta0os ; ta0 start
Boot_data_chk:
 btst ir_ta0ic ; 300 usec ?
 jnc ?+
 bset tout_flg ; time out
?:
 btst tout_flg
 jc Boot_data_end
 btst ri_u1c1 ; receive complete ?
 jnc Boot_data_chk
 mov.w u1rb,r0 ; receive data read --> r0
 add.w #1,r3
 add.l #1,a1
 cmp.w #256,r3 ; r3 = 256 ?
 jne Boot_data_loop
Boot_data_end:
 bset fmr05
 jmp SIO_send_data_end
;
SIO_send_func:
 mov.w start_cnt,r3
SIO_send_data_loop:
 mov.w r3,a0
 mov.b data[a0],r1l
 mov.b r1l,u1tb ; data transfer
 bset ta0os ; ta0 start
SIO_send_chk:
 btst ir_ta0ic ; 300 usec ?
 jnc ?+
 bset tout_flg ; time out
?: btst tout_flg
 jc SIO_send_data_end
 btst ri_u1c1 ; receive complete ?
 jnc SIO_send_chk
 mov.w u1rb,r0 ; receive data read --> r0
 add.w #1,r3
 cmp.w send_cnt,r3 ; r3 = send_cnt ?
 jne SIO_send_data_loop
 mov.w r3,r0
SIO_send_data_end:
 bclr send_flg
 rts
;
;++
;+ Subroutine : Time_over_flg +
;++

M16C/80 Group
4

190

4.3 Sample List

;++
;+ jump table for Flash_func +
;++
jmp_tbl:
 .word Read - cmd_jmp
 .word Program - cmd_jmp
 .word Erase - cmd_jmp
 .word All_erase - cmd_jmp
 .word Clear_SRD - cmd_jmp
 .word Read_LB - cmd_jmp
 .word Program_LB - cmd_jmp
 .word LB_enable - cmd_jmp
 .word LB_disable - cmd_jmp
 .word Download - cmd_jmp
 .word Boot_output - cmd_jmp
 .word Read_check - cmd_jmp

;++
;+ jump table for SIO_rcv_first_data +
;++
jmp_tbl_2:
 .word SIO_3 - SIO_cmd_jmp_2_1 ; Read
 .word SIO_259 - SIO_cmd_jmp_2_1 ; Program
 .word SIO_4 - SIO_cmd_jmp_2_1 ; erase
 .word SIO_2 - SIO_cmd_jmp_2_1 ; All erase
 .word SIO_rcv_end - SIO_cmd_jmp_2_1 ; Clear SRD
 .word SIO_3 - SIO_cmd_jmp_2_1 ; Read LB
 .word SIO_4 - SIO_cmd_jmp_2_1 ; LB Program
 .word SIO_rcv_end - SIO_cmd_jmp_2_1 ; LB enable
 .word SIO_rcv_end - SIO_cmd_jmp_2_1 ; LB disable
 .word SIO_rcv_end - SIO_cmd_jmp_2_1 ; Download
 .word SIO_3 - SIO_cmd_jmp_2_1 ; Boot output
 .word SIO_rcv_end - SIO_cmd_jmp_2_1 ; Read check
 .word SIO_rcv_end - SIO_cmd_jmp_2_1 ; Read SRD
 .word SIO_rcv_ID_check - SIO_cmd_jmp_2_1 ; ID check
 .word SIO_rcv_end - SIO_cmd_jmp_2_1 ; Version out
;
;++
;+ serch table for Flash_func,SIO_rcv_first_data +
;++
Index_tbl:
 .byte 0ffh ; Read(ffh)
 .byte 041h ; Program(41h)
 .byte 020h ; Erase(20h)
 .byte 0a7h ; All_erase(a7h)
 .byte 050h ; Clear SRD(50h)
 .byte 071h ; Read LBS(71h)
 .byte 077h ; LB program(77h)
 .byte 07ah ; LB enable (7ah)
 .byte 075h ; LB disable(75h)
 .byte 0fah ; Download (fah)
 .byte 0fch ; Boot output(fch)
 .byte 0fdh ; Read check(fdh)
 .byte 070h ; Read SRD(70h)
 .byte 0f5h ; ID check(f5h)
 .byte 0fbh ; Version output(fbh)
;

;++
;+ Subroutine : Initialize_2 +
;++
Initialize_2:

Time_over_flg:
 bset tout_flg
 rts

4
M16C/80 Group

191

4.3 Sample List

;--------------------------------------
;+ Flash mode set +
;--------------------------------------
Flash_mode:
 bset fmr05 ; User ROM select
 bclr fmr01 ; Flash entry bit clear
 bset fmr01 ; Flash entry bit set (E/W mode)
;
;--------------------------------------
;+ Blank check +
;--------------------------------------
 mov.w 0fffffch,r0 ; Reset vector read
 mov.w 0fffffeh,r1 ; Reset vector read
 and.w r1,r0 ; r0 & r1
 cmp.w #0ffffh,r0 ; r0=ffffh ?
 jne blank_end
;
 bset sr10 ; check complete at r0=ffffh
 bset sr11
 bset blank ; blank flag set
blank_end:
;
;--------------------------------------
;+ UART1 +
;--------------------------------------
Initialize_21:
;
 bclr pd6_2 ; RxD-input
;
;----- Function select register B0
;
 mov.b #00000000b,psl0
;
;----- Function select register A0
;
 mov.b #10010000b,ps0
;
;----- UART1 transmit/receive mode register
;
 mov.b #0,u1c1 ; transmit/receive disable
 mov.b #0,u1mr ; u1mr reset
 mov.b #00001001b,u1mr
; |||||+++------- clock synchronous SI/O
; ||||+---------- external clock
; ++++----------- fixed
;
;----- UART1 transmit/receive control register 0
;
 mov.b #00000100b,u1c0
; |||| |++------ f1 select
; |||| +-------- RTS select
; |||+---------- CTS/RTS enabled
; ||+----------- CMOS output(TxD)
; |+------------ falling edge select
; +------------- LSB first
;
;----- UART transmit/receive control register 2
;
 mov.b #00000000b,ucon
; ||||||++------ Transmit buffer empty
; ||||++-------- Continuous receive mode disabled
; ||++---------- CLK/CLKS normal
; |+------------ CTS/RTS shared
; +------------- fixed

M16C/80 Group
4

192

4.3 Sample List

;
;----- UART1 transmit/receive control register 1
;
 mov.b #00000101b,u1c1
; |||| | +------ Transmission enabled
; |||| +-------- Reception enabled
; +++++--------- fixed
;
;
;--------------------------------------
;+ Timer A0 +
;--------------------------------------
set_TA0:
;----- Timer A0 mode register
;
 mov.b #00000010b,ta0mr
; |||| |++------- One-shot mode
; |||| +--------- Pulse not output
; |||+----------- One-shot start flag
; ||+------------ fixed
; ++------------- f1 select
;
 mov.w #6000-1,ta0 ; set 300 usec at 20 MHz
 bset ta0s
 mov.b #0,ta0ic ; clear TA0 interrupt flag
;
 rts
;
;--------------------------------------
;+ FLASH function main +
;--------------------------------------
Flash_func:
 btst tout_flg
 jc Flash_func_end
 bclr ta0s
 mov.b cmd_d,r0l ; receive data --> r0l
;
 mov.b #0ch,r0h ; #00001100b sr10,11 mask data
 and.b SRD1,r0h ; sr10,11 pick up
 cmp.b #0ch,r0h ; ID check OK?
 jne Command_check_2 ; jump Command_check_2 at ID unchecked
 mov.w #12,a0
;
Command_check:
 mov.b Index_tbl-Trans_TOP1+Ram_progTOP-1[a0],r0h
 cmp.b r0h,r0l
 jeq cmd_jmp_1
 sbjnz.w #1,a0,Command_check
 jmp Command_check_2
;
cmd_jmp_1:
 shl.w #1,a0
 mov.w jmp_tbl-Trans_TOP1+Ram_progTOP-2[a0],r0
cmd_jmp:
 jmpi.w r0
;
Command_check_2:
?: cmp.b #070h,r0l ; Read SRD (70h)
 jne ?+
 jmp Read_SRD
?: cmp.b #0f5h,r0l ; ID check (f5h)
 jne ?+
 jmp ID_check
?: cmp.b #0fbh,r0l ; Version out (fbh)
 jne Flash_func_end

4
M16C/80 Group

193

4.3 Sample List

 jmp Ver_output
;
Flash_func_end:
 rts
;
;--
;+ Read +
;--
Read:
 mov.w #0,r3 ; receive number
 mov.b #0,addr_l ; addr_l = 0
Read_loop:
 add.w #1,r3 ; r3 +1 increment
 mov.w r3,a0 ; r3 --> a0
 mov.w data[a0],r0
 mov.b r0l,addr_l[a0] ; Store address
 cmp.w #2,r3 ; r3 = 2 ?
 jltu Read_loop ; jump Read_loop at r3<2
 mov.w #00ffh,r2 ; Read array command
 jsr Command_write ; command_write
 bset send_flg
 mov.w #3,start_cnt
 mov.w #258,send_cnt
 jmp Flash_func_end ; jump Flash_func_end
;

;++
;+ Subroutine : Command write +
;++
Command_write:
 btst fmr00 ; RY/BY status check
 jz Command_write
 mov.w addr_l,a0 ; addr_l,m --> a0
 mov.b addr_h,a1 ; addr_h --> a1
 sha.l #16,a1
 add.l a0,a1
 mov.w r2,[a1] ; command write
 rts
;
;--
;+ Program +
;--
Program:
 mov.w #0,r3 ; receive number
 mov.b #0,addr_l ; addr_l = 0
 mov.w sum,crcd ; for Read check command
Program_loop_1:
 add.w #1,r3 ; r3 +1 increment
 mov.w r3,a0 ; r3 --> a0
 mov.b data[a0],r0l
 mov.b r0l,addr_l[a0] ; Store address
 cmp.w #259,r3 ; r3 = 259 ?
 jltu Program_loop_1 ; jump Program_loop_1 at r3<258
;
 mov.w #00ffh,r2 ; Read array command
 jsr Command_write ; command_write
 mov.w #0070h,r2 ; Read SRD command
 jsr Command_write ; Command_write
 mov.w [a1],r1 ; SRD read
 mov.w #00ffh,r2 ; Read array command
 jsr Command_write ; command_write
 cmp.b #80h,r1l ; error check
 jne Program_end
;

M16C/80 Group
4

194

4.3 Sample List

 mov.w #0041h,r2 ; Page program command
 jsr Command_write ; command_write
 mov.w #0,r3 ; writing number (r3=0)
Program_loop_2:
 mov.b addr_h,a1 ; addr_h --> a1
 sha.l #16,a1
 mov.w r3,a0 ; r3 --> a0
 mov.w data[a0],r1 ; data --> r1
 mov.w addr_l,a0 ; addr_l,m --> a0
 add.l a0,a1
 mov.w r1,[a1] ; data write
;
 mov.b r1l,crcin ; for Read check command
 mov.b r1h,crcin ; for Read check command
;
 add.w #2,addr_l ; address +2 increment
 add.w #2,r3 ; writing number +2 increment
 cmp.w #255,r3 ; r3 = 255 ?
 jltu Program_loop_2 ; jump Program_loop_2 at r3<255
Program_end:
 mov.w crcd,sum
 bclr send_flg
 mov.w #0,send_cnt
 mov.w #0,start_cnt
 jmp Flash_func_end ; jump Flash_func_end
;

;--
;+ Block erase +
;--
Erase:
 mov.w #1,r3 ; receive number (r3=1)
 mov.b #0feh,addr_l ; addr_l = feh
Erase_loop:
 mov.w r3,a0 ; r3 --> a0
 mov.b data[a0],r0l
 mov.b r0l,addr_l[a0] ; Store address
 add.w #1,r3 ; r3 +1 increment
 cmp.w #4,r3 ; r3=4 ?
 jltu Erase_loop ; jump Erase_loop at r3<4
 cmp.b #0d0h,data ; Confirm command check
 jne Erase_end ; jump Erase_end at Confirm command error
 mov.w #0020h,r2 ; Erase command
 jsr Command_write ; command write
 mov.w #00d0h,r2 ; Confirm command
 mov.w r2,[a1] ; command write
Erase_end:
 mov.w #00ffh,r2 ; Read array command
 jsr Command_write ; command_write
 bclr send_flg
 mov.w #0,send_cnt
 mov.w #0,start_cnt
 jmp Flash_func_end ; jump Flash_func_end
;
;--
;+ All erase (unlock block) +
;--
All_erase:
 mov.w #1,a0
 mov.b data[a0],r0l ; receive data read --> r0
 cmp.b #0d0h,r0l ; Confirm command check
 jne All_erase_end ; jump All_erase_end at Confirm command
error
 mov.w #0000h,addr_l ; 0fe0000h --> addr

4
M16C/80 Group

195

4.3 Sample List

 mov.b #00feh,addr_h
 mov.w #00a7h,r2 ; All erase command
 jsr Command_write ; command write
 mov.w #00d0h,r2 ; Confirm command
 mov.w r2,[a1] ; command write
All_erase_end:
 mov.w #00ffh,r2 ; Read array command
 jsr Command_write ; command_write
 bclr send_flg
 mov.w #0,send_cnt
 mov.w #0,start_cnt
 jmp Flash_func_end ; jump Flash_func_end
;
;--
;+ Read SRD +
;--
Read_SRD:
 mov.w #0,r3 ; receive number (r3=0)
 mov.w #0000h,addr_l ; 0fe0000h --> addr
 mov.b #00feh,addr_h ;
 mov.w #00ffh,r2 ; Read array command
 jsr Command_write ; command_write
 mov.w #0070h,r2 ; Read SRD command
 jsr Command_write ; command write
 mov.w [a1],r1 ; SRD read
 mov.w #00ffh,r2 ; Read array command
 jsr Command_write ; command_write
 mov.w #1,start_cnt
 mov.w #3,send_cnt
 bset send_flg
 jmp Flash_func_end ; jump Flash_func_end
;
;--
;+ Clear SRD +
;--
Clear_SRD:
 mov.w #0000h,addr_l ; 0fe0000h --> addr
 mov.b #00feh,addr_h ;
 mov.w #00ffh,r2 ; Read array command
 jsr Command_write ; command write
 mov.w #0050h,r2 ; Clear SRD command
 jsr Command_write ; command write
 mov.w #00ffh,r2 ; Read array command
 jsr Command_write ; command write
 and.b #10011100b,SRD1 ; SRD1 clear
 mov.w #0,start_cnt
 mov.w #0,send_cnt
 bclr send_flg
 jmp Flash_func_end ; jump Flash_func_end
;
;--
;+ Read Lock Bit +
;--
Read_LB:
 mov.w #1,r3 ; receive number (r3=1)
 mov.b #0feh,addr_l ; addr_l = feh
Read_LB_loop:
 mov.w r3,a0 ; r3 --> a0
 mov.b data[a0],r0l
 mov.b r0l,addr_l[a0] ; Store address
 add.w #1,r3 ; r3 +1 increment
 cmp.w #3,r3 ; r3=3 ?
 jltu Read_LB_loop ; jump Read_LB_loop at r3<3
 mov.w #0071h,r2 ; Read LB command

M16C/80 Group
4

196

4.3 Sample List

 jsr Command_write ; command write
 mov.w [a1],r1 ; read LB
 mov.w #00ffh,r2 ; Read array command
 jsr Command_write ; command write
Read_LB_end:
 mov.w #1,start_cnt
 mov.w #1,send_cnt
 bset send_flg
 jmp Flash_func_end ; jump Flash_func_end
;

;--
;+ Program Lock Bit +
;--
Program_LB:
 mov.w #1,r3 ; receive number (r3=1)
 mov.b #0feh,addr_l ; addr_l = feh
Program_LB_loop:
 mov.w r3,a0 ; r3 --> a0
 mov.b data[a0],r0l
 mov.b r0l,addr_l[a0] ; Store address
 add.w #1,r3 ; r3 +1 increment
 cmp.w #4,r3 ; r3=4 ?
 jltu Program_LB_loop ; jump Program_LB_loop at r3<4
 cmp.b #0d0h,data ; Confirm command check
 jne Program_LB_end ; jump Program_LB_end at Confirm command
error
 mov.w #0077h,r2 ; Program LB command
 jsr Command_write ; command write
 mov.w #00d0h,r2 ; Confirm command
 mov.w r2,[a1] ; command write
 mov.w #00ffh,r2 ; Read array command
 jsr Command_write ; command write
Program_LB_end:
 mov.w #0,start_cnt
 mov.w #0,send_cnt
 bclr send_flg
 jmp Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ Lock Bit enable +
;--------------------------------------
LB_enable:
 bclr fmr02 ; Lock disable bit = 0
 mov.w #0,start_cnt
 mov.w #0,send_cnt
 bclr send_flg
 jmp Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ Lock Bit disable +
;--------------------------------------
LB_disable:
 bclr fmr02 ; Lock disable bit = 0
 bset fmr02 ; Lock disable Bit = 1
 mov.w #0,start_cnt
 mov.w #0,send_cnt
 bclr send_flg
 jmp Flash_func_end ; jump Flash_func_end
;
;--
;+ ID check +
;--
ID_check:

4
M16C/80 Group

197

4.3 Sample List

 btst blank ; blank flag check
 jc ID_check_end ; jump ID_check_end at blank
 cmp.w #0ffdfh,addr_l ; lower ID address check
 jne ID_error ; jump ID_error at ID address error
 cmp.w #007ffh,addr_h ; higher ID address check
 jne ID_error ; jump ID_error at ID address error
ID_data_check:
 mov.w #0ffdfh,r1 ; ID lower address --> r1
 mov.w #1,r3 ; check loop number (r3=1)
ID_check_loop:
 mov.w r1,a0 ; r1 --> a0
 mov.w #000ffh,a1 ; ID higher address --> a1
 sha.l #16,a1
 add.l a0,a1
 mov.b [a1],r0l ; ID data read from Flash memory
 mov.w r3,a0 ; r3 --> a0
 cmp.b r0l,data[a0] ; compare ID data
 jne ID_error ; jump ID_error at ID error
 add.w #4,r1 ; r1 +4 increment (next ID address)
 cmp.w #0ffe7h,r1 ; r1=0ffefh ?
 jne ?+ ; jump ? at not equal
 mov.w #0ffebh,r1 ; r1=0ffeb at equal
?:
 add.w #1,r3 ; r3 +1 increment
 cmp.w #8,r3 ; r3=8 ?
 jltu ID_check_loop ; jump ID_check_loop at r3<8
ID_OK:
 bset sr10
 bset sr11 ; ID check OK (sr11=1,sr10=1)
 jmp ID_check_end ; jump ID_check_end
ID_error:
 bset sr10
 bclr sr11 ; ID error (sr11=0,sr10=1)
ID_check_end:
 mov.w #0,start_cnt
 mov.w #0,send_cnt
 bclr send_flg
 jmp Flash_func_end ; jump Flash_func_end
;
;--
;+ Boot output +
;--
Boot_output:
 bclr fmr05 ; Boot ROM select
 mov.w #0,r3 ; receive number (r3=1)
 mov.w #0,addr_l ; addr_l = 0
Boot_loop:
 add.w #1,r3 ; r3 +1 increment
 mov.w r3,a0 ; r3 --> a0
 mov.w data[a0],r0
 mov.b r0l,addr_l[a0] ; Store address
 cmp.w #2,r3 ; r3 = 3 ?
 jltu Boot_loop; jump Boot_output_loop at r3<3
 bset send_flg
 mov.w #3,start_cnt
 mov.w #258,send_cnt
 jmp Flash_func_end ; jump Flash_func_end
;
;--
;+ Read check +
;--
Read_check:
 mov.w #0,start_cnt
 mov.w #2,send_cnt
 bset send_flg

M16C/80 Group
4

198

4.3 Sample List

 jmp Flash_func_end ; jump Flash_func_end
;
;--------------------------------------
;+ Download +
;--------------------------------------
Download:
 bclr fmr05 ; Boot ROM select
 jmp.a Download_program ; jump Download_program
;
;--------------------------------------
;+ Version output +
;--------------------------------------
Ver_output:
 mov.w #0,start_cnt
 mov.w #8,send_cnt
 bset send_flg
 jmp Flash_func_end ; jump Flash_func_end
;
;
;+++
;+ Subroutine : a synchronized signal I/O receive data+
;+++
SIO_rcv_data:
 jsr set_TA0
SIO_rcv_data_1:
 btst ir_ta0ic ; time out error ?
 jnc ?+
 jsr Time_over_flg ; jump Time_over at time out
?:
 btst ri_u1c1 ; receive complete ?
 jnc SIO_rcv_data_1
 mov.w u1rb,rcv_d ; receive data read --> r0
 rts
;
;+++
;+ Subroutine : a synchronized signal I/O receive data+
;+++
SIO_rcv_data_rom:
 jsr set_TA0
SIO_rcv_data_rom_1:
 btst ir_ta0ic ; time out error ?
 bmc fmr05 ; time out, User ROM select
 jnc ?+
 jsr Time_over_flg ; jump Time_over at time out
?:
 btst ri_u1c1 ; receive complete ?
 jnc SIO_rcv_data_rom_1
 mov.w u1rb,rcv_d ; receive data read --> r0
 rts
;
;++
;+ Subroutine : a synchronized signal I/O send +
;++
SIO_send:
 jsr set_TA0
 jsr SIO_send_data
 jsr SIO_rcv_data
 rts
;
;++
;+ Subroutine : a synchronized signal I/O send +
;++
SIO_send_rom:
 jsr set_TA0

4
M16C/80 Group

199

4.3 Sample List

;==
;+ Transfer Program -- UART mode +
;+ (1) Main flow +
;+ (2) Flash control program +
;+ Read,Program,All_erase,Read_SRD,Clear_SRD +
;+ (3) Other program +
;+ ID_check +
;==
;
 .org Trans_TOP2
;
;++
;+ Main flow - UART mode - +
;++
U_Main:
 jmp U_SIO_init_first
;
U_Loop_main:
 mov.b SRD1,SRD1_bak ; SRD1 back up
 mov.b SRD1,SRD1_bak+2
;
 jsr U_SIO_rcv
 mov.w rcv_d,r0
 mov.b r0l,cmd_d
 mov.w #0,r2
 mov.w r2,a0
 mov.b r0l,data[a0]
 bclr cmd_flg
;
 jmp U_SIO_freq

U_Flash_init:
 jsr U_time_init

 jmp U_SIO_rcv_first_data
U_Flash_set:
 jmp U_Flash_func
U_Flash_send:
 jmp U_SIO_send_data
U_Flash_int:
 btst tint_flg
 jnc U_Main_end
 jsr Initialize_31 ; command error,UART mode Initialize
;
U_Main_end:
 jmp U_Loop_main ; jump U_Loop_main
;
;--------------------------------------
;+ initialize SIO +
;--------------------------------------
U_time_init:
 bset rcv_flg
 bclr tint_flg
 rts
;
;--------------------------------------
;+ SI/O recieve data +
;--------------------------------------
U_SIO_rcv_first_data:
 btst rcv_flg

 jsr SIO_send_data
 jsr SIO_rcv_data_rom
 rts
;

M16C/80 Group
4

200

4.3 Sample List

 jnc U_SIO_rcv_end
 jc U_SIO_rcv_first_data_set

U_SIO_rcv_first_data_loop:
 jsr U_SIO_rcv_only
 mov.w rcv_d,r0 ; receive data --> r0
U_SIO_rcv_first_data_set:
 mov.w r2,a0
 mov.b r0l,data[a0]
 add.w #1,r2
;
 btst cmd_flg
 jc U_SIO_loop_chk
 bset cmd_flg
 mov.b r0l,cmd_d
;
 mov.w #20,a0
U_SIO_rcv_command_chk:
 mov.b U_Index_tbl-Trans_TOP2+Ram_progTOP-1[a0],r0h
 cmp.b r0h,r0l
 jeq U_SIO_cmd_jmp_2
 sbjnz.w #1,a0,U_SIO_rcv_command_chk
 jmp U_SIO_rcv_end

U_SIO_cmd_jmp_2:
 shl.w #1,a0
 mov.w U_jmp_tbl_2-Trans_TOP2+Ram_progTOP-2[a0],r0
U_SIO_cmd_jmp_2_1:
 jmpi.w r0

U_SIO_2:
 mov.w #2,loop_cnt
 jmp U_SIO_loop_chk
U_SIO_259:
 mov.w #259,loop_cnt
 jmp U_SIO_loop_chk
U_SIO_4:
 mov.w #4,loop_cnt
 jmp U_SIO_loop_chk
U_SIO_3:
 mov.w #3,loop_cnt
 jmp U_SIO_loop_chk
;
;--------------------------------------
;+ ID check SI/O +
;--------------------------------------
U_SIO_rcv_ID_check:
 mov.w #0,r3 ; receive number (r3=0)
 mov.w #0ffh,a1 ; ID size (dummy data = ffh)
 mov.b #0,ta0ic
U_SIO_ID_data_store:
 cmp.w a1,r3 ; r3=a1(ID size)
 jeq U_SIO_ID_address_check; jump ID_address_check at r3=ID size
 jsr U_SIO_rcv_only
 mov.w rcv_d,r0
 mov.w r3,a0 ; r3 --> a0
 mov.b r0l,addr_l[a0] ; Store address
 add.w #1,r3 ; r3 +1 increment
 cmp.w #4,r3 ; r3=4 ?
 jne U_SIO_ID_data_store ; jump ID_data_store at r3 not= 4
 mov.b data,a1 ; ID size --> a1
 add.w #4,a1 ; a1=a1+4
 jmp U_SIO_ID_data_store ; jump ID_data_store
U_SIO_ID_address_check:

4
M16C/80 Group

201

4.3 Sample List

 jmp U_SIO_rcv_end
;
U_SIO_rcv_end_1:
 bset tint_flg
 jmp U_SIO_rcv_end

U_SIO_loop_chk:
 cmp.w loop_cnt,r2
 jltu U_SIO_rcv_first_data_loop
U_SIO_rcv_end:
 bclr cmd_flg
 bclr rcv_flg
 jmp U_Flash_set
;
;--------------------------------------
;+ SIO_send data +
;--------------------------------------
U_SIO_send_data:
 btst send_flg
 jnc U_SIO_send_data_end
 mov.b cmd_d,r1h

 cmp.b #0ffh,r1h ; Read(ffh)
 jeq U_Read_data
 cmp.b #070h,r1h ; Read SRD (70h)
 jeq U_Read_SRD_data
 cmp.b #071h,r1h ; Read LB (71h)
 jeq U_Read_LB_data
 cmp.b #0fbh,r1h ; Version_output(fbh)
 jeq U_Ver_output_data
 cmp.b #0fdh,r1h ; Read_check(fdh)
 jeq U_Read_check_data
 cmp.b #0fch,r1h ; Boot_check(fch)
 jeq U_Boot_data
 cmp.b #0b0h,r1h ; BPS SET(b0h)
 jeq U_BPS_B0_data
 cmp.b #0b1h,r1h ; BPS SET(b1h)
 jeq U_BPS_B1_data
 cmp.b #0b2h,r1h ; BPS SET(b2h)
 jeq U_BPS_B2_data
 cmp.b #0b3h,r1h ; BPS SET(b3h)
 jeq U_BPS_B3_data
 cmp.b #0b4h,r1h ; BPS SET(b4h)
 jeq U_BPS_B4_data
 jmp U_SIO_send_func

U_Read_check_data:
 mov.w #0,r3
 mov.w sum,r1
U_Read_check_data_loop:
 mov.b r1l,send_d
 jsr U_SIO_send
 mov.b r1h,r1l
 add.w #1,r3
 cmp.w #2,r3
 jltu U_Read_check_data_loop
U_Read_check_data_end:
 mov.w #0,sum ; reset
 jsr U_SIO_exit
 jmp U_SIO_send_data_end

U_Read_data:
 mov.w #0,r3
U_Read_data_loop:
 mov.b [a1],r1l ; Flash memory read

M16C/80 Group
4

202

4.3 Sample List

 mov.b r1l,send_d
 jsr U_SIO_send
 add.w #1,r3
 add.l #1,a1
 cmp.w #256,r3 ; r3 = 256 ?
 jne U_Read_data_loop
U_Read_data_end:
 jsr U_SIO_exit
 jmp U_SIO_send_data_end

U_Ver_output_data:
 mov.w #0,a0 ; Version address offset (a0=0)
U_Ver_output_data_loop:
 mov.b ver[a0],send_d ; send_data set
 jsr U_SIO_send
 add.w #1,a0
 cmp.w #8,a0 ; a0 = 8 ?
 jne U_Ver_output_data_loop
U_Ver_output_data_end:
 jsr U_SIO_exit
 jmp U_SIO_send_data_end

U_Read_SRD_data:
 mov.w #0,r3
U_Read_SRD_data_loop:
 mov.b r1l,send_d ; data transfer
 jsr U_SIO_send
 mov.b SRD1,r1l ; SRD1 data --> r1l
 add.w #1,r3
 cmp.w #2,r3 ; r3 = 2 ?
 jltu U_Read_SRD_data_loop; jump Read_SRD_loop at r3<2
U_Read_SRD_data_end:
 jsr U_SIO_exit
 jmp U_SIO_send_data_end

U_Read_LB_data:
 mov.b r1l,send_d ; data transfer
 jsr U_SIO_send
U_Read_LB_data_end:
 jsr U_SIO_exit
 jmp U_SIO_send_data_end

U_Boot_data:
 bclr fmr05
 mov.w addr_l,a0
 mov.b addr_h,a1
 mov.w #0,r3
 sha.l #16,a1
 add.l a0,a1
U_Boot_data_loop:
 mov.b [a1],r1l ; Flash memory read
 mov.b r1l,send_d
 jsr U_SIO_send
 add.w #1,r3
 add.w #1,a1
 cmp.w #256,r3 ; r3 = 256 ?
 jne U_Boot_data_loop
U_Boot_data_end:
 bset fmr05
 jsr U_SIO_exit
 jmp U_SIO_send_data_end

U_BPS_B0_data:
 mov.b baud,data_BPS ; Baud rate 9600bps
 jmp U_BPS_SET_data

4
M16C/80 Group

203

4.3 Sample List

;++
;+ jump table for Flash_func +
;++
U_jmp_tbl:
 .word U_Read - U_cmd_jmp
 .word U_Program - U_cmd_jmp
 .word U_Erase - U_cmd_jmp
 .word U_All_erase - U_cmd_jmp
 .word U_Clear_SRD - U_cmd_jmp
 .word U_Read_LB - U_cmd_jmp
 .word U_Program_LB - U_cmd_jmp
 .word U_LB_enable - U_cmd_jmp
 .word U_LB_disable - U_cmd_jmp
 .word U_Download - U_cmd_jmp
 .word U_Boot_output - U_cmd_jmp
 .word U_Read_check - U_cmd_jmp
;
;++
;+ jump table for SIO_rcv_first_data +
;++
U_jmp_tbl_2:
 .word U_SIO_3 - U_SIO_cmd_jmp_2_1 ; Read
 .word U_SIO_259 - U_SIO_cmd_jmp_2_1 ; Program
 .word U_SIO_4 - U_SIO_cmd_jmp_2_1 ; erase
 .word U_SIO_2 - U_SIO_cmd_jmp_2_1 ; All erase
 .word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; Clear SRD
 .word U_SIO_3 - U_SIO_cmd_jmp_2_1 ; Read LB
 .word U_SIO_4 - U_SIO_cmd_jmp_2_1 ; LB Program
 .word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; LB enable
 .word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; LB disable
 .word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; Download
 .word U_SIO_3 - U_SIO_cmd_jmp_2_1 ; Boot output

U_BPS_B1_data:
 mov.b baud+1,data_BPS ; Baud rate 19200bps
 jmp U_BPS_SET_data
U_BPS_B2_data:
 mov.b baud+2,data_BPS ; Baud rate 38400bps
 jmp U_BPS_SET_data
U_BPS_B3_data:
 mov.b baud+3,data_BPS ; Baud rate 57600bps
 jmp U_BPS_SET_data
U_BPS_B4_data:
 mov.b baud+4,data_BPS ; Baud rate 115200bps
U_BPS_SET_data:
 mov.b r0l,send_d
 jsr U_SIO_send
 jsr U_SIO_exit
 jsr U_blank_end ; UART mode Initialize
 jmp U_SIO_send_data_end
;
U_SIO_send_func:
 mov.w start_cnt,r3
U_SIO_send_data_loop:
 mov.w r3,a0
 mov.b data[a0],r1l
 mov.b r1l,send_d
 jsr U_SIO_send
 add.w #1,r3
 cmp.w send_cnt,r3 ; r3 = send_cnt ?
 jne U_SIO_send_data_loop
 mov.w r3,r0
U_SIO_send_data_end:
 bclr send_flg
 jmp U_Flash_int
;

M16C/80 Group
4

204

4.3 Sample List

 .word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; Read check
 .word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; Read SRD
 .word U_SIO_rcv_ID_check - U_SIO_cmd_jmp_2_1 ; ID check
 .word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; Version out
 .word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; U_BPS_B0
 .word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; U_BPS_B1
 .word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; U_BPS_B2
 .word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; U_BPS_B3
 .word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; U_BPS_B4
;
;++
;+ serch table for Flash_func,SIO_rcv_first_data +
;++
U_Index_tbl:
 .byte 0ffh ; Read(ffh)
 .byte 041h ; Program(41h)
 .byte 020h ; Erase(20h)
 .byte 0a7h ; All_erase(a7h)
 .byte 050h ; Clear SRD(50h)
 .byte 071h ; Read LBS(71h)
 .byte 077h ; LB program(77h)
 .byte 07ah ; LB enable (7ah)
 .byte 075h ; LB disable(75h)
 .byte 0fah ; Download (fah)
 .byte 0fch ; Boot output(fch)
 .byte 0fdh ; Read check(fdh)
 .byte 070h ; Read SRD(70h)
 .byte 0f5h ; ID check(f5h)
 .byte 0fbh ; Version output(fbh)
 .byte 0b0h ; BPS_SET 9600 (b0h)
 .byte 0b1h ; BPS_SET 19200 (b1h)
 .byte 0b2h ; BPS_SET 38400(b2h)
 .byte 0b3h ; BPS_SET 57600(b3h)
 .byte 0b4h ; BPS_SET 115200(b4h)
;
;
;++
;+ Subroutine : Initialize_3 - UART mode +
;++
Initialize_3:
;--------------------------------------
;+ Flash mode set +
;--------------------------------------
;
 bset fmr05 ; User ROM select
 bclr fmr01 ; Flash entry bit clear
 bset fmr01 ; Flash entry bit set (E/W mode)
;
;--------------------------------------
;+ Blank check +
;--------------------------------------
 mov.w 0fffffch,r0 ; Reset vector read
 mov.w 0fffffeh,r1 ; Reset vector read
 and.w r1,r0 ; r0 & r1
 cmp.w #0ffffh,r0 ; r0=ffffh ?
 jne U_blank_end
 bset sr10 ; check complete at r0=ffffh
 bset sr11
 bset blank ; blank flag set
U_blank_end:
;
;--------------------------------------
;+ UART1 +
;--------------------------------------

4
M16C/80 Group

205

4.3 Sample List

;----- UART init rate generator 1
;
 mov.w data_BPS,u1brg
;
Initialize_31:
;
 bclr pd6_2 ; RxD input
;
;----- Function select register A0
;
 mov.b #10010000b,ps0
;
;----- Function select register B0
;
 mov.b #00000000b,psl0
;
;----- UART1 transmit/receive mode register
;
 mov.b #0,u1c1 ; transmit/receive disable
 mov.b #0,u1mr ; u1mr reset
 mov.b #00000101b,u1mr
; ||||||++---------- transfer data 8 bit long
; |||||+------------ Internal clock
; ||||+------------- one stop bit
; ||++-------------- parity disabled
; |+---------------- sleep mode deselected
;
;----- UART1 transmit/receive control register 0
;
 mov.b #00000100b,u1c0
; ||||||++---------- f1 select
; ||||++------------ RTS select
; |||+-------------- CRT/RTS enabled
; ||+--------------- CMOS output(TxD)
; ++---------------- Must always be "0"
;
;----- UART transmit/receive control register 2
;
 mov.b #00000000b,ucon
; ||||||++---------- Transmit buffer empty
; |||+++------------ Invalid
; ||+--------------- Must always be "0"
; |+---------------- CTS/RTS shared
; +----------------- fixed
;
;----- UART1 transmit/received control register 1
;
 mov.b #00000000b,u1c1
; |||||||+---------- Transmission disabled
; ||||||+----------- Transmission enabled
; |||||+------------ Reception disabled
; ||||+------------- Reception enabled
; ++++-------------- fixed
;
 rts
;
;--------------------------------------
;+ FLASH function main +
;--------------------------------------
U_Flash_func:
 mov.b cmd_d,r0l ; receive data --> r0l

 mov.b #0ch,r0h ; #00001100b sr10,11 mask data
 and.b SRD1,r0h ; sr10,11 pick up

M16C/80 Group
4

206

4.3 Sample List

 cmp.b #0ch,r0h ; ID check OK?
 jne U_Command_check_2 ; jump Command_check_2 at ID unchecked
 mov.w #12,a0

U_Command_check:
 mov.b U_Index_tbl-Trans_TOP2+Ram_progTOP-1[a0],r0h
 cmp.b r0h,r0l
 jeq U_cmd_jmp_1
 sbjnz.w #1,a0,U_Command_check
 jmp U_Command_check_2

U_cmd_jmp_1:
 shl.w #1,a0
 mov.w U_jmp_tbl-Trans_TOP2+Ram_progTOP-2[a0],r0
U_cmd_jmp:
 jmpi.w r0

U_Command_check_2:
?: cmp.b #070h,r0l ; Read SRD (70h)
 jne ?+
 jmp U_Read_SRD
?: cmp.b #0f5h,r0l ; ID check (f5h)
 jne ?+
 jmp U_ID_check
?: cmp.b #0b0h,r0l ; BPS_SET 9600 (b0h)
 jne ?+
 jmp U_BPS_B0
?: cmp.b #0b1h,r0l ; BPS_SET 19200 (b1h)
 jne ?+
 jmp U_BPS_B1
?: cmp.b #0b2h,r0l ; BPS_SET 38400 (b2h)
 jne ?+
 jmp U_BPS_B2
?: cmp.b #0b3h,r0l ; BPS_SET 57600 (b3h)
 jne ?+
 jmp U_BPS_B3
?: cmp.b #0b4h,r0l ; BPS_SET 115200 (b4h)
 jne ?+
 jmp U_BPS_B4
?: cmp.b #0fbh,r0l ; Version out (fbh)
 jne U_Flash_func_end
 jmp U_Ver_output
;
U_Flash_func_end:
 jmp U_Flash_send
;

;--
;+ Read - UART mode - +
;--
U_Read:
 mov.w #0,r3 ; receive number
 mov.b #0,addr_l ; addr_l = 0
U_Read_loop:
 add.w #1,r3 ; r3 +1 increment
 mov.w r3,a0 ; r3 --> a0
 mov.w data[a0],r0
 mov.b r0l,addr_l[a0] ; Store address
 cmp.w #2,r3 ; r3 = 2 ?
 jltu U_Read_loop ; jump Read_loop at r3<2
 mov.w #00ffh,r2 ; Read array command
 jsr U_Command_write ; command_write
 bset send_flg
 mov.w #3,start_cnt
 mov.w #258,send_cnt

4
M16C/80 Group

207

4.3 Sample List

 jmp U_Flash_func_end ; jump Flash_func_end
;
;--
;+ Program - UART mode - +
;--
U_Program:
 mov.w #0,r3 ; receive number
 mov.b #0,addr_l ; addr_l = 0
 mov.w sum,crcd ; for Read check command
U_Program_loop_1:
 add.w #1,r3 ; r3 +1 increment
 mov.w r3,a0 ; r3 --> a0
 mov.b data[a0],r0l
 mov.b r0l,addr_l[a0] ; Store address
 cmp.w #259,r3 ; r3 = 258 ?
 jltu U_Program_loop_1 ; jump U_Program_loop at r3<258
;
 mov.w #00ffh,r2 ; Read array command
 jsr U_Command_write ; command_write
 mov.w #0070h,r2 ; Read SRD command
 jsr U_Command_write ; command_write
 mov.w [a1],r1 ; SRD read
 mov.w #00ffh,r2 ; Read array command
 jsr U_Command_write ; command_write
 cmp.b #80h,r1l ; error check
 jne U_Program_end
;
 mov.w #0041h,r2 ; Page program command
 jsr U_Command_write ; command_write
 mov.w #0,r3 ; writing number (r3=0)
U_Program_loop_2:
 mov.b addr_h,a1 ; addr_h --> a1
 sha.l #16,a1
 mov.w r3,a0 ; r3 --> a0
 mov.w data[a0],r1 ; data --> r1
 mov.w addr_l,a0 ; addr_l,m --> a0
 add.l a0,a1
 mov.w r1,[a1] ; data write
;
 mov.b r1l,crcin ; for Read check command
 mov.b r1h,crcin
;
 add.w #2,addr_l ; address +2 increment
 add.w #2,r3 ; writing number +2 increment
 cmp.w #255,r3 ; r3 = 255 ?
 jltu U_Program_loop_2 ; jump U_Program_loop_2 at r3<255
U_Program_end:
 mov.w crcd,sum ; for Read check command
 bclr send_flg
 mov.w #0,send_cnt
 mov.w #0,start_cnt
 jmp U_Flash_func_end ; jump Flash_func_end
;

;--
;+ Block erase - UART mode - +
;--
U_Erase:
 mov.w #1,r3 ; receive number (r3=1)
 mov.b #0feh,addr_l ; addr_l = feh
U_Erase_loop:
 mov.w r3,a0 ; r3 --> a0
 mov.b data[a0],r0l
 mov.b r0l,addr_l[a0] ; Store address
 add.w #1,r3 ; r3 +1 increment

M16C/80 Group
4

208

4.3 Sample List

 cmp.w #4,r3 ; r3=4 ?
 jltu U_Erase_loop ; jump at r3<4
 cmp.b #0d0h,data ; Confirm command check
 jne U_Erase_end ; jump Erase_end at Confirm command error
 mov.w #0020h,r2 ; Erase command
 jsr U_Command_write ; command write
 mov.w #00d0h,r2 ; Confirm command
 mov.w r2,[a1] ; command write
U_Erase_end:
 mov.w #00ffh,r2 ; Read array command
 jsr U_Command_write ; U_command_write
 bclr send_flg
 mov.w #0,send_cnt
 mov.w #0,start_cnt
 jmp U_Flash_func_end ; jump Flash_func_end
;
;--
;+ All erase (unlock block) - UART mode - +
;--
U_All_erase:
 mov.w #1,a0
 mov.b data[a0],r0l ;receive data read --> r0
 cmp.b #0d0h,r0l ; Confirm command check
 jne U_All_erase_end ; jump U_All_erase_end at Confirm command error
 mov.w #0000h,addr_l ; 0fe0000h --> addr
 mov.b #00feh,addr_h
 mov.w #00a7h,r2 ; All erase command
 jsr U_Command_write ; command write
 mov.w #00d0h,r2 ; Confirm command
 mov.w r2,[a1] ; command write
U_All_erase_end:
 mov.w #00ffh,r2 ; Read array command
 jsr U_Command_write ; command_write
 bclr send_flg
 mov.w #0,send_cnt
 mov.w #0,start_cnt
 jmp U_Flash_func_end ; jump Flash_func_end
;
;--
;+ Read SRD - UART mode +
;--
U_Read_SRD:
 mov.w #0,r3 ; receive number (r3=0)
 mov.w #0000h,addr_l ; 0fe0000h --> addr
 mov.b #00feh,addr_h
 mov.w #00ffh,r2 ; Read array command
 jsr U_Command_write ; command_write
 mov.w #0070h,r2 ; Read SRD command
 jsr U_Command_write ; command write
 mov.w [a1],r1 ; SRD read
 mov.w #00ffh,r2 ; Read array command
 jsr U_Command_write ; command_write
 mov.w #1,start_cnt
 mov.w #3,send_cnt
 bset send_flg
 jmp U_Flash_func_end ; jump Flash_func_end
;
;--
;+ Clear SRD - UART mode +
;--
U_Clear_SRD:
 mov.w #0000h,addr_l ; 0fe0000h --> addr
 mov.b #00feh,addr_h
 mov.w #00ffh,r2 ; Read array command
 jsr U_Command_write ; command write

4
M16C/80 Group

209

4.3 Sample List

 mov.w #0050h,r2 ; Clear SRD command
 jsr U_Command_write ; command write
 mov.w #00ffh,r2 ; Read array command
 jsr U_Command_write ; command write
 and.b #10011100b,SRD1 ; SRD1 clear
 mov.w #0,start_cnt
 mov.w #0,send_cnt
 bclr send_flg
 jmp U_Flash_func_end ; jump Flash_func_end
;
;--
;+ Read Lock Bit - UART mode - +
;--
U_Read_LB:
 mov.w #1,r3 ; receive number (r3=1)
 mov.b #0feh,addr_l ; addr_l = feh
U_Read_LB_loop:
 mov.w r3,a0 ; r3 --> a0
 mov.b data[a0],r0l
 mov.b r0l,addr_l[a0] ; Store address
 add.w #1,r3 ; r3 +1 increment
 cmp.w #3,r3 ; r3=3 ?
 jltu U_Read_LB_loop ; jump at r3<3
 bclr re_u1c1 ; Reception disabled
 mov.w #0071h,r2 ; Read LB command
 jsr U_Command_write ; command write
 mov.w [a1],r1 ; read LB
 mov.w #00ffh,r2 ; Read array command
 jsr U_Command_write ; U_command write
U_Read_LB_end:
 mov.w #1,start_cnt
 mov.w #1,send_cnt
 bset send_flg
 jmp U_Flash_func_end ; jump Flash_func_end
;
;--
;+ Program Lock Bit - UART mode - +
;--
U_Program_LB:
 mov.w #1,r3 ; receive number (r3=1)
 mov.b #0feh,addr_l ; addr_l = feh
U_Program_LB_loop:
 mov.w r3,a0 ; r3 --> a0
 mov.b data[a0],r0l
 mov.b r0l,addr_l[a0] ; Store address
 add.w #1,r3 ; r3 +1 increment
 cmp.w #4,r3 ; r3=4 ?
 jltu U_Program_LB_loop ; jump at r3<4
 cmp.b #0d0h,data ; Confirm command check
 jne U_Program_LB_end ; jump U_Program_LB_end at Confirm command
error
 mov.w #0077h,r2 ; Program LB command
 jsr U_Command_write ; command write
 mov.w #00d0h,r2 ; Confirm command
 mov.w r2,[a1] ; command write
 mov.w #00ffh,r2 ; Read array command
 jsr U_Command_write ; command write
U_Program_LB_end:
 mov.w #0,start_cnt
 mov.w #0,send_cnt
 bclr send_flg
 jmp U_Flash_func_end ; jump Flash_func_end
;
;--

M16C/80 Group
4

210

4.3 Sample List

;+ Lock Bit enable - UART mode - +
;--
U_LB_enable:
 bclr fmr02 ; Lock disable bit = 0
 mov.w #0,start_cnt
 mov.w #0,send_cnt
 bclr send_flg
 jmp U_Flash_func_end ; jump Flash_func_end
;
;
;--
;+ Lock Bit disable - UART mode - +
;--
U_LB_disable:
 bclr fmr02 ; Lock disable bit = 0
 bset fmr02 ; Lock disable Bit = 1
 mov.w #0,start_cnt
 mov.w #0,send_cnt
 bclr send_flg
 jmp U_Flash_func_end ; jump Flash_func_end
;
;--
;+ ID check - UART mode +
;--
U_ID_check:
 btst blank ; blank flag check
 jc U_ID_check_end ; jump U_ID_check_end at blank
 cmp.w #0ffdfh,addr_l ; lower U_ID address check
 jne U_ID_error ; jump U_ID_error at ID address error
 cmp.w #007ffh,addr_h ; higher ID address check
 jne U_ID_error ; jump U_ID_error at ID address error
U_ID_data_check:
 mov.w #0ffdfh,r1 ; ID lower address --> r1
 mov.w #1,r3 ; check loop number (r3=1)
U_ID_check_loop:
 mov.w #00ffh,a1 ; ID higher address --> a1
 sha.l #16,a1
 mov.w r1,a0 ; r1 --> a0
 add.l a0,a1
 mov.b [a1],r0l ; ID data read from Flash memory
 mov.w r3,a0 ; r3 --> a0
 cmp.b r0l,data[a0] ; compare ID data
 jne U_ID_error ; jump U_ID_error at ID error
 add.w #4,r1 ; r1 +4 increment (next ID address)
 cmp.w #0ffe7h,r1 ; r1=0ffefh ?
 jne ?+ ; jump ? at not equal
 mov.w #0ffebh,r1 ; r1=0ffeb at equal
?:
 add.w #1,r3 ; r3 +1 increment
 cmp.w #8,r3 ; r3=8 ?
 jltu U_ID_check_loop ; jump U_ID_check_loop at r3<8
U_ID_OK:
 bset sr10
 bset sr11 ; ID check OK (sr11=1,sr10=1)
 jmp U_ID_check_end ; jump U_ID_check_end
U_ID_error:
 bset sr10
 bclr sr11 ; ID error (sr11=0,sr10=1)
U_ID_check_end:
 mov.w #0,start_cnt
 mov.w #0,send_cnt
 bclr send_flg
 jmp U_Flash_func_end ; jump Flash_func_end
;
;--

4
M16C/80 Group

211

4.3 Sample List

;+ Boot output - UART mode - +
;--
U_Boot_output:
 bclr fmr05 ; Boot ROM select
 mov.w #0,r3 ; receive number (r3=1)
 mov.w #0,addr_l ; addr_l = 0
U_Boot_loop:
 add.w #1,r3 ; r3 +1 increment
 mov.w r3,a0 ; r3 --> a0
 mov.w data[a0],r0
 mov.b r0l,addr_l[a0] ; Store address
 cmp.w #2,r3 ; r3 = 3 ?
 jltu U_Boot_loop ; jump at r3<3
 bset send_flg
 mov.w #3,start_cnt
 mov.w #258,send_cnt
 jmp U_Flash_func_end ; jump Flash_func_end
;
;--
;+ Read check +
;--
U_Read_check:
 mov.w #0,start_cnt
 mov.w #2,send_cnt
 bset send_flg
 jmp U_Flash_func_end ; jump Flash_func_end
;
;--
;+ Download - UART mode - +
;--
U_Download:
 bclr fmr05 ; Boot ROM select
 jmp.a U_Download_program ; jump U_Download_program
;
;--
;+ Version output - UART mode - +
;--
U_Ver_output:
 mov.w #0,start_cnt
 mov.w #8,send_cnt
 bset send_flg
 jmp U_Flash_func_end ; jump Flash_func_end
;
;++
;+ Subroutine : Command write - UART mode +
;++
U_Command_write:
 btst fmr00 ; RY/BY status check
 jz U_Command_write
 mov.w addr_l,a0 ; addr_l,m --> a0
 mov.b addr_h,a1 ; addr_h --> a1
 sha.l #16,a1
 add.l a0,a1
 mov.w r2,[a1] ; command write
 rts
;
;++
;+ Main init first - UART mode - +
;++
U_SIO_init_first:
 bclr freq_set1 ; freq set flag clear
 bclr freq_set2
 mov.b #01111111b,data_BPS ; Initialize Baud rate
; mov.b #129,data_BPS ; Initialize Baud rate 9600bps for 20MHz

M16C/80 Group
4

212

4.3 Sample List

 jsr Initialize_3 ; UART mode Initialize
 mov.b #01000000b,r1l ; counbter1,2 reset
 mov.b #10000000b,r1h

 jsr U_SIO_rcv
;
 mov.w rcv_d,r0 ; receive data --> r0
 btst freq_set2
 jz U_Freq_check
 jmp U_Loop_main
;
;++
;+ SIO init - UART mode - +
;++
U_SIO_freq:
 btst freq_set2
 jz U_Freq_check
 jmp U_Flash_init

;++
;+ Freq check - UART mode - +
;++
U_Freq_check:
 bclr re_u1c1 ; Reception disabled
 btst 0,r1h ; counter = 8 times
 jc U_Freq_check_4
;
 btst freq_set1
 jc U_Freq_check_1
 btst 5,r0h ; fer_u1rb
 jz U_Freq_check_3
 jmp U_Freq_check_2
U_Freq_check_1:
 cmp.b #00h,r0l ; "00h"?
 jeq U_Freq_check_3
U_Freq_check_2:
 or.b r1h,r1l ; r1l = counter1 or counter2
U_Freq_check_3:
 xor.b data_BPS,r1l ; Baud = Baud xor r1l
 mov.b r1l,data_BPS ; data set
 mov.b r1h,r1l
 rot.b #-1,r1l
 rot.b #-1,r1h ; counter sift
 rot.b #-1,r1l
 jmp U_Freq_check_6
;
U_Freq_check_4:
 btst freq_set1 ; Baud get ?
 jc U_Freq_set_1 ; Yes , finished
 bset freq_set1
 btst 5,r0l ; fer_u1rb
 jz U_Freq_check_5
 xor.b data_BPS,r1h
 mov.b r1h,data_BPS
U_Freq_check_5:
 mov.b data_BPS,data_BPS+1 ; Min Baud --> data+1
 mov.b #01000000b,r1l ; counter reset
 mov.b #10000000b,r1h
 mov.b #10000000b,data_BPS ; Reset
U_Freq_check_6:
 jsr U_blank_end ; UART mode Initialize
?:
 btst p6_6
 jz ?-

4
M16C/80 Group

213

4.3 Sample List

 jmp U_Loop_main
;
U_Freq_set_1:
 cmp.b #00h,r0l ; "00h"?
 jeq U_Freq_set_2
 xor.b data_BPS,r1h
 mov.b r1h,data_BPS
U_Freq_set_2:
 bset freq_set2
 mov.b data_BPS,r1l ; Max Baud --> data
 sub.b data_BPS+1,r1l
 shl.b #-1,r1l
 add.b data_BPS+1,r1l
;
 mov.b r1l,baud ; 9600bps
 shl.b #-1,r1l ; 19200bps
 mov.b r1l,baud+1
 shl.b #-1,r1l ; 38400bps
 mov.b r1l,baud+2
 mov.b baud,r0l ; 57600bps
 mov.b #0,r0h
 divu.b #6
 mov.b r0l,baud+3
 mov.b baud+3,r0l ; 115200bps
 shl.b #-1,r0l
 mov.b r0l,baud+4
 mov.b baud,data_BPS
 mov.b #0b0h,r0l ; "B0h" set
 jsr U_blank_end ; UART mode Initialize
 jmp U_BPS_SET_data
;
;--------------------------------------
;+ Baud rate change - UART mode +
;--------------------------------------
U_BPS_B0:
U_BPS_B1:
U_BPS_B2:
U_BPS_B3:
U_BPS_B4:
 mov.w #0,start_cnt
 mov.w #1,send_cnt
 bset send_flg
 jmp U_Flash_func_end ; jump Flash_func_end
;
;++
;+ Subroutine : serial I/O send - UART mode +
;++
U_SIO_send:
 bclr re_u1c1
 bset te_u1c1
 mov.b send_d,u1tb ; transmit buffer register
?:
 btst ti_u1c1 ; transmit buffer empty?
 jnc ?-
 rts
;
;++
;+ Subroutine : serial I/O send - UART mode +
;++
U_SIO_send_only:
 mov.b send_d,u1tb ; transmit buffer register
?:
 btst ti_u1c1 ; transmit buffer empty?
 jnc ?-
 rts

M16C/80 Group
4

214

4.3 Sample List

;++
;+ Subroutine : serial I/O receive - UART mode +
;++
U_SIO_rcv:
 bclr te_u1c1
 bset re_u1c1
?:
 btst ri_u1c1 ; receive complete?
 jnc ?-
 mov.w u1rb,rcv_d
 rts
;
;++
;+ Subroutine : serial I/O receive - UART mode +
;++
U_SIO_rcv_only:
?:
 btst ri_u1c1 ; receive complete?
 jnc ?-
 mov.w u1rb,rcv_d
 rts
;
;++
;+ Subroutine : serial I/O receive - UART mode +
;++
U_SIO_exit:
 btst txept_u1c0
 jnc U_SIO_exit
 rts
;

;==
;+ Vector Table +
;==
 .section inter,romdata
 .org Vector
;
 .lword Reset ; UNO
 .lword Reset ; INTO
 .lword Reset ; BRK
 .lword Reset ; address matchnig
 .lword Reset ;
 .lword Reset ; WDT
 .lword Reset ;
 .lword Reset ; NMI
 .lword Reset ; Reset
;
 .end

4
M16C/80 Group

215

4.3 Sample List

;**
;* file name : definition of M16C/80 Flash *
;**
;---
; BUSY output
;---
busy .btequ 4,03C0h ; p6_4
busy_d .btequ 4,03C2h ; pd6_4
;
;---
; Serial I/O select bit
;---
s_mode .btequ 5,03C0h ; p6_5
s_mode_d .btequ 5,03C2h ; pd6_5
;
;---
; define of symbols
;---
Ram_TOP .equ 000400h
Ram_END .equ 000bffh
Istack .equ 000c00h
;
Version .equ 0ffe000h
Boot_TOP .equ 0ffe020h
Trans_TOP1 .equ 0ffe200h
Trans_END1 .equ 0ffe700h
Trans_TOP2 .equ 0ffe800h
Trans_END2 .equ 0ffed80h
Vector .equ 0ffffdch
;
Download_program .equ 0ffe0f0h
U_Download_program .equ 0ffe170h
;
SB_base .equ 000400h
Ram_progTOP .equ 000600h
Ram_progEND .equ 000B80h
;
 .section memory,data
 .org Ram_TOP
;
SRD: .blkb 1
SRD1: .blkb 1
ver: .blkb 10
SF: .blkb 1
unuse: .blkb 4
addr_l: .blkb 1
addr_m: .blkb 1
addr_h: .blkb 1
data: .blkb 300
buff: .blkb 20
ID_err: .blkb 1
sum: .blkb 2
baud: .blkb 5
;
sr0 .btequ 0,SRD
sr1 .btequ 1,SRD
sr2 .btequ 2,SRD
sr3 .btequ 3,SRD
sr4 .btequ 4,SRD
sr5 .btequ 5,SRD
sr6 .btequ 6,SRD
sr7 .btequ 7,SRD

Header

M16C/80 Group
4

216

4.3 Sample List

sr8 .btequ 0,SRD1
sr9 .btequ 1,SRD1
sr10 .btequ 2,SRD1
sr11 .btequ 3,SRD1
sr12 .btequ 4,SRD1
sr13 .btequ 5,SRD1
sr14 .btequ 6,SRD1
sr15 .btequ 7,SRD1
;
ram_check .btequ 0,SF
blank .btequ 1,SF
old_mode .btequ 2,SF
freq_set1 .btequ 3,SF
freq_set2 .btequ 4,SF
;
;

4
M16C/80 Group

217

4.4 Precautions

4.4 Precautions

This section describes precautions to be observed when controlling the M16C/80's internal flash memory.

When Powering On/Off

When powering on/off, pay attention to the following:

(1) Be careful that noise will not get into the control pins (WE, CE, OE). If a noise pulse is applied to the

control pins when turning the power on or off, a program/erase error will occur, which in the worst case

may destroy the memory data.

(2) A finite wait time is required before you can start read or program/erase operation after power-on.

Specifically, a wait time of 2 µs is required before read or program/erase operation can be started after

Vcc reached Vccmin (3.0 V).

M16C/80 Group
4

218

4.4 Precautions

Chapter 5

Internal Flash Memory Rewrite Inhibit Function
5.1 ID Code

5.2 ROM Code Protect Function

5

220

Internal Flash Memory Rewrite Inhibit Function

5.1 ID Code

To prevent illegal leakage of a program, the M16C flash memory allows ID data to be set (called the "ID

code"). This section describes how to inhibit the internal flash memory against rewriting by using ID data.

What Is The ID Code?

The ID code is the ID data that is written into the internal flash memory beforehand in order to inhibit the

flash memory against rewriting.

When exercising control, enter the ID from the programmer newly again and only when it matches the ID

data stored in the flash memory, you can control program or read operation.

The ID code for the M16C/20 and 62's flash memory is fixed to 7 bytes in length. The areas in which to

store the ID code are address FFFDF16, address FFFE316, address FFFEB16, address FFFEF16, address

FFFF316, address FFFF716, and address FFFFB16.

The ID code for the M16C/80's flash memory is fixed to 7 bytes in length. The areas in which to store the

ID code are address FFFFDF16, address FFFFE316, address FFFFEB16, address FFFFEF16, address

FFFFF316, address FFFFF716, and address FFFFFB16.

Figure 5.1.1 ID Codes of The M16C/20 and 62

FFFDF16

FFFE316

FFFEB16

FFFEF16

FFFF316

FFFF716

FFFFB16

ID1

ID2

ID3

ID4

ID5

ID6

ID7

Fixed to 7 bytes in length

5.1 ID Code

5

221

Internal Flash Memory Rewrite Inhibit Function

Processing Flow

Figure 5.1.2 shows a flow of the main program using ID code.

Figure 5.1.2 Flow of The Main Program Using ID Code

How to Set ID Code

The addresses at which ID code is set overlaps the fixed vector area. Therefore, set the logical sum of

each interrupt's jump address and the ID code as fixed vector. A description example is shown in Figure

5.1.3.

Figure 5.1.3 Description Example for ID Code Setting (M16C/20, 62)

START

ID checked?

Command
processing

ID check

All OK

Yes

No

Yes

No

Error handling

Determined by flag, etc.

.org 0FFFDCH
UDI:

.lword dummy_int | 01000000H ; ID1
OVER_FLOW:

.lword dummy_int | 23000000H ; ID2
BRKI:

.lword dummy_int
ADDRESS_MATCH:

.lword dummy_int | 45000000H ; ID3
SINGLE_STEP:

.lword dummy_int | 67000000H ; ID4
WDT:

.lword dummy_int | 89000000H ; ID5
DBC:

.lword dummy_int | 0AB000000H ; ID6
NMI:

.lword dummy_int | 0CD000000H ; ID7
RESET:

.lword start

Interrupt jump address
ID code

5.1 ID Code

5

222

Internal Flash Memory Rewrite Inhibit Function

Setting ID Code by lmc30, lmc308

The load module converters (lmc30, lmc308) included with the assemblers for Mitsubishi M16C (AS30,

AS308) allow any ID code to be set in a load module when generating the load module.

The following shows an example of command settings necessary to set ID code when generating load

modules. For details about the load module converters (lmc30, lmc308), refer to the AS30 User's Manual

or AS308 User's Manual.

Example 1: lmc30 -ID Code No1 sample ("CodeNo1" specified using ASCII code)

ID code : 436F64654E6F31

Table 5.1.1 ID Code Setting Example

Example 2: lmc30 -ID Code sample ("Code" specified using ASCII code)

ID code : 436F6465000000

Example 3: Imc30 -ID1234567 sample ("1234567" specified using ASCII code)

ID code : 31323334353637

Example 4: lmc30 -ID#49562137856132 sample ("49562137856132" specified using HEX code)

ID code : 49562137856132

Example 5: lmc30 -ID1234567 sample ("1234567" specified using HEX code)

ID code : 12345670000000

Example 6: lmc30 -ID sample

ID code : FFFFFFFFFFFFFF

Address

Data

ID1

FFFDF16

4316

ID2

FFFE316

6F16

ID3

FFFEB16

6416

ID4

FFFEF16

6516

ID5

FFFF316

4E16

ID6

FFFF716

6F16

ID7

FFFFB16

3116

5.1 ID Code

5

223

Internal Flash Memory Rewrite Inhibit Function

5.2 ROM Code Protect Function

To prevent illegal leakage of a program, the M16C flash memory allows you to limit rewriting of ROM code

(called the "ROM code protect"). This section describes how to limit rewriting of the internal flash memory by

using the ROM code protect function.

What is The ROM Code Protect Function?

The ROM code protect function reading out or modifying the contents of the flash memory version by using

the ROM code protect control address (0FFFFF16) during parallel I/O mode. Figure 5.2.1 shows the ROM

code protect control address (0FFFFF16). (This address exists in the user ROM area.)

If one of the pair of ROM code protect bits is set to 0, ROM code protect is turned on, so that the contents

of the flash memory version are protected against readout and modification. ROM code protect is

implemented in two levels. If level 2 is selected, the flash memory is protected even against readout by a

shipment inspection LSI tester, etc. When an attempt is made to select both level 1 and level 2, level 2 is

selected by default.

If both of the two ROM code protect reset bits are set to “00,” ROM code protect is turned off, so that the

contents of the flash memory version can be read out or modified. Once ROM code protect is turned on,

the contents of the ROM code protect reset bits cannot be modified in parallel I/O mode. Use the serial I/O

or some other mode to rewrite the contents of the ROM code protect reset bits.

Figure 5.2.1 ROM Code Protect Control Address

Symbol Address When reset
ROMCP 0FFFFF16 (M16C/20, 60) FF16
 FFFFFF16 (M16C/80)

ROM code protect level
2 set bit (Note 1, 2) 00: Protect enabled

01: Protect enabled
10: Protect enabled
11: Protect disabled

ROM code protect control address

Bit name FunctionBit symbol

b7 b6 b5 b4 b3 b2 b1 b0

00: Protect removed
01: Protect set bit effective
10: Protect set bit effective
11: Protect set bit effective

00: Protect enabled
01: Protect enabled
10: Protect enabled
11: Protect disabled

ROM code protect reset
bit (Note 3)

ROM code protect level
1 set bit (Note 1)

ROMCP2

ROMCR

ROMCP1

b3 b2

b5 b4

b7 b6

Note 1: When ROM code protect is turned on, the on-chip flash memory is protected against
readout or modification in parallel input/output mode.

Note 2: When ROM code protect level 2 is turned on, ROM code readout by a shipment
inspection LSI tester, etc. also is inhibited.

Note 3: The ROM code protect reset bits can be used to turn off ROM code protect level 1 and
ROM code protect level 2. However, since these bits cannot be changed in parallel input/
output mode, they need to be rewritten in serial input/output or some other mode.

Note 4: This bit is defined as the reserved bit in M16C/20 group. Must set "1" to it.

Reserved bit Always set this bit to 1.

5.2 ROM Code Protect Function

5

224

Internal Flash Memory Rewrite Inhibit Function

How to Set ROM Code Protect Control Addresses

The addresses at which ROM code protect is set overlaps the fixed vector area. Therefore, set the logical

sum of the reset jump address and the set value of ROM code protect bit as fixed vector. A description

example is shown in Figure 5.2.2.

Figure 5.2.2 Description Example for ROM Code Protect Control Address (M16C/20,62)

.org 0FFFDCH
UDI:

.lword dummy_int | 01000000H ; ID1
OVER_FLOW:

.lword dummy_int | 23000000H ; ID2
BRKI:

.lword dummy_int
ADDRESS_MATCH:

.lword dummy_int | 45000000H ; ID3
SINGLE_STEP:

.lword dummy_int | 67000000H ; ID4
WDT:

.lword dummy_int | 89000000H ; ID5
DBC:

.lword dummy_int | 0AB000000H ; ID6
NMI:

.lword dummy_int | 0CD000000H ; ID7
RESET:

.lword start | 03F000000H ; ROMCP

Reset jump address ROM code protect control
address

5.2 ROM Code Protect Function

5

225

Internal Flash Memory Rewrite Inhibit Function

Setting ROM Code Protect by lmc30, lmc308

The load module converters (lmc30, lmc308) included with the assemblers for Mitsubishi M16C (AS30,

AS308) allow any ROM code protect function to be set in a load module when generating the load module.

The following shows an example of command settings necessary to set ROM code protect function when

generating load modules. For details about the load module converters (lmc30, lmc308), refer to the AS30

User's Manual or AS308 User's Manual.

Example 1: lmc30 -protect 1 sample (Set ROM code protect function level 1)

Protect code : 3F16

Example 2: lmc30 -protect 2 sample (Set ROM code protect function level 2)

Protect code : F316

Example 3: lmc30 sample (Without ROM code protect function setting)

Protect code : Data described in source program

5.2 ROM Code Protect Function

226

Version History

Contents for change
Revision

dateVersion

Revision history M16C/60, M16C/20, M16C/80 Series
Application Note <Flash Memory>

Revision History

• Page 96 Figure 3.2.24 Flowchart

• Source of 3.3 Sample List

• Page 10-11 M30201F4 --> M30201F6

• Page 11 Figure 2.1.1 DFBFF16 --> DFDFF16

• Page 61 (1) 14V --> 13V

• Page 77 Figure 3.2.3 b6 of CM0 '1 --> 0', b6 of CM1 '1 --> 0', divided-by 2 mode --> no

division mode

• Page 78, 156 Initial setting 2 the flash entry bit --> the CPU rewite mode select bit

 flash control register 0/1 --> flash memory control register 0/1

• Page 142 M30802FC --> M30803FC

• Page 174 Figure 4.2.24 Flowchart

• Source of 4.3 Sample List

REV.B 27 Mar. '00

MITSUBISHI SINGLE-CHIP MICROCOMPUTERS

M16C/60, M16C/20, M16C/80 Series rev.B

Application Note <Flash Memory>

April First Edition 2000

Editioned by

 Committee of editing of Mitsubishi Semiconductor

Published by

 Mitsubishi Electric Corp., Kitaitami Works

This book, or parts thereof, may not be reproduced in any form without

permission of Mitsubishi Electric Corporation.

2000 MITSUBISHI ELECTRIC CORPORATION

	Chapter 1
	1.1 What Is Flash Memory?
	1.2 M16C Family and Flash Memory
	1.3 Controlling Flash Memory On-Board

	Chapter 2 M16C/20 Group
	2.1 Outline of Hardware
	2.2 Developing The Boot Program
	2.3 Sample List
	2.4 Precautions

	Chapter 3 M16C/62 Group
	3.1 Outline of Hardware
	3.2 Developing The Boot Program
	3.3 Sample List
	3.4 Precautions

	Chapter 4 M16C/80 Group
	4.1 Outline of Hardware
	4.2 Developing The Boot Program
	4.3 Sample List
	4.4 Precautions

	Chapter 5 Internal Flash Memory Rewrite Inhibit Function
	5.1 ID Code
	5.2 ROM Code Protect Function

	Revision History

