MITSUBISHI SINGLE-CHIP MICROCOMPUTERS

M16C/60, M16C/20, M16C/80 Series
Application Note
< Flash Memory Control>
Preliminary

Mitsubishi Electric Corporation Kitaitami Works
Mitsubishi Electric Semiconductor Systems Corporation
Mitsubishi Electric System LSI Design Corporation
REV.B

Keep safety first in your circuit designs!

Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with
them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with
appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of
non-flammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

These materials are intended as a reference to assist our customers in the selection of the
Mitsubishi semiconductor product best suited to the customer's application; they do not
convey any license under any intellectual property rights, or any other rights, belonging to
Mitsubishi Electric Corporation or a third party.

Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement
of any third-party's rights, originating in the use of any product data, diagrams, charts,
programs, algorithms, or circuit application examples contained in these materials.

All information contained in these materials, including product data, diagrams, charts,
programs and algorithms represents information on products at the time of publication of
these materials, and are subject to change by Mitsubishi Electric Corporation without notice
due to product improvements or other reasons. It is therefore recommended that customers
contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product
distributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Mitsubishi Electric Corporation assumes no responsibility for any damage, liability, or other
loss rising from these inaccuracies or errors.

Please also pay attention to information published by Mitsubishi Electric Corporation by
various means, including the Mitsubishi Semiconductor home page (http://
www.mitsubishichips.com).

When using any or all of the information contained in these materials, including product
data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information
as a total system before making a final decision on the applicability of the information and
products. Mitsubishi Electric Corporation assumes no responsibility for any damage, liability
or other loss resulting from the information contained herein.

Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use
in a device or system that is used under circumstances in which human life is potentially at
stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor when considering the use of a product contained herein
for any specific purposes, such as apparatus or systems for transportation, vehicular, medical,
aerospace, nuclear, or undersea repeater use.

The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or
reproduce in whole or in part these materials.

If these products or technologies are subject to the Japanese export control restrictions,
they must be exported under a license from the Japanese government and cannot be
imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/
or the country of destination is prohibited.

Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor
product distributor for further details on these materials or the products contained therein.

Guide to Using This Manual

This manual is a reference for making boot rogram.
This manual consists of five chapters.
Look at a necessary chapter, according to a flowchart shown below.

To know about M16C's Make boot program
flash memory

Using M16C/20 Using M16C/62 Using M16C/80

Chapter 2 Chapter 3 Chapter 4

Set protect to the
program code

Practice

M16C Family-related document list

Usages
(Microcomputer development flow)

Selection of Type of document Contents
microcomputer
Data sheet and | Hardware specifications (pin assignment,
o | data book memory map, specifications of peripheral
Outline design < functions, electrical characteristics, timing
of system E charts)
© , Detailed description about hardware
T User’'s manual e . . N
. : specifications, operation, and application
Detail design i : .
of system exgmple_s (cpnnectlon with peripherals, re-
lationship with software)
o | Programming Method for creating programs using as-
— § manual sembly and C languages
%’ Software Detailed description about operation of
o | manual each instruction (assembly language)
System
evaluation
M16C Family Line-up
M16C Family = ——— M16C/80 Series —— M16C/80 Group
M16C/60 Series ——— M16C/60 Group
M16C/61 Group
M16C/62 Group
M16C/20 Series —— M16C/20 Group

M16C/21 Group
M16C/22 Group

Table of Contents

Chapter 1 Outline of M16C Internal Flash MCUcccociiiiiiiiiiiiinineene, 1
1.1 What IS FIash MEMOIY?eeieiiiiiii ittt et 2
1.2 M16C Family and FIash MEmMOTYuuiiiiiiiiiie et 4
1.3 Controlling Flash Memory ON-BOArdc..eeeeiiiiiiiiaiiiiieee e 6
Chapter 2 M1B6C/20 GrOUPuoieieeeeeeieeeeiiiiiiieee e e et e e e e e eees 9
2.1 OULIINE OF HAIGWAIEooiiiiiiiie ittt e e et e e e 10
2.2 Developing The BOOt Program ...t e e e e e e e e e e 17
2.3 SAMPIE LIST .ttt ettt e e e b e e e et b e e e e et e e e e e aabebaeeeene 36
P e (=Tor: 11 (o] LT PO PP PP RPPPRPPPPRP 61
Chapter 3 ML1E6C/62 GrOUPcccuuuiieeeieeiiiie e e e eeeatin e e e eeabn e e e eeennas 63
3.1 OULNE OFf HAIOWAIEeeeiiiiiiiie ettt e et e e s s b e e e e s eeeeenas 64
3.2 Developing The BOOL PrOGramoociiiieiieiiiiiiee e siieee ettt ee et e e st e e e s sbbe e e e e s sabneeeesaas 75
3.3 SAMPIE LIS .. ettt e e e e e e e et e e e e e e e aaaae s 102
R o £ Tor 10 1o L PP PUPPRPRPN 139
Chapter 4 ML1GC/80 GrOUPuiiiieeeeeieiieiiieiiiiiea e 141
4.1 OULINE OFf HAIAWAIEeeiiiiiiiiiie ettt e e eas 142
4.2 Developing The BOOt PrOGraMeiiiiiiiiiiiiiiii ettt e e e e e e s saeabeereeeaaaeeeas 153
R IS T= 1001 o] L= I AP PP PPPPPP 180
4.4 PIECAULIONSciiiteeiie ittt e ettt e e st e e s skttt e e st e e s e s e e e e s sn et e e s s b et e e e s b e e e e e b e e e e e e e nnnes 217
Chapter 5 Internal Flash Memory Rewrite Inhibit Function 219
ST R | I Oo o [PO PO PT PP UPPPTTPPPTP 220

5.2 ROM COdE ProteCt FUNCHIONeeiiire ettt et e et e e et e et e e e et e e e eaa e e eareeeeraes 223

Chapter 1

Outline of M16C Internal Flash MCU

1.1 What Is Flash Memory?
1.2 M16C Family and Flash Memory
1.3 Controlling Flash Memory On-Board

1 Outline of M16C Internal Flash MCU
1.1 What Is Flash Memory?

1.1 What Is Flash Memory?

Flash memory has since around the middle of 1980s been available as an electrically programmable/erasable
memory product that does not require battery backup. In recent years, flash memory has been widely used
in portable telephones (including PHS), notebook personal computers, and various other portable equipment.
This section describes advantages of flash memory and available types.

Advantages of Flash Memory

Flash memory is electrically rewritable nonvolatile memory. Compared to other products such as EPROM
and EEPROM that have the same functionality, flash memory is significantly advantageous in chip size
and cost. The following lists advantages of flash memory:

(1) Small chip size
The EEPROM memory cell consists of two transistors, whereas that of flash memory consists of one
transistor as does EPROM. Therefore, when manufactured using the same fabrication method to provide
the same memory capacity as other memory products, flash memory can be manufactured in smaller chip
size.

(2) Encapsulated in plastic packages
EPROM requires a window-fitted package because its data is erased by irradiating ultraviolet rays upon it,
and cannot be encapsulated in a plastic package. On the other hand, flash memory does not require a
window-fitted package because it is electrically erasable, and can be encapsulated in a plastic package.

(3) Unnecessary IC sockets
When mounted on the circuit board, EPROM requires use of an IC socket because it needs to be placed
in a ultraviolet radiation unit to erase its data. On the other hand, flash memory can be mounted directly on
the circuit board because its data can be electrically erased.

Table 1.1.1 Comparison between Flash Memory and EPROM and EEPROM

Flash memory EPROM EEPROM
Chip size Small Small Not small
Capsulated in plastic packages Possible Possible Impossible
IC socket Not use use Not use

Outline of M16C Internal Flash MCU
1 1.1 What Is Flash Memory?

Types of Flash Memory

There are several types of cell structures that comprise flash memory. These, for example, include NOR,
DINOR, and AND types. Each type is taken advantage of when using flash memory.

(1) NOR type
The NOR-type cell structure is the same as that of EPROM. Also, because cells can be read at random,
EPROM can easily be replaced with this type of flash memory.

(2) DINOR type

The DINOR-type cell structure draws on the tunnel effect to write and erase data. Therefore, this type of
flash memory does not require a large current for program/erase operation, making it suitable for use in
low-voltage, single-power supply applications.

(3) AND type
The feature of AND type is a reduced cell size, so that its cell structure is ideal for large-capacity memory.
Because cell data is read out by serial access, this type of flash memory is used mainly for data storage
purposes.

Outline of M16C Internal Flash MCU
1 1.2 M16C Family and Flash Memory

1.2 M16C Family and Flash Memory

The M16C family microcomputers have been well received in consumer electronics and industrial fields for
their numerous features including high-efficiency C language support, high performance, superior noise
characteristics, and low power consumption. In addition to conventional mask ROM and OTP, a new product
with built-in flash memory has been added to the lineup. This section explains about the flash memory that is
incorporated in the M16C family microcomputers.

Flash Memory Incorporated in The M16C Family

The M16C family microcomputers incorporate suitable types of flash memory to meet the application
needs of each group. The M16C/20 group incorporates the NOR type, while the M16C/62 and 80 groups

incorporate the DINOR type.

Table 1.2.1 Flash Memory Incorporated in The M16C Family

M16C/20 group M16C/62 and 80 groups
Cell structure NOR type DINOR type
Access method Random access Random access
Programming method Byte write Page write
Erasing method Collective erase Block by block erase

Read/Write Modes

The flash memory built into the M16C can be read/written in three modes.

(1) Parallel input/output mode
In this mode, a general-purpose programmer or the suitable flash programmer are used to read or write

data. Part of MCU pins are used to send control signals. No software is required.

(2) Serial input/output mode
Read/write operations are controlled via serial interface using part of MCU pins. Data can be read/written

using the suitable serial programmer. Software is required, which can be either the standard boot program
or a user boot program that supports the protocol of the serial programmer.

(3) CPU rewrite mode
Read/write operations are controlled by setting the control registers in a user program. Software is required,
which includes a read program, a write program, and a user boot program including a RAM transfer program.

Outline of M16C Internal Flash MCU
1 1.2 M16C Family and Flash Memory

Standard Boot Program and User Boot Program

The boot program used to control read/writes to flash memory can be the standard boot program that is
already included in flash memory or a boot program created by the user to suit the application system.
The standard boot program is prepared by the manufacturer to control flash memory using the manufacturer-
designated method. Normally, this program is stored in the boot ROM area. On the other hand, the user
boot program is created by the user to control flash memory using the user's own exclusive method.
Normally, this program will be stored in the user ROM area.

Table 1.2.2 compares between the standard boot program and user boot program.

Table 1.2.2 Comparing between The Standard Boot Program and User Boot Program

Standard write program User boot program
Source Supplied by manufacturer Created by user
Required hardware .
(internal functions) Fixed Free
Stored location Boot ROM area User ROM area

1 Outline of M16C Internal Flash MCU
1.3 Controlling Flash Memory On-Board

1.3 Controlling Flash Memory On-Board

To control flash memory on-board, you need to follow a predetermined procedure. This section describes the
procedure for controlling flash memory.

Outline of Operation

To control the flash memory built in the M16C, you need to have a program (write control program), known
as the boot program, which is necessary to program/erase the flash memory and a program to transfer the
said program to RAM. These programs must be written into memory using a general-purpose programmer
or a dedicated serial programmer beforehand.

To control flash memory, first transfer the write control program to a RAM area using the RAM transfer
program. Then execute the write control program from RAM to write to the flash memory on-board.
Figure 1.3.1 shows an outline of operation when controlling flash memory.

Outline of M16C Internal Flash MCU
1.3 Controlling Flash Memory On-Board

(1) After reset

M16C internal flash MCU Source (serial programmer)

RAM Flash memory

() Application program

Serial

. q---- Written beforehand
Write control program

RAM transfer program 1%
——
| 7 Start

(2) Transfer the write program to RAM
M16C internal flash MCU Source

RAM Flash memory

Application program

Write control
—rprogram

st] \

RAM transfer program

(3) Write application program to flash memory

M16C internal flash MCU Source
RAM Flash memory
P
Write control Application program
program

RAM transfer program

Figure 1.3.1 Operation When Controlling Flash Memory

1 Outline of M16C Internal Flash MCU
1.3 Controlling Flash Memory On-Board

Flow of Boot Program

Figure 1.3.2 shows a boot program flowchart.

Detail algorithms necessary to program/erase flash memory vary with each group. This is explained in
Chapter 2 for the M16C/20 group, and in Chapter 3 for the M16C/62 group. For the M16C/80 group, this
is explained in Chapter 4.

Flash memory
rewrite starts

iaeleleleletelelelelelets foroeoeoeoioeee RAM transfer program

Transfer write control '
: program to RAM area '
T

Jump to RAM area

Erase flash memory
|
' Write to flash memory :

Flash memory
rewrite finished

Figure 1.3.2 Flow of Boot Program

Chapter 2

M16C/20 Group

2.1 Outline of Hardware

2.2 Developing Boot Program
2.3 Sample Program List

2.4 Precautions

M16C/20 Group
2 2.1 Outline of Hardware

2.1 Outline of Hardware

The M16C/20 group contains NOR-type flash memory.
This section shows hardware information about the M16C/20 group which we think is necessary to create a
boot program.

Internal Flash Memory Outline

Table 2.1.1 shows the outline performance of M30201F6 of the M16C/20 group.

Table 2.1.1. Outline Performance of M30201F6

Item Performance
Power supply voltage 4.0V t0 5.5 V (f(XIN)=10MH?z)
Program/erase voltage VPP=12V * 5% (f(XIN)=10MHZz)

VCe=5V + 5% (f(XIN)=10MHz)

Flash memory operation mode Three modes (parallel 1/0, standard serial 1/0, CPU
rewrite)
Erase block User ROM area See Figure 2.1.1.
division .
Boot ROM area One division (3.5 Kbytes) (Note)
Program method In units of byte
Erase method Collective erase
Program/erase control method Program/erase control by software command
Number of commands 6 commands
Program/erase count 100 times
ROM code protect Parallel /0O mode is supported.

Note: The boot ROM area contains a standard serial /O mode control program which is stored in it
when shipped from the factory. This area can be erased and programmed in only parallel I/O
mode.

10

M16C/20 Group
2 2.1 Outline of Hardware

Memory Map

Figure 2.1.1 shows a memory map of the M30201F6. Among the memory areas are a boot ROM area and
a user ROM area. Both areas can be accessed for program, read, verify, and erase in parallel input/output
mode. In CPU rewrite mode, however, the boot ROM area cannot be accessed for program, verify, and
erase.

0000016
SFR
0040016
RAM
00BFF16
DE00016 Can be erased/programmed
in only parallel input/output
Boot ROM mode
area
(3.5 Kbytes)
DFDFF16
F400016
User ROM
area
(48 Kbytes)
FFFFF16

Figure 2.1.1 M30201F6 Memory Map

11

2

M16C/20 Group
2.1 QOutline of Hardware

Related Register Configuration

Figure 2.1.2 shows related registers for making user boot program.

Flash memory control register O

b7 b6 b5 b4 b3 b2 bl bo Symbol Address When reset
0 1| 0| o| |><| | FCONO 03B416 001000002
¢ o | Bitsymbol Bit name Function R§W
oo | EcONOO | CPU rewrite mode 0: CPU rewrite mode is invalid O o
A select bit 1: CPU rewrite mode is valid !
Reserved bit This bit can not write. The value, if
[read, turns out to be indeterminate. |~ T
I CPU rewrite mode 0: CPU rewrite mode is invalid
A FCONO02 g . . : |
e monitor flag 1: CPU rewrite mode is valid o —
R Reserved bit Must always be set to "0". 00
b Reserved bit Must always be set to "1". O @)
o Nothing is assigned. In an attempt to write this bit, write "0". The value,
' if read, turns out to be "0". T
e ERRREEEEEEEE Reserved bit Must always be set to "0". O o
Flash memory control register 1
b7 b6 b5 b4 b3 b2 bl bo Symbol Address When reset
olo FCON1 03B516 XXXXXX002
Cor oo | Bit symbol | Bit name Function RiW
©or o4 1 =--id Reserved bit Must always be set to "0". 00
oo Nothing is assigned. In an attempt to write these bits, write "0". The i
value, if read, turns out to be indeterminate.
Flash command register
b7 b6 bS b4 b3 b2 bl b0 Symbol Address When reset
| | | | | | | | | FCMD 03B616 0016
AEEE R Function Rw
J._ Writing of software command
<Software command name> <Command code> ;
*Read command "0016"
*Program command "4016" X' 'O
eProgram verify command "C016" |
Erase command "2016" +"2016"
*Erase verify command "AO16" |
*Reset command "FF16" +"FFe"

Figure 2.1.2 Related Register Configuration

12

2

M16C/20 Group
2.1 QOutline of Hardware

Flash Control Circuit

The M16C/20's flash control circuit controls the program, read, verify, and erase operations performed on the
internal flash memory. Operation modes are selected by writing commands to the Flash Memory Control
Register (addresses 03B416, 03B516) and Flash Command Register (address 03B616). Among the memory
areas are a boot ROM area and a user ROM area. Both areas can be accessed for program, read, verify, and
erase in parallel input/output mode. In CPU rewrite mode, however, the boot ROM area cannot be accessed
for program, verify, and erase.

Software Commands

Table 2.1.2 lists software commands.
When CPU rewrite mode is effective, write software commands to the Flash Command Register to specify
the program or erase operations to be performed.

Table 2.1.2 Software Command List

First bus cycle Second bus cycle

Command Data Data

Mode | Address (Do to D7) Mode | Address (Do to D7)
Read Write 03B616 0016

Program Write 03B616 4016 Write Program | Program

address data

Program verify Write 03B616 CO16 Read Verify Verify

address data

Erase Write 03B616 2016 Write 03B616 2016
Erase verify Write 03B616 AO16 Read Verify Verify

address data
Reset Write 03B616 FF1e Write 03B616 FF1e

Read Command (00 16)

The read mode is entered by writing the command code “0016” to the flash command register in the first
bus cycle. When an address to be read is input in one of the bus cycles that follow, the content of the
specified address is read out at the data bus (Do—D7), 8 bits at a time.
The read mode is retained intact until another command is written.

After reset and after the reset command is executed, the read mode is set.

13

M16C/20 Group
2 2.1 Outline of Hardware

Program Command (40 16)

The program mode is entered by writing the command code “4016” to the flash command register in the
first bus cycle. When the user execute an instruction to write byte data to the desired address (e.g., STE
instruction) in the second bus cycle, the flash memory control circuit executes the program operation. The
program operation requires approximately 20 ps. Wait for 20 ps or more before the user go to the next
processing.

During program operation, the watchdog timer remains idle, with the value “7FFF16” set in it.

Note 1: The write operation is not completed immediately by writing a program command once. The user
must always execute a program-verify command after each program command executed. And if
verification fails, the user need to execute the program command repeatedly until the verification
passes. See Figure 2.1.3 for an example of a programming flowchart.

Program-Verify Command (CO 16)

The program-verify mode is entered by writing the command code “C016” to the flash command register in
the first bus cycle. When the user execute an instruction (e.g., LDE instruction) to read byte data from the
address to be verified (the previously programmed address) in the second bus cycle, the content that has
actually been written to the address is read out from the memory.

The CPU compares this read data with the data that it previously wrote to the address using the program
command. If the compared data do not match, the user need to execute the program and program-verify
operations one more time.

Erase Command (20 16 + 2016)

The flash memory control circuit executes an erase operation by writing command code “2016” to the flash
command register in the first bus cycle and the same command code to the flash command register again
in the second bus cycle. The erase operation requires approximately 20 ms. Wait for 20 ms or more before
the user go to the next processing.

Before this erase command can be performed, all memory locations to be erased must have had data
“0016” written to by using the program and program-verify commands. During erase operation, the watchdog
timer remains idle, with the value “7FFF16 set in it.

Note 1: The erase operation is not completed immediately by writing an erase command once. The user
must always execute an erase-verify command after each erase command executed. And if
verification fails, the user need to execute the erase command repeatedly until the verification
passes. See Figure 2.1.3 for an example of an erase flowchart.

14

M16C/20 Group
2 2.1 Outline of Hardware

Erase-Verify Command (AO 16)

The erase-verify mode is entered by writing the command code “A016” to the flash command register in

the first bus cycle. When the user execute an instruction to read byte data from the address to be verified

(e.g., LDE instruction) in the second bus cycle, the content of the address is read out.

The CPU must sequentially erase-verify memory contents one address at a time, over the entire area

erased. If any address is encountered whose content is not “FF16” (not erased), the CPU must stop erase-

verify at that point and execute erase and erase-verify operations one more time.

Note 1: If any unerased memory location is encountered during erase-verify operation, be sure to execute
erase and erase-verify operations one more time. In this case, however, the user does not need to
write data “0016” to memory before erasing.

Reset Command (FF 16 + FF16)

The reset command is used to stop the program command or the erase command in the middle of operation.
After writing command code “4016” or “2016” twice to the flash command register, write command code
“FF16” to the flash command register in the first bus cycle and the same command code to the flash
command register again in the second bus cycle. The program command or erase command is disabled,
with the flash memory placed in read mode.

15

M16C/20 Group
2.1 QOutline of Hardware

Program Erase
Address = first location All bytes =
"0016"2.
Loop counter : X=0 NO
> Program all bytes =
Write program 0016
command)
Write : 4016 Address = First addresg
Write program data/
address Write : Program data Loop counter X=0
—————b
Duration = 20 us Write:2016
Write program verify Duration = 20ms
command Write : CO16
Loop counter X=X+1
Duration = 6 ps >
Write erase verify Write:AO16
command/address I
Duration = 6us
Next
address ?
FAIL
_ . Next , Read:
| Write read command | | Write read command | address ? expect value=FF16

Last
address?

¢ ¢ Write : 0016
(PASS N (FAIL)

| Write read commandl | Write read command |

¢ ¢ Write:0016

C PASS) C FAIL)

Figure 2.1.3 Program and Erase Execution Flowchart in The CPU Rewrite Mode

16

2

M16C/20 Group

2.2 Developing The Boot Program

2.2 Developing The Boot Program

The standard boot program that was built into the boot ROM area of the flash microcomputer when shipped
from the factory can be used to program/erase the flash memory. In this case, the hardware resources
(internal functions) used for control are fixed. Therefore, if you want to control flash memory in the way
suitable for your system, you need to create a boot program for yourself.

This section shows an algorithm for the boot program (e.g., for erase and program) that you must at least
have in order to control the flash memory of the M16C/20 group.

System Example

By using the internal peripheral function of UARTO and a serial programmer to control flash memory, the
following shows an example of device connections is shown in Figure 2.2.1. Assignments of internal
peripheral functions are listed in Table 2.2.1.

(Clockinput) | CLKO
P53(BUSY)

(Data input) p=| RXDO
Data output TxDO

? M30201 Flash

CNVss

NMI

(1) Control pins and external circuitry will vary according to peripheral unit (programmer). For more
information, see the peripheral unit (programmer) manual.
(2) In this example, the microprocessor mode and standard serial I/O mode are switched via a switch.

Figure 2.2.1 Example of Device Connection

Table 2.2.1 Assignments of Internal Peripheral Functions

Peripheral ;
function Usage Setting example
UART1 Used for transfer/receive of serial programmer and | ¢ Clock synchronous serial I/O
data * External clock used
Timer AO Used for time-over judgment of serial transfer/ * One-shot timer mode
receive * 300 ps(at 10MHz)
Used to watch time during program and erase * 20 us (at 10 MHz)
Timer BO Used for BUSY waveform output time during serial | * Timer mode
transmission/reception * 6 us (at 10 MHz)
Used for wait time during verify

17

M16C/20 Group
2.2 Developing The Boot Program

Flow of The Main Processing

Figure 2.2.2 shows a flow of the main processing.
After initializing the CPU, transfer the write control program to RAM. When transfer is finished, jump to
RAM and execute the write control program from RAM.

RAM transfer program on ROM Write control program on RAM

(CPU programming mod@ [T >ﬁ>

— i || itiar setting2 ||
|| Initial setting 1 H :

| | Transfer to RAM ‘ | | ‘ Command reception | |

ID check completed ?

Command chec

ﬂ” Page read H—
ﬁ” Page program H—»
ﬂ' ‘ Erase all unlock blocks | |_>
ﬁ' ‘ Clear status register ||—>

ﬂ” Read status register ==
—“ITID check function ==
ﬂ| | Version information output |
mi” Set UARTO of initial setting 2 ||_>

Figure 2.2.2 Flow of The Main Processing

18

M16C/20 Group
2.2 Developing The Boot Program

Initialization 1 (CPU, Memory)

The CPU and RAM and the peripheral functions used for programming flash memory are initialized. Figure
2.2.3 shows a flow of CPU and memory initialization. To clear RAM, use of string instructions (e.g.,
SSTR.W) will prove effective.

Initial setting 1

| Set ISP and SB |

| Set 'H" to BUSY pin | Port 5 (P5: addrifs 03E916)

HENENNEN

ERRRE bbb Set 'H' data
Port 5 direction register (PD5: address 03EB16)

b4

HENENREN

beveeeeenenens Set output port
RAM clear RO #0000H | <— Setinitial value

Al #0400H | <— Settop address of RAM

R3 |:| < Programing control program size /2+a

After setting these registers, execute SSTR.W

Protect register (PRCR: address 000A16)

bl b0

HENNEREE

L. System clock write enabled
----- Processor mode register write enabled

Set system clock System clock control register 0 (CMO: address 000616)
Control register b7 b6 b5 b4 b3 b2 bl bO
(2] o[o[o]o]o]o]o]
Fommemmsensseneees CM16 and CM17 is enabled
System clock control register 1(CM1: address 000716)

b7 b6 b5 b4 b3 b2 bl bO
[o[o[[o[o[o[o]o]

........................ No division mode

Protect release

Set processor mode Processor mode register O(PMO: address 000416)
register b7 b6 b5 b4 b3 b2 bl bO

Lo o ofofofofo]o]

Processor mode register 1(PM1: address 000516)
b7 b6 b5 b4 b3 b2 bl bO

[2]o[o]o]o]o]o]o]
e With wait

| Set protect |

Figure 2.2.3 Initialization 1 (CPU, Memory)

19

M16C/20 Group
2 2.2 Developing The Boot Program

Transfer to RAM Area

The write control program is transferred to RAM. After transferring, jump to write control program on RAM.
To transfer, use of string instructions (SMOVF.W) will prove effective.
Figure 2.2.4 shows the algorithm.

(Transfer to RAM)
[

| Transfer version information|
| ROHl:I <— Set source address (high-order 4 bits)

| Transfer preparing |)
A0 I:I <— Set source address (low-order 16 bits)

Al |:| < Set destination address
R3 I:I <¢— Programing control program size /2+a

Transfer Execute SMOVF.W

Jump to RAM area JMP
|

(END)

Figure 2.2.4 Transfer to RAM Area

Initialization 2

Set of write to Flash memory is executed. The flash mode register is set in M16C/20 group.
Figure 2.2.5 shows a algorithm.

(Initial setting 2)

- Flash memory control register O (address 03B416)
Set CPU rewrite mode b7 b6 b5 b4 b3 b2 bl b0

reoiter Lo T<[ofo[[[o]
, N t. CPU rewrite mode enabled
S S Reserved bit

Flash memory control register 1 (address 03B516)
b7 b6 b5 b4 b3 b2 bl bo

LI LT 11 [ofo]

Go to initial setting of -----Reserved bit
peripheral function

Figure 2.2.5 Initialization 2

20

M16C/20 Group
2.2 Developing The Boot Program

Initialization 2 (Peripheral Function)

The peripheral functions used for programming to flash memory is initialized. Figure 2.2.6 shows initialization
of UARTO for data transmit and timer AO and BO for time-out calculation.

From initial setting 2

Set UARTO

Set timer

END

UARTO transmit/receive mode register (UOMR: address 03A016)

b7 b6 b5 b4 b3 b2 bl bo
[0l o of o] 1] 0fo]1]
L__i..i..Clock synchronous serial /0 mode
L it External clock
UARTO transmit/receive control register 0 (UOCO: address 03A416)

b7 b6 b5 b4 b3 b2 bl b0
Lo[o] o2 0f o] o] 0]

R (1)
R E Reserved bit

_________________ TxD CMOS output
------------------------ LSB first

UART transmit/receive control register 1 (UOC1: address 03A516)
b7 b6 b5 b4 b3 b2 bl bo
[o[o] oo o[1] o] 1]
H - Transfer enabled
-------- Receive enabled

UART transmit/receive control register 2 (UCON: address 03B016)
b7 b6 b5 b4 b3 b2 bl b0
[o] o] of o] o] o] 0]0]
R (Transfer buffer empty)
------------ (Continuous receive mode disabled)

Vo T CLKO clock output
LR EEE LR CLK normal mode first

Timer A0 mode register (TAOMR: address 039616)
b7 b6 b5 b4 b3 b2 bl b0
[0l o of o] of o[1]0]
.One-shot timer mode

No pulse output
One-shot start flag is valid

Timer AO register (TAO: address 038716,038616)

#3000-1 | «— When 10MHz, 300us

Timer BO mode register (TBOMR: address 039B16)

b7 b6 b5 b4 b3 b2 bl b0
[o] of o] o] o] of 0] 0]

. ~--1- Timer mode

Timer BO register (TBO: address 039116,039016)

#60-1 <— When 10MHz, 6pus

Figure 2.2.6 Initialization 2 (Peripheral Function)

21

M16C/20 Group
2 2.2 Developing The Boot Program

Receiving Commands

Receive commands is received from the serial programmer.

After a wait time of 300 us, write dummy data to the transmit buffer, pull the BUSY signal low, and wait for
data from the serial programmer. After receiving data, return the BUSY signal back high and read the
received data.

Figure 2.2.7 shows a flow of control. Figure 2.2.8 shows BUSY signal control timing.

Receiving commands

| Start one-shot timer |

| 300 pS wait | UARTO transfer buffer register (03A316,03A216)
[o (b15) (b8)
| b7 b0 b7 b0
Write to transfer buffer | Preparing |><|><|><|><|><|><|><| | |
register reception
I Port 5 b3
BUSY="L" output | [TTT T[]

Jump to time-out Reception
processing completed ?

Yes

| BUSY="H"output | Port 5

b3
| HENNENER

| 6 ps timer start |
[Reception UARTO reception buffer register (03A716,03A616)
P (b15) (b8)

Read out receive processing b7 b0 b7 b0

buffer register ' | | | | | [$:| | |

END)

Figure 2.2.7 Receiving Commands

CLK
RxD
Receive complete I

flag (RI)

— Intgrrupt request
BUSY (P53) is happen

_/

|

Interrupt request
is happen

Set'H' Set 'L
Set 'L’ (Preparation to read (Preparation
(Preparation reception data) to receive)
to receive)

Read out the
reception data --> Store in RAM

Figure 2.2.8 BUSY Signal Control Timing

22

2

M16C/20 Group

2.2 Developing The Boot Program

Page Read

Read a specified page (256 bytes) in the user ROM area, one byte at a time, and transmit the read data via
serial I/O. The locations to read are addresses xxx0016 through xxxFF16, with data sequentially transmitted

beginning with address xxx0016.

Receive two bytes of address from the serial programmer and store it in RAM. Write read command (0016)
to the Flash Command Register, read data from flash memory one byte at a time, and transmit it via serial
1/0. When you finished sending one page of data (256 bytes), terminate the processing.

Figures 2.2.9 show processing flows.

C

Page read

)

Transfer/receive cycles
r3=0

Set low-order address,
addr_|=0

=

Write to transmit buffer
register

6 psec wait

BUSY ="L" output

Start one-shot timer

Jump to time-out
processing

Reception
completed?

BUSY = "H" output

6 psec timer start

Read the receive buffer

register

r3=r3+1

|

Store reception data to
address buffer

Read data

| r3=2

| Address = address + 1 |

|| Write read command ||

Figure 2.2.9 Page Read

r3=258?

End

r3=/258

23

M16C/20 Group
2 2.2 Developing The Boot Program

Page Program

Write data to the user ROM area in units of 256 bytes. The locations to write are addresses xxx0016
through xxxFF1e, with data sequentially received beginning with address xxx0016.

Receive a total of 258 bytes of data, consisting of two bytes of address and 256 bytes of write data, from
the serial programmer and store them in RAM.

After receiving all of these data, check for error.

If the CPU rewrite mode monitor flag is invalid (FCONO2 = 0), assume a program error (SRD4 = 1). When
you received an invalid address, assume an address error (SRD8 = 1). If the flag is valid (FCONO2 = 1),
write Program command (4016) to the Flash Command Register and execute an instruction that writes the
address to be programmed and the byte data.

After an elapse of 20 ps, verify Program.

Write Program Verify command (CO016) to the Flash Command Register and after an elapse of 6 us, execute
an instruction that reads the programmed address. If the read data matches the written data, program the
next address. If the data do not match, execute Program and Program Verify operations over again. If the
data still do not match after repeating this 25 times, assume a program error (SRD4 = 1). If an error is found
after programming 256 bytes or by error determination, write Reset command (FF16) to the Flash Command
Register twice in succession. Then write Read command (0016) and return to the main routine.

Figures 2.2.10 and 2.2.11 show processing flows.

(Page program)
| Receive c‘ycles r3=0 |
\

Set low-order address,
addr_|=0

<

Write to transmit buffer
register
\
| BUSY="L"output |
I

| Start one-shot timer |

'

Jump to time-out
processing

Reception
completed?

BUSY = "H" output
[
Read the receive buffer
register
[
Store the reception data
to RAM
\
| r3=r3+1 |

r3<259

Figure 2.2.10 Page Program (1)

24

M16C/20 Group
2.2 Developing The Boot Program

Address error
flag (SR8)=1

| Retry cycle r2=25 |

Stop TAO
Set TAO=20psec

e

| Write program command|

| Data write |

Write program verify
command

|

| | 6 psec wait ”

Read data OK ?
M Retry cycle N
Address +1 r2=0?

r3=r3+1 N l Retry cycle r2-1

n<256
|
n 2

%6 Program error
flag (SR4)=1

Set TAO= 300 psec
Start one-shot timer

Write reset command
Write reset command

| Write read command |

(End)

Figure 2.2.11 Page Program (2)

M16C/20 Group
2 2.2 Developing The Boot Program

All Erase (Erase All Unlock Blocks)

Erase the entire user ROM area of flash memory.

If All Erase command is received from the serial programmer, continue and receive one more byte of data.
After confirming that this second byte of data is the verify command, check for error.

If the CPU rewrite mode monitor flag is invalid (FCONO2 = 0), assume an erase error (SRD5 = 1). If the flag
is valid (FCONO2 = 1), write Program command (4016) to the Flash Command Register, set the start
address F400016 and end address FFFFF16, set #0016 in the write data, and then execute an instruction to
write the data.

After an elapse of 20 us, verify Program.

Write Program Verify command (C016) to the Flash Command Register and after an elapse of 6 us, execute
an instruction that reads the programmed address. If the read data matches the written data, program the
next address. If the data do not match, execute Program and Program Verify operations over again. If the
data still do not match after repeating this 25 times, assume an erase error (SRD5 = 1).

After you finished writing #0016 in the entire area, write Erase command (2016) to the Flash Command
Register twice in succession. After an elapse of 20 ms, write Erase Verify command (A0O16) to the Flash
Command Register and after an elapse of 6 ps, execute an instruction that reads the erased address. If the
read data matches #FF16, check the next address. If the data do not match, execute Erase and Erase
Verify operations over again. If the data still do not match after repeating this 1000 times, assume an erase
error (SRD5 = 1).

If an error is found after erase is finished or by error determination, write Reset command (FF16) to the
Flash Command Register twice in succession. Then write Read command (0016) and return to the main
routine.

Figures 2.2.12 and 2.2.13 show processing flows.

26

M16C/20 Group

2.2 Developing The Boot Program

\ J

Jump to time-out
processing

(Erase al | unlock block)
[

Write to transfer
buffer register
\
|| 6 psec wait ||
I
| BUSY="L"output |

| Start one-shot timer |

| BUSYY="H"0utput |
I

Read the receive
buffer register

Confirm confirm

NG

command

Set erase start/stop
address

NG

Vpp=12V input ?

| Set write data "00h" |
\

| Retry cycle r2=25 |
I
Stop TAO
Set TA0=20 psec

»

V\‘
Write program
command
\
Write "00h"
I
Start one-shot timer
of TAO

Write program verify
command
[

| | 6 psec wait | |

Figure 2.2.12 Erase All Unlock Block (1)

Address - 1

@V

27

M16C/20 Group
2.2 Developing The Boot Program

9

Retry cycle r2=1000
|
Stop TAO
Set TAO=300 psec

<
-

Write all erase command
Write all erase command
[

Start one-shot timer of
TAO

>20 msec?

over

|

Write erase verify
command

l

|| 6 psec wait ||

[Address-1] v [Address-1]

T ’ L]

| Set erase error flag |

< |

Write reset command
Write reset command

l

| Write read command |
l
(End)

Figure 2.2.13 Erase All Unlock Block (2)

28

2

M16C/20 Group

2.2 Developing The Boot Program

Read Status Register

Transmit two bytes of status data indicating the flash memory's operating status via serial 1/0.

Write status data (SRD) to the Transmit Buffer Register and transmit it.

After you finished sending, write status register 1 (SRD1) to the Transmit Buffer Register and transmit it.
After you finished sending, return to the main routine.

Figure 2.2.14 shows a processing flow.

(Read status registeD
\

Transfer/receive
cycle r3=0

rll=SRD
rih=SRD1

et

Transfer buffer
register = rll
|
|| 6 psec wait ||
l
| BUSY="L" output |

|

| Start one-shot timer|

;

Jump to time-out
processing

Figure 2.2.14 Read Status Register

>300 psec?

| BUSY ="H" output |

| Start 6 psec timer |

Read receive buffer
register

| r3=r3+1 |

| ril = rlh |

r3=2

End)

29

M16C/20 Group
2 2.2 Developing The Boot Program

Clear Status Register

Status register error information is cleared.

#8016 is written into the status register (SRD).

The logic sum for the status register 1 (SRD1) is obtained on #9C16 is cleared. Processing returns to the
main part.

Figure 2.2.15 shows a processing flow.

(Clear status register)
|

Clear SRD error flag
Clear SRDL1 error flag

|
(End)

Figure 2.2.15 Clear Status Register

ID Check

The ID data stored in the flash memory is compared with the data received by serial I/O. Three bytes of the
address data, one byte of ID size and some bytes of ID check data are received via serial I/O.

After these data reception, this process judges whether the flash memory is blank or not. When blank, the
ID check is ended and processing returns to the main part. When something is written in the ROM, the
received |ID address, the ID data size and ID data contents are checked. When mismatch, ID check error
is generated (SR10 =1, SR11 = 0) and processing returns to the main part. When match, the ID check is
ended (SR10 = 1, SR11 = 1) and processing returns to the main part.

Figure 2.2.16 shows a processing flow.

30

M16C/20 Group
2.2 Developing The Boot Program

C ID check)

\
Transfer/receive
cycles r3=0
\

Set ID size (al)
temporary
—

Write transfer buffer
register

[e use‘c wait]
I

| BUSY="L" output |

I
| Start one-shot timer|

>300 psec?

'

Jump to time-out
processing

| BUSY =Y"H" output |

| Start 6 psec timer |
I

Read the receive
buffer register
\
Store receive data
into RAM

| e |

| al <-- ID size+4 |

Blank

[
Blank flag ?

Non blank

Error

Check address
& ID size

OK
|ID check cycles r3=1

]

Read ID data from
Flash memory

ID check Error »

OK

| r3=r3+1 | -
ID mismatch

@ SR11=0, SR10=1
r3<8

r3=8

ID check completed
SR11=1, SR10=1
Error cycle=0 '
C End D)

Figure 2.2.16 ID Check

2

M16C/20 Group

2.2 Developing The Boot Program

Version Information Output

The version information of boot program is sent via serial 1/0.
Version information is read and written in the transmit buffer register.

After all version information is send, processing jumps to main .
Figure 2.2.17 shows a processing flow.

@ersion information outpuD

Transfer/receive
cycles a0=0

>

Write version
information to transmit
buffer register

|

| | 6 psec wait | |

|

| BUSY="L"output |

|

| Start one-shot timer |

#

Jump to time-out
processing

| BUSY="H"output |

l

| Start 6 psec timer |
l
Read the receive buffer
register

a0=a0+1

a0<8

(End)

Figure 2.2.17 Version Information Output

32

M16C/20 Group
2 2.2 Developing The Boot Program

Time-Out Processing

Time-out flag (SR9) is set to 1 and initiale setting 2 of main routine is executed again.
Figure 2.2.18 shows a processing flow.

(Time-out processing)

| BUSY ="H" output |

Time-out flag
(SR9)=1
|
Initial setting 2
UARTO setting

|
(End)

Figure 2.2.18 Time-Out Processing

33

2

M16C/20 Group

2.2 Developing The Boot Program

Status Register (SRD)

The status register indicates operating status of the flash memory and status such as whether an erase
operation or a program ended successfully or in error.
Table 2.2.2 shows the definition of each status register bit.

Table 2.2.2 Status Register (SRD)

Each bit of Definition

SRD Status name wqn ey

1 0

SR7 (bit7) Status bit Ready Busy
SR6 (bit6) Reserved - -
SR5 (bit5) Erase bit Terminated in error | Terminated normally
SR4 (bit4) Program bit Terminated in error | Terminated normally
SR3 (bit3) Reserved - -
SR2 (bit2) Reserved - -
SR1 (bitl) Reserved - -
SRO (bit0) Reserved - -

State Bit (SR7)
The status bit indicates the operating status of the flash memory. When power is turned on, "1" (ready) is

set for it.

Erase Bit (SR5)
The erase bit indicates the operating status of the auto erase operation. If an erase error occurs, it is set
to "1". When the erase status is cleared, it is set to "0".

Program Status (SR4)
The program status reports the operating status of the auto write operation. If a write error occurs, it is set
to "1". When the program status is cleared, it is set to "0".

34

M16C/20 Group
2.2 Developing The Boot Program

Status Register 1 (SRD1)

Status register 1 indicates the status of serial communications, results from ID checks and results from

check sum comparisons.
Table 2.2.3 gives the definition of each status register 1 bit. "0016" is output when power is turned ON and

the flag status is maintained even after the reset.

Table 2.2.3 Status Register 1 (SRD1)

Each bit of Definition
SRD1 Status name np "o

SR15 (bit7) | Boot update completed bit Update completed Not update
SR14 (bit6) | Reserved - -
SR13 (bit5) | Reserved - -
SR12 (bit4) | Checksum match bit Match Mismatch
SR11 (bit3) | ID check completed bits 00 Not verified
SR10 (bit2) 01 Verification mismatch

10 Reserved

11 Verified
SR9 (bitl) Data receive time out Time out Normal operation
SR8 (bit0) Reserved - -

Boot Update Completed Bit (SR15)
This flag indicates whether the control program was downloaded to the RAM or not, using the download
function.

Checksum Match Bit (SR12)
This flag indicates whether the check sum matches or not when a program, is downloaded for execution
using the download function.

ID Check Completed Bits (SR11 and SR10)
These flags indicate the result of ID checks. Some commands cannot be accepted without an ID check.

Data Reception Time Out (SR9)
This flag indicates when a time out error is generated during data reception. If this flag is attached during
data reception, the received data is discarded and the microcomputer returns to the command wait state.

35

M16C/20 Group
2 2.3 Sample List

2.3 Sample List

This section shows a sample list of the program described in Section 2.2.

In addition to the processing explained in Section 2.2, the sample shown below includes the programmer
command processing used by a synchronous serial programmer and the command processing used by an
asynchronous serial communication programmer (M16C Flash Start).

Source

rhkk *kkkkkkkkkkhhkkhkhkkhrrkk *% LR T e S

;* System Name : Sample Program for M16C/20 Flash *

* File Name : M201SAMP.a30 *

* MCU : M30201F6 *

* Xin ; 2MHz - 10MHz (for UART mode) *
* CPU ; 1wait,f1 *

* Assembler : AS30 ver 3.00 *

* Linker : LN30 ver 3.00 *

% *

1

;¥ Copyright,1999 MITSUBISHI ELECTRIC CORPORATION *
* AND MITSUBISHI SYSTEM LSI DESIGN CORPORATION *

)
“k *
)

++++++++ Include file ++++++++++++++++++H++H++H+HH 4+

list off

.include sfr20.inc

.include flash201.inc

list on
o S T T o o
;+ Version table +
Lo I L L

.section rom,code

.org Version

.byte 'VER.0.02(VER.1.04)'
o S T o o o
;+ Program section start +
L o I L L o

.section prog,code

.org Boot_TOP

.sh SB base

.sbsym SRD

.shsym SRD1

.shsym ver

.shsym SF

.sbsym addr_|

.sbsym addr_m

.sbsym addr_h

)

B i L o

;+ Boot program start +
o S T T T o o
Reset:

Idc #lstack,ISP ; stack pointer set

ldc #SB_base,SB ; SB register set

mov.b #00000001b,pd5 ; TxD-output,BUSY/RxD/CLK-input
mov.b #00000001b,p5 ; TXD-"H"output

36

M16C/20 Group
2.3 Sample List

;+ Hot start & RAM clear +

mov.w #0,a0
Start_check:

cmp.w #55aah,buff[a0]
jne RAM_clear
add.w #2,a0

cmp.w #18,a0

jltu Start_check
bset ram_check
jmp CPU_set

; RAM check OK flag set

RAM_clear:
mov.w #0,r0
mov.w #(Ram_END+1-Ram_TOP)/2,r3
mov.w #Ram_TOP,al
sstr.w
mov.w #0,a0
Buff_set:
mov.w #55aah,buff[a0]
add.w #2,a0
cmp.w #18,a0
jltu Buff_set

:+ CPU set & Serial I/0 mode check +

CPU_set:
btst busy
bmc s_mode
bset busy ; BUSY-"H"output
bset busy d
jsr Initialize_1
mov.b #80h,SRD
and.b #9eh,SRD1
bset sr7 : RADY

Reload_chack:

btst sri5 ; Update
jc Transfer_end
btst ram_check : Reload ?

jz Version_inf
btst s mode

bxor old_mode
jnc Transfer_end

+ Version information +
Version_inf:

mov.w #0,a0 ;a0=0
Ver_loop:

Ide.w Version+9[a0],ver[a0] ; Version data store

add.w #2,a0 ; address increment

cmp.w #8,a0 ;a0=8 ?

jltu Ver_loop ; jump Ver_loop at a0<8
T T L o o S T B o
;+ Program_transfer clock synchronous mode +
A o T o B

btst s _mode ; Serial I/0 mode select

jz Transfer2 ; UART mode

37

M16C/20 Group
2.3 Sample List

Transferl:
bset old_mode ; clock synchronous mode
mov.w #(Trans_TOP1 & 0ffffh),a0
mov.b #(Trans_TOP1>> 16),rlh
mov.w #Ram_progTOP,al
mov.w #(Trans_END1- Trans_TOP1 + 1)/2,r3
smovf.w ; String move
jmp Transfer_end

1

L S o

;+ Program_transfer UART mode +
L Lot I L L B L o O
Transfer2:

bclr old_mode ; UART mode

mov.w #(Trans_TOP2 & 0ffffh),a0

mov.b #(Trans_TOP2>> 16),rlh

mov.w #Ram_progTOP,al

mov.w #(Trans_END2- Trans_TOP2 + 1)/2,r3

smovf.w ; String move
Transfer_end:

1

1

;+ Jump to RAM +

jmp Ram_progTOP

L o

;+ Subroutine : Initialize_1 +
Lo I L L
Initialize_1:
;+ Processor mode register +
+ & System clock control register +
mov.b #3,prcr ; Protect off
mov.w #8000h,pm0 ; 1wait
mov.w #2008h,cm0 ; f1 select
mov.b #0,prcr ; Protect on
;+ ID address & size store +
mov.w #0ffdfh,ID : ID address Offfdfh store
mov.w #0070fh,ID+2 ;1D size 7 store
rts

)

L I L at a

;+ Subroutine : Download program +

i o T L e ma g s S EE I
.org Download_program

mov.w #0,r3 ; receive number (r3=0)

mov.w #0,al ; sumcheck buffer

bclr srl5 ; Download flag reset

bclr sr12 ; Check sum flag reset
Download_loop:

mov.b rll,u0tb ; data transfer

jsr wait_loop ; BUSY "H" 6usec check

bclr busy ; BUSY "L"

bset taOos ; 300usec start
o

btst ir_taOic : Time over check

bmc sr9 ; Time over flag set

bmc busy ; BUSY "H"

38

M16C/20 Group
2.3 Sample List

jc Version_inf ; jump Version_inf at time out
btst ri_uOcl ; Receive complete ?

iz ?-

bset busy ; BUSY "H"

bset tbOs ; Busec timer start

mov.w uOrb,r0 ; receive data -->r0

add.w #1,r3 ; 13+1 increment

cmp.w #3,r3 1 1r3=37?

jgtu Version_store ; jump Version_store at r3>3
mov.w r3,a0 1 r3-->al

mov.b rOl,addr_I[a0] ; Store program size

mov.w #0,a0 ; a0 initialize

cmp.w #3,r3 ;13 =37

jne Download_loop ; No,Download_loop
cmp.w #0,addr_m ; program size =0 ?

jz Version_inf ; jump to Version_inf at program size error
jmp Download_loop ; jJump Download_loop

Version_store:

cmp.w #11,r3 r3=117
jgtu Program_store ; jump Program_store atr3 > 11
mov.b rOl,ver[a0] ; version data store to RAM

jmp Program_store_1

Program_store:
mov.b rOl,Ram_progTOP-8[a0] ; program data store to RAM
Program_store_1:

add.b rOl,al ; add data to al

add.w #1,a0 ; a0(download offset)+1 increment

cmp.w addr_m,a0 ; a0 = program size (addr_m,h)?

jltu Download_loop ; jJump Download_loop at aO< program size
jmp SUM_Check ; compare check sum

i
B S o
;+ Subroutine : Download program UART +
B S o

.org U_Download_program

mov.w #0,r3 ; receive number (r3=0)

mov.w #0,al ; sumcheck buffer

bclr sri5 ; Download flag reset

bclr sr12 ; Check sum flag reset
U_Download_loop:

bclr busy : BUSY "L"
?:

btst ri_uOcl ; Receive complete ?

jnc ?-

bset busy ; BUSY "H"

mov.w uOrb,r0 ; receive data --> r0

add.w #1,r3 : r3+1 increment

cmp.w #3,r3 1 1r3=37?

jgtu U_Version_store ; jump Version_store at r3>3

mov.w r3,a0 ;r3-->a0

mov.b rOl,addr_I[a0] ; Store program size

mov.w #0,a0 ; a0 initialize

cmp.w #3,r3 13=37

jne U_Download_loop ; No, jump U_Download_loop

cmp.w #0,addr_m ; program size =0 ?

jz Version_inf ; jump to Version_inf at program size error

jmp U_Download_loop ;jump Download_loop

U_Version_store:

cmp.w #11,r3 r3=117
jgtu U_Program_store ;jump Program_store atr3 > 11
mov.b rOl,ver[a0] ; version data store to RAM

39

M16C/20 Group
2.3 Sample List

jmp U_Program_store_1
U_Program_store:

mov.b rOl,Ram_progTOP-8[a0] ; program data store to RAM
U_Program_store_1:

add.b rOl,al ; add data to al
add.w #1,a0 ; a0(download offset)+1 increment
cmp.w addr_m,a0 ; a0 = program size (addr_m,h)?
jltu U_Download_loop ;jump Download_loop at aO< program size
SUM_Check:
mov.w al,r0
cmp.b data,rOl ; compare check sum
bmeq sri2 ; check sum flag set at data=r0l
jne Version_inf ; jump Version_inf at check sum error
bset srl5 ; Download flag set
jmp Ram_progTOP ; jJump Ram_progTOP
;+ Transfer Program -- clock synchronous serial I/0O mode +
+ (1) Main flow +
+ (2) Flash control program +
+ Read,Program,Erase,All_erase,etc. +
i+ (3) Other program +
i+ ID_check,Download,Version_output etc. +
Trans_TOP1:
o S T T o o
;+ main program +
Lo I L L
Main:
jsr Initialize_2 ; Initialize_2
Loop_main:
bset taOos ; 300usec timer start
mov.b #0,ta0ic
?:
btst ir_taOic ; 300usec?
iz ?-
mov.b #0,ta0ic ; Interrupt request bit clear
mov.b #Offh,rll ; #ffh --> rll (transfer data);
mov.b rll,ultb ; dummy data --> transfer buffer
bclr busy ; BUSY "L"
™
btst ti_uOcl ; Transmit buffer empty ?
iz ?-
bset taOos : 300E sec timer start
™
btst ir_taOic : 300E sec ?
jc Time_out ; jump Time_out at time out
btst ri_uOcl ; receive complete ?
iz ?-
bset busy : BUSY "H"
mov.b #0,tb0ic ;
bset thOs ; Busec timer start
mov.b #0,ta0ic ; Interrupt request bit clear
mov.w uOrb,r0 ; receive data --> r0
mov.b #0ch,rOh ; #00001100b sr10,11 mask data
and.b SRD1,rOh ; sr10,11 pick up
cmp.b #0ch,rOh ; ID check OK?

jne Command_check_2 ;jump Command_check_2 at ID uncheck
Command_check:

cmp.b #0ffh,rOl ; Read (ffh)
jeqg Read

cmp.b #041h,r0l ; Program (41h)
jeq Program

cmp.b #020h,r0l ; Erase (20h)

40

M16C/20 Group
2.3 Sample List

jeq Erase

cmp.b #0a7h,r0l ; Allerase (a7h)
jeq All_erase

cmp.b #050h,r0l ; Clear SRD (50h)
jeq Clear_SRD

cmp.b #071h,r0l ; Read RBS (71h)
jeqg Read_RB

cmp.b #077h,r0l ; RB program (77h)
jeq Program_RB

cmp.b #07ah,r0l ; RB enable (7ah)
jeq Loop_main

cmp.b #075h,r0l ; RB disable (75h)
jeq Loop_main

cmp.b #0fah,rOl ; Download (fah)
jeqg Download

cmp.b #0fch,rOl ; Boot output (fch)

jeq Boot_output
Command_check_2:

cmp.b #070h,r0l ; Read SRD (70h)
jeqg Read_SRD

cmp.b #0f5h,r0l ; ID check (f5h)
jeq ID_check

cmp.b #0fbh,r0l ; Version out (fbh)

jeq Ver_output

Command_err:
jsr Initialize_21 ; Command error,UART reset
jmp Loop_main

;+ Read / Boot output +

Boot_output:

bclr fcon00 : not CPU write mode
Read:

mov.w #0,r3 ; receive number (r3=0)

mov.b #0,addr_| ;addr_1=0
Read_loop:

mov.b rll,u0tb ; data transfer

jsr wait_loop ; BUSY"H" 6usec check

bclr busy ; BUSY "L"

bset taOos ; 300usec start
s

btst ir_taOic : Time over check

jc Time_out ; jJump Time_out at time out

btst ri_uOcl ; Receive complete ?

iz ?-

bset busy ; BUSY "H"

bset thOs ; Busec timer start

mov.w uOrb,r0 ; receive data --> r0

add.w #1,r3 : r3+1 increment

cmp.w #2,r3 r3=27?

jgtu Read_data ; jJump Read_data at r3>2

mov.w r3,a0 ;r3-->al

mov.b rOl,addr_I[a0] ; Store address

cmp.w #2,r3 13=27?

jltu Read_loop ; jump Read_loop at r3<2

mov.w addr_l,a0 ;addr_I,m --> a0

mov.b addr_h,al ;addr_h -->al

mov.b #00h,fcmd ; Read command
Read_data:

Ide.b [ala0],rll ; Flash memory read

add.w #1,a0 ; a0+1 increment

cmp.w #258,r3 ;13 =2587

jne Read_loop ; jump Read_loop at r3<258
Read_end:

41

M16C/20 Group
2.3 Sample List

bset fcon00
jmp Loop_main

1

; CPU write mode
; jump Loop_main

1

+ Program

Program:
mov.w #1,r3
mov.b #0,addr_|
Program_loop:
mov.b rll,ultb
jsr wait_loop

bclr busy
bset taOos

?:
btst ir_taOic
jc Time_out
btst ri_uOcl
iz 7
bset busy
bset thOs

mov.w uOrb,r0
mov.w r3,a0

; receive number (r3=1)
;addr 1=0

; data transfer
; BUSY "H" 6usec check
: BUSY "L"
; 300usec start

: Time over check

; jump Time_out at time out

; Receive complete ?

; BUSY "H"

: Busec timer start
: receive data --> rO0
;r3-->al

mov.b rOl,addr_I[a0] ; Store address

add.w #1,r3
cmp.w #259,r3
jltu Program_loop
btst fcon02
jz Program_err
mov.w #0,r3
Address_check:
mov.w addr_m,a0
cmp.w #0f40h,a0
jltu Address_err
cmp.w #1000h,a0
jltu Program_loop2
Address_err:
bset sr8
jmp Program_end
Program_loop2:
mov.w r3,a0
mov.b data[a0],r0l
mov.w addr_l,a0
mov.b addr_h,al

mov.w #25,r2

bclr taOos

mov.w #200-1,ta0
Byte_loop:

mov.b #40h,fcmd

ste.b r0l,[ala0]

bset taOos
?:

btst ir_taOic

iz ?-

mov.b #0,ta0ic
mov.b #0cOh,fcmd
jsr wait_6usec
Ide.b [ala0],rOh
cmp.b rOl,rOh

jeq Byte_end

Program_err:
bset sr4
jmp Program_end

: r3+1 increment
:1r3=2597?

; jump Program_loop at r3<259

; Vpp 12V input ?
; writing number (r3=0)

;addr_m,h --> a0
; compare f4000h

; jump Address_err at < f4000h

; compare 100000h

; jump Program_loop2

; address error

; jJump Program_end at address error

i r3 --> a0
;data -->r0l
;addr_I,m --> a0
;addr_h -->al

; retry number
; timer stop
; 20usec timer set

; Program command
; data write
; 20usec timer start

; Verify command
; wait 6usec
; data read

; compare write and read data
; when equal,jump to Byte_end
sbhjnz.w #1,r2,Byte_loop ;to Byte_loop

; error flag set

42

M16C/20 Group
2.3 Sample List

Byte_end:
add.w #1,addr_|
add.w #1,r3
cmp.w #256,r3

jltu Program_loop2

Program_end:
mov.w #3000-1,ta0
mov.b #0ffh,fcmd
mov.b #0ffh,fcmd
mov.b #00h,fcmd
jmp Loop_main

; address increment
; write number increment
; 256 times writing ?
; jJump Program_loop2 at r3<256

; 300 usec set
; reset command

; Read command
; jump Loop_main

-+ All erase

All_erase:
mov.b rll,ultb
jsr wait_loop

bclr busy
bset taOos

?:
btst ir_taOic
jc Time_out
btst ri_uOcl
iz ?-
bset busy

mov.w uOrb,r0
cmp.b #0dOh,rOl
jne Erase_err

mov.w #4000h,a0
mov.w #0fh,al
mov.w a0,data

mov.w #Offffh,addr_|

Zero_clear:
btst fcon02
jz Erase_err
mov.b #00h,rOl
mov.w #25,r2
bclr talos
mov.w #200-1,ta0
Zero_clearl:
mov.b #40h,fcmd
ste.b r0l,[ala0]

bset taOos
?:

btst ir_taOic
jz ?-

mov.b #0,ta0ic
mov.b #0cOh,fcmd
jsr wait_6usec
Ide.b [ala0],rOh
cmp.b rOl,rOh

jeq Zero_clear2

; data transfer
; BUSY "H" 6sec check
: BUSY "L"
; 300usec start

: Time over check
; jJump Time_out at time out
; Receive complete ?

; BUSY "H"
: receive data --> r0
; Confirm command check
; jump Erase_end at Confirm command error

; start address f4000h

I ; end address fffffh

; Vpp 12V input ?

; write data "00h"
; retry counter
; timer stop
; 20usec set

; Program command
; "00h" write
; 20usec timer start

; program verify command
; wait 6usec
; data read
; compare write and read data
; when equal , jump to Zero_clear2

sbhjnz.w #1,r2,Zero_clearl ;to Zero_clearl

jmp Erase_err
Zero_clear2:
mov.w #25,r2
cmp.w addr_l,a0
jeq Erase_verify
add.w #1,a0
jmp Zero_clearl

Erase_verify:

; jump to Erase_err

; retry counter
; end address ?
; jump to Erase_verify

43

M16C/20 Group

2.3 Sample List

mov.w #1000,r2
bclr taOos
mov.w #3000-1,ta0

Erase_verify2:

?:

mov.b #20h,fcmd
mov.b #20h,fcmd
mov.b #0,ta0ic
mov.w #0,rl

bset taOos
btst ir_taOic
iz 7

add.b #1,r1l
cmp.b #66,r1l
jeq 7?2+
mov.b #0,ta0ic
bset ta0Oos
jmp ?-

Erase_verify3:

mov.b #0a0Oh,fcmd
jsr wait_6usec
Ide.b [ala0],rOh
cmp.b #0ffh,rOh
jeq Erase_verify4

jmp Erase_err

Erase_verify4:

cmp.w data,a0
jeq Erase_end
sub.w #1,a0

jmp Erase_verify3

Erase_err:

bset sr5

Erase_end:

)

mov.b #0ffh,fcmd
mov.b #0ffh,fcmd
mov.b #00h,fcmd
jmp Loop_main

; retry 1000 times

; timer stop

; 300usec set

; Auto erase command
; Auto erase command

; 300usec timer start

: 20msec ?

; erase verify command

; wait 6usec
; data read
: "ffh" ?

; when equal , jump to Erase_verify2
sbjnz.w #1,r2,Erase_verify2 ; to Erase_verify

; jump to Erase_err

; start address ?

; jump to Erase_end

erase error flag set
; reset command

: read command
; jump Loop_main

)

)

Read SRD

Read_SRD:

mov.w #0,r3
mov.b SRD,ril
mov.b SRD1,r1h

Read_SRD_loop:

?

mov.b rll,u0tb
jsr wait_loop
bclr busy
bset taOos

btst ir_taOic
jc Time_out
btst ri_uOcl
iz ?-

bset busy
bset thOs
mov.w uOrb,r0
add.w #1,r3
mov.b rlh,ril
cmp.w #2,r3

; data transfer

; BUSY "H" 6usec check

: BUSY "L"
; 300usec start

: Time over check

; jump Time_out at time out

; Receive complete ?

; BUSY "H"
; Busec timer start

; receive data -->r0

jne Read_SRD_loop

44

M16C/20 Group
2.3 Sample List

Read_SRD_end:
jmp Loop_main

;+ Clear SRD +
Clear_SRD:
mov.b #80h,SRD : SRD clear
and.b #9ch,SRD1 : SRD1 clear

jmp Loop_main

:+ Block Erase / Read Rock Bit +
;+ [/ Program Rock Bit (dummy) +
Erase:

Read_RB:

Program_RB:

mov.w #0,r3
mov.b #Offh,rll

Read_RB_loop:
mov.b rll,u0tb ; data transfer
jsr wait_loop ; BUSY "H" 6usec check
bclr busy ; BUSY "L"
bset taOos ; 300usec start
o
btst ir_taOic : Time over check
jc Time_out ; jJump Time_out at time out
btst ri_uOcl ; Receive complete ?
iz ?-
bset busy ; BUSY "H"
bset thOs : busec timer start
mov.w uOrb,r0 : receive data --> r0
add.w #1,r3
cmp.w #3,r3
jltu Read_RB_loop
Read_RB_end:

jmp Loop_main

;. ID check
ID_check:
mov.w #0,r3 ; receive number (r3=0)
mov.w #0ffh,al ; ID size (dummy data = ffh)
ID_data_store:
cmp.w al,r3 ; r13=al(ID size)
jeq ID_address_check ;jump ID_address_check at r3=ID size
mov.b rll,u0tb ; data transfer
jsr wait_loop ; BUSY "H" 6usec check
bclr busy ; BUSY "L"
bset taOos ; 300usec start
s
btst ir_taOic ; Time over check
jc Time_out ; jump Time_out at time out
btst ri_uOcl ; Receive complete ?
iz ?-
bset busy ; BUSY "H"
bset thOs ; Busec timer start
mov.w uOrb,r0 ; receive data -->r0
mov.w r3,a0 1r3-->al
mov.b rOl,addr_lI[a0] ; Store address
add.w #1,r3 : r3+1 increment
cmp.w #4,r3 1 r3=4 7

45

M16C/20 Group

2.3 Sample List

jne ID_data_store

mov.b data,al
add.w #4,al

jmp ID_data_store
ID_address_check:

btst blank

jc ID_check_end

; jump ID_data_store at r3 not=4
. ID size --> al
;al=al+4
; jump ID_data_store

; blank flag check

; jump ID_check_end at blank

cmp.w #Offdfh,addr_| : lower ID address check

jne ID_error

; jump ID_error at ID address error

cmp.w #0070fh,addr_h ; higher ID address check

jne ID_error
ID_data_check:

mov.w #0000fh,al
mov.w #Offdfh,rl

mov.w #1,r3
ID_check_loop:
mov.w rl1,a0
Ide.b [ala0],rOl
mov.w r3,a0

cmp.b rOl,data[a0]

jne ID_error
add.w #4,r1

cmp.w #0ffe7h,rl

jne ?+

mov.w #O0ffebh,rl

add.w #1,r3
cmp.w #8,r3

jltu ID_check_loop

ID_OK:
bset srl0
bset srll

jmp ID_check_end

ID_error:
bset srl10
bclr sri1l
ID_check_end:

jmp Loop_main

1

; jump ID_error at ID address error

; ID higher address --> al
: ID lower address -->rl
; check loop number (r3=1)

:rl-->al
; ID data read from Flash memory
;13 -->a0
; compare ID data
; jump ID_error at ID error
; r1+4 increment (next ID address)
; r1=0ffefh ?

; jump ? at not equal

; r1=0ffeb at equal

; r3 +1 increment
;r3=8?
; jump ID_check_loop at r3<8

; ID check OK (sr11=1,sr10=1)
; jump 1D_check_end

; ID error (sr11=0,sr10=1)

; jJump Loop_main

)

; Download

Download:
bclr fcon00

: not CPU write mode

jmp.a Download_program ; jump Download_program

)

)

;+ Version output

Ver_output:
mov.w #0,a0
Ver_output_loop:

Ide.b ver[a0],rll

mov.b rll,u0tb
jsr wait_loop

bclr busy
bset taOos

?:
btst ir_taOic
jc Time_out
btst ri_uOcl
iz ?-
bset busy
bset tbOs

mov.w uOrb,r0

; data transfer
; BUSY "H" 6usec check
; BUSY "L"
; 300usec start

; Time over check
; jump Time_out at time out
; Receive complete ?

; BUSY "H"
; Busec timer start
; receive data -->r0

46

M16C/20 Group
2.3 Sample List

add.w #1,a0

cmp.w #8,a0

jltu Ver_output_loop
Ver_output_end:

jmp Loop_main

+ 6usec timer wait +

wait_6usec:
bset thOs
wait_loop:
btst ir_tbOic
jz wait_loop
bclr th0s
mov.b #0,tbOic
rts

o

;+ Subroutine : Initialize_2 +
e L L T o o o o
Initialize_2:

bset fcon00 ; CPU write mode

bset fcon05 ; F4000h-FFFFFh select

bclr fcon04

Ide.w Offffch,r0 ; Reset vector read --> r0

Ide.w Offffeh,rl : Reset vector read -->rl

and.w r1,r0 r0&rl

cmp.w #Offffh,r0 ; Blank check

jne Blank_check_end ;jump Blank_check_end at Blank error

bset srl0 ; check complete

bset srll ;

bset blank ; blank flag set

Blank_check_end:

+ UARTO +

Initialize_21:

- UARTO transmit/receive mode register
mov.b #0,u0cl ; UARTO reset
mov.b #0,u0mr
mov.b #0,u0cO

mov.b #00001001b,u0mr

; [I[][+++----=---- clock synchronous SI/O
; [|[+-----=- external clock
; B fixed

jmm-- UARTO transmit/receive control register O

mov.b #00000100b,u0c0

(IR R — f1 select
; || +-------=------ RTS select
; |||+~ CTS/RTS enabled
|[+-----m - CMOS output(TxD)
; [#=mmmmmm e falling edge select
; e LSB first

jmm-- UART transmit/receive control register 2
mov.b #00000000b,ucon

; [[]]|4+4-=m=mmm - Transmit buffer empty
; [|[|++--=--mm - Continuous receive mode disabled

47

M16C/20 Group
2.3 Sample List

: [e —— CLK/CLKS normal
: [——— CTS/RTS shared
: oo fixed

- UARTO transmit/receive control register 1

mov.b #00000101b,u0cl

; [R Transmission enabled
; || +-------------- Reception enabled
; I o e fixed
4+ Timer +
mov.b #02h,taOmr ; f1 select,one-shot mode
mov.b #0,ta0ic ; Interrupt flag clear
mov.w #3000-1,ta0 ; 300usec at 10 MHz
bset taOs
mov.b #00h,tbOmr ; f1 select
mov.w #60-1,tb0 ; 6usec at 10 MHz
rs
;+ Time_out +
Time_out:
bset busy ; BUSY "H"
bset sr9 ; SRD1 time out flag set
jmp Command_err ; jJump Command_err at time out
Trans_END1:
;+ Transfer Program -- UART mode +
+ (1) Main flow +
+ (2) Flash control program +
+ Read,Program,All_erase,Read_SRD,Clear_SRD +
i+ (3) Other program +
i+ ID_check +
Trans_TOP2:

’

B i L o

;¥ main program +
L I L at a
U_Main:

bclr freq_setO ; freq set flag clear

bclr freq_setl
bclr freq_set2

mov.b #64,data ; 9600bps for 10MHz
jsr U_lnitialize_2 ; Initialize_2
bset re_uOcl ; Reception enabled
bclr busy ; BUSY "L"
?:
btst ri_uOcl ; receive complete ?
iz 7
bset busy ; BUSY "H"
mov.w uOrb,r0 : receive data --> r0

cmp.b #0bOh,rO0l
jne U_Freq_Get

48

M16C/20 Group
2.3 Sample List

mov.b #64,baud
mov.b #32,baud+1
mov.b #15,baud+2
mov.b #10,baud+3
mov.b baud,data
mov.b data,uObrg
bset freq_set0
jsr U_BPS_BO
jmp U_Loop_main

U_Freq_Get:
mov.b #80h,data

; 9600bps
; 19200bps
; 38400bps
; 57600bps

; Transmission late
; "BOh" get flag set

mov.b #01000000b,r1l ; counbterl,2 reset
mov.b #10000000b,r1h

mov.b data,uObrg

U_Loop_main:
btst txept_uOcO
jnc U_Loop_main
bclr te uOcl
bset re_uOcl
bclr busy
?:
btst sum_uOrb
jc U_RESET
U_Loop_bak:
btst ri_uOcl
iz ?-
bset busy
mov.w uOrb,r0
btst freq_set2

; Transmission late

; Transmit register empty ?

; Transmission disabled

; Reception enabled

; BUSY "L"

; Error sum flag check

; receive complete ?

; BUSY "H"

: receive data --> r0

; freq fixed ?

jc U_Command_check ;jump Command_check 2 at data

btst freq_set0
jz U_Freqg_check
cmp.b #00h,rOl
bmgtu freq_set2

; jump U_Freq_check
; "00h" get?

jne U_Command_check ;jump U_Freq_check

bclr freq_set0
mov.b #0ffh,rOl

; dummy data set

mov.b #01000000b,r1l ; counbterl,2 reset
mov.b #10000000b,r1h

mov.b #80h,data

jmp U_Freq_check

U_Command_check:
mov.b #0ch,rOh
and.b SRD1,rOh
cmp.b #0ch,rOh

; #00001100b sr10,11 mask data
; sr10,11 pick up
: ID check OK?

jne U_Command_check_2 ;jump Command_check_2 at ID uncheck

U_Command_check_1:
cmp.b #0ffh,r0l
jeqg U_Read
cmp.b #041h,r0l
jeqg U_Program
cmp.b #020h,r0l
jeq U_Erase
cmp.b #0a7h,r0l
jeqg U_AIl_erase
cmp.b #050h,r0l
jeqg U_Clear_SRD
cmp.b #071h,r0l
jeqg U_Read_RB
cmp.b #077h,r0l

; Read (ffh)
; Program (41h)
; Erase (20h)
; Allerase (a7h)
; Clear SRD (50h)
;Read RBS (71h)

; RB program (77h)

49

M16C/20 Group
2.3 Sample List

jeq U_Program_RB
cmp.b #07ah,r0l
jeqg U_Loop_main
cmp.b #075h,r0l
jeqg U_Loop_main
cmp.b #0fah,rOl
jeqg U_Download
cmp.b #0fch,rOl
jeq U_Boot_output
U_Command_check 2:
cmp.b #070h,r0l
jeqg U_Read_SRD
cmp.b #0f5h,r0l
jeq U_ID_check
cmp.b #0fbh,r0l
jeq U_Ver_output
cmp.b #0bOh,rO0l
jeq U_BPS_BO
cmp.b #0blh,rOl
jeg U_BPS B1
cmp.b #0b2h,r0l
jeg U_BPS_B2
cmp.b #0b3h,r0l
jeq U_BPS_B3
U_Command_err:
jsr U_lnitialize_21
jmp U_Loop_main

U_RESET:
mov.b #0,u0mr

; RB enable (7ah)
; RB disable (75h)
; Download (fah)

; Boot output (fch)

; Read SRD (70h)
;ID check (f5h)
; Version out (fbh)
; Baud rate 9600bp (bOh)
; Baud rate 19200bps (b1h)
; Baud rate 38400bps (b2h)

; Baud rate 57600bps (b3h)

; command error,UART Initialize

; uomr reset

mov.b #00000101b,u0mr

jmp U_Loop_bak

1

:+ UART Read / Boot

output +

U_Boot_output:
bclr fcon00
U_Read:
mov.w #0,r3
mov.b #0,addr_|
U_Read_loop:
bclr busy ;
?:
btst ri_uOcl
iz ?-
bset busy
mov.w uOrb,r0
add.w #1,r3
cmp.w #2,r3
jotu U_Read_data
mov.w r3,a0
mov.b rOl,addr_I[a0]
cmp.w #2,r3
jltu U_Read_loop
mov.w addr_l,a0
mov.b addr_h,al
mov.b #00h,fcmd
bclr re_uOcl
bset te_uOcl

U_Read_data:
cmp.w #258,r3
jz U_Read_end
Ide.b [alaO],r1l
mov.b rll,ultb

: not CPU write mode

; receive number (r3=0)
;addr_1=0

BUSY "L"
; Receive complete ?

; BUSY "H"
; receive data -->r0
: r3+1 increment
13=27?
; jump U_Read_data at r3>2
1 r3-->al
; Store address
(r3=27
; jump U_Read_loop at r3<2
;addr_I,m --> a0
;addr_h -->al
; Read command
; Reception disabled
: Transmission enabled

;13 =2587

; jump U_Read_loop at r3=258
; Flash memory read
; 1l --> transmit buffer register

50

M16C/20 Group
2.3 Sample List

?:

btst ti_uOcl

jnc ?-

add.w #1,a0
add.w #1,r3

jmp U_Read_data

U_Read_end:
bset fcon00
jmp U_Loop_main

; transmit buffer empty ?

; address increment
; counter increment
; jump Read_data

; CPU write mode
; jJump Loop_main

;+ Program +
U_Program:
mov.w #1,r3 ; receive number (r3=1)
mov.b #0,addr_| ;addr 1=0
U_Program_loop:
bclr busy ; BUSY "L"
?:
btst ri_uOcl ; Receive complete ?
iz ?-
bset busy ; BUSY "H"
mov.w uOrb,r0 ; receive data --> r0
mov.w r3,a0 1r3-->al
mov.b rOl,addr_I[a0] ; Store address

add.w #1,r3
cmp.w #259,r3

jltu U_Program_loop

btst fcon02

jz U_Program_err
mov.w #0,r3

U_Address_check:

mov.w addr_m,a0
cmp.w #0f40h,a0
jltu U_Address_err
cmp.w #1000h,a0

: r3+1 increment
:r3=2597?

; Vpp 12V input ?
; writing number (r3=0)

;addr_m,h --> a0
; compare f4000h

; jump U_Address_err at < f4000h

; compare 100000h

jltu U_Program_loop2 ;jump U_Program_loop2

U_Address_err:

bset sr8 ; address error

jmp U_Program_e
U_Program_loop2:
mov.w r3,a0
mov.b data[a0],r0l
mov.w addr_l,a0
mov.b addr_h,al

mov.w #25,r2

mov.w #200-1,ta0
U_Byte_loop:

mov.b #40h,fcmd

ste.b r0l,[ala0]

bset taOos
?:

btst ir_taOic

iz ?-

mov.b #0,ta0ic
mov.b #0cOh,fcmd
jsr U_wait_6usec
Ide.b [ala0],rOh
cmp.b rOl,rOh

jeqg U_Byte_end

nd ; jump U_Program_end at address error

i r3 --> a0
;data -->r0l
;addr_I,m --> a0
;addr_h -->al

; retry number
; 20usec timer set

; Program command
; data write
; 20usec timer start

; Verify command
; wait 6usec
; data read
; compare write and read data
; when equal,jump to Byte_end

shjnz.w #1,r2,U_Byte_loop ;to Byte_loop

U_Program_err:
bset sr4

; error flag set

; jump Program_loop at r3<259

51

M16C/20 Group
2.3 Sample List

jmp U_Program_end

U_Byte _end:
add.w #1,addr_| ; address increment
add.w #1,r3 ; write number increment
cmp.w #256,r3 ; 256 times writing ?

jltu U_Program_loop2 ;jump Program_loop2 at r3<256
U_Program_end:

mov.b #0ffh,fcmd ; reset command
mov.b #0ffh,fcmd

mov.b #00h,fcmd ; Read command
jmp U_Loop_main ; jump Loop_main

)

)

;+ Erase : Block Erase/ Rock Bit Program (dummy) +

1

1

U_Erase:
U_Program_RB:
mov.w #1,r3 ; receive number (r3=1)
U_Erase_loop:
bclr busy ; BUSY "L"
?:
btst ri_uOcl ; Receive complete ?
iz ?-
bset busy ; BUSY "H"
mov.w uOrb,r0 ; receive data --> r0
mov.w r3,a0 1 r3-->al
add.w #1,r3 ; r3+1 increment
cmp.w #4,r3 13=47
jltu U_Erase_loop ; jump Erase_loop at r3<4
jmp U_Loop_main ; jump U_Loop_main
-+ All erase +
U_All_erase:
bclr busy ; BUSY "L"
?:
btst ri_uOcl ; Receive complete ?
iz ?-
bset busy ; BUSY "H"
mov.w uOrb,r0 ; receive data --> r0
cmp.b #0dOh,rOl ; Confirm command check
jne U_Erase_err ; jump Erase_end at Confirm command error
mov.w #4000h,a0 ; start address f4000h

mov.w #0fh,al
mov.w a0,data
mov.w #Offffh,addr_| ; end address fffffh

U _Zero_clear:

btst fcon02 ; Vpp 12V input ?
jz U_Erase_err
mov.b #00h,r0l ; write data "00h"
mov.w #25,r2 ; retry counter
bclr taOos ; timer stop
mov.w #200-1,ta0 ; 20usec set
U Zero_clearl:
mov.b #40h,fcmd ; Program command
ste.b rOl,[ala0] ; "00h" write
bset taOos ; 20usec timer start
o
btst ir_taOic
jiz ?-

mov.b #0,ta0ic

52

M16C/20 Group
2.3 Sample List

mov.b #0cOh,fcmd ; program verify command
jsr U_wait_6usec ; wait 6usec
Ide.b [ala0],rOh ; data read
cmp.b rOl,rOh ; compare write and read data
jeq U_Zero_clear2 ; when equal , jump to Zero_clear2
shjnz.w #1,r2,U_Zero_clearl ; to Zero_clearl
jmp U_Erase_err ; jump to Erase_err

U Zero_clear2:
mov.w #25,r2 ; retry counter
cmp.w addr_l,a0 ; end address ?
jeq U_Erase_verify ;jump to Erase_verify
add.w #1,a0

jmp U_Zero_clearl

U_Erase_verify:

mov.w #1000,r2 ; retry 1000 times

mov.w #3000-1,ta0 ; 300u set
U_Erase_verify2:

mov.b #20h,fcmd ; Auto erase command

mov.b #20h,fcmd ; Auto erase command

mov.b #0,ta0ic
mov.w #0,r1
bset taOos ; 300usec timer start

btst ir_taOic
iz ?-
add.b #1,r1l
cmp.b #66,r1l ; 20msec ?
jeq 2+
mov.b #0,ta0ic
bset taOos
jmp ?-
?:
U_Erase_verify3:
mov.b #0a0h,fcmd ; erase verify command
jsr U_wait_6usec ; wait 6usec
Ide.b [ala0],rOh ; data read
cmp.b #0ffh,rOh ; "ffh" ?
jeq U_Erase_verify4 ;when equal , jump to Erase_verify2
shjnz.w #1,r2,U_Erase_verify2 ; to Erase_verify

jmp U_Erase_err ; jump to Erase_err
U_Erase_verify4:

cmp.w data,a0 ; start address ?

jeq U_Erase_end ; jump to Erase_end

sub.w #1,a0

jmp U_Erase_verify3
U_Erase_err:

bset sr5 ; erase error flag set
U_Erase_end:

mov.b #0ffh,fcmd ; reset command

mov.b #0ffh,fcmd

mov.b #00h,fcmd ; read command

jmp U_Loop_main ; jump Loop_main
: Read SRD +
U_Read_SRD:

bclr re_uOcl ; Reception disabled

mov.w #0,r3

mov.b SRD,ril

mov.b SRD1,r1h

bset te uOcl ; Transmission enable

53

M16C/20 Group
2.3 Sample List

U_Read_SRD_loop:

mov.b rll,u0tb ; 1l --> transmit buffer register
?:
btst ti_uOcl ; transmit buffer empty ?
iz ?-
add.w #1,r3
mov.b rlh,ril
cmp.w #2,r3
jne U_Read_SRD_loop
jmp U_Loop_main
;+ Clear SRD +
U _Clear_SRD:
mov.b #80h,SRD : SRD clear
and.b #9ch,SRD1 ; SRD1 clear
jmp U_Loop_main
;+ Read Rock Bit (dummy) +
U_Read_RB:

mov.w #0,r3
mov.b #0ffh,rll
U_Read_RB_loop:

bclr busy ; BUSY "L"
o
btst ri_uOcl ; transmit buffer empty ?
iz ?-
bset busy ; BUSY "H"
mov.w uOrb,r0 ; receive data ---> r0
add.w #1,r3 ; r3+1 increment
cmp.w #2,r3 r3=27?
jltu U_Read _RB_loop ;jump U_Read RB_loop at r3<2
bclr re_uOcl ; Reception disabled
bset te uOcl ; Transmission enabled
mov.b rll,u0tb ; dummy --> Transmit buffer register
o
btst ti_uOcl ; transmit buffer empty?
jnc ?-
jmp U_Loop_main
;. ID check
U_ID_check:
mov.w #0,r3 ; receive number (r3=0)
mov.w #0ffh,al ; ID size (dummy data = ffh)
U _ID_data_store:
cmp.w al,r3 ; r13=al(ID size)
jeq U_ID_address_check ; jump ID_address_check at r3=ID size
bclr busy ; BUSY "L"
?:
btst ri_uOcl ; Receive complete ?
iz ?-
bset busy ; BUSY "H"
mov.w uOrb,r0 ; receive data -->r0
mov.w r3,a0 ;r3-->al
mov.b rOl,addr_lI[a0] ; Store address
add.w #1,r3 ; r3+1 increment
cmp.w #4,r3 1 13=47?

jne U_ID_data_store ;jump ID_data_store at r3 not= 4

54

M16C/20 Group
2.3 Sample List

mov.b data,al : ID size --> al

add.w #4,al ;al=al+4

jmp U_ID_data_store ;jump ID_data_store
U_ID_address_check:

btst blank ; blank flag check

jc U_ID_check_end ;jump ID_check_end at blank

cmp.w #Offdfh,addr_| ; lower ID address check

jne U_ID_error ; jump ID_error at ID address error

cmp.w #0070fh,addr_h ; higher ID address check

jne U_ID_error ; jump ID_error at ID address error
U_ID_data_check:

mov.w #0000fh,al ; ID higher address --> al

mov.w #O0ffdfh,ri : ID lower address -->rl

mov.w #1,r3 ; check loop number (r3=1)
U_ID_check_loop:

mov.w rl,a0 irl-->al

Ide.b [ala0],rOl ; ID data read from Flash memory

mov.w r3,a0 ;r3-->a0

cmp.b rOl,dataja0] ; compare ID data

jne U_ID_error ; jump ID_error at ID error

add.w #4,r1 ; r1+4 increment (next ID address)

cmp.w #0ffe7h,rl ; r1=0ffefh ?

jne 7+ ; jump ? at not equal

mov.w #0ffebh,rl ; r1=0ffeb at equal
™

add.w #1,r3 : r3 +1 increment

cmp.w #8,r3 :1r3=87?

jltu U_ID_check_loop ;jump ID_check_loop at r3<8
U_ID_OK:

bset sr10

bset sril ; ID check OK (sr11=1,sr10=1)

jmp U_ID_check_end ;jump ID_check_end
U_ID_error:

bset sr10

bclr sril ; ID error (sr11=0,sr10=1)
U_ID_check_end:

jmp U_Loop_main ; jJump Loop_main

; Download

U_Download:
bclr fcon00 : not CPU write mode
jmp.a U_Download_program ; jump Download_program

;+ Version output +

U_Ver_output:
mov.w #0,a0

bclr re_uOcl ; Reception disabled

bset te_uOcl ; Transmission enabled
U_Ver_output_loop:

Ide.b ver[aO],u0th ; Version data transfer
o

btst ti_uOcl ; transmit buffer empty ?

iz ?-

add.w #1,a0

cmp.w #8,a0

jltu U_Ver_output_loop
jmp U_Loop_main

;+ Baud rate change - UART mode +

55

M16C/20 Group
2.3 Sample List

U_BPS_BO:

mov.b baud,data ; Baud rate 9600bps
jmp U_BPS_SET
U_BPS BI:
mov.b baud+1,data ; Baud rate 19200bps
jmp U_BPS_SET
U_BPS B2:
mov.b baud+2,data ; Baud rate 38400bps
jmp U_BPS_SET
U_BPS_B3:
mov.b baud+3,data ; Baud rate 57600bps
U_BPS_SET:
bclr re_uOcl ; Reception disabled
bset te uOcl ; Transmission enabled
mov.b rOl,u0tb ; 1l --> transmit buffer register
™
btst ti_uOcl ; transmit buffer empty ?
jnc ?-
?:
btst txept_uOcO
jnc ?-
bclr te_uOcl ; Transmission disabled
jsr U_lnitialize_20 ; UART mode Initialize
jmp U_Loop_main ; jump Loop_main

1

o A S

;+ Freq check - UART mode - +

e e

U_Freqg_check:

bclr re_uOcl ; Reception disabled

btst 8,r1 ; counter = 8 times

jc U_Freqg_check_4

btst freq_setl

jc U_Freqg_check_1

cmp.b #00h,r0l ; "00h"?

jeqg U_Freq_check_3

jmp U_Freq_check_2
U_Freq_check_1:

btst 13,r0 ; fer_ulrb

jz U_Freqg_check_3
U_Freqg_check_2:

or.b rilh,ril : rll = counterl or counter2
U_Freqg_check_3:

xor.b data,ril ; Baud = Baud xor ril

mov.b rll,data ; data set

mov.b rlh,ril

rot.b #-1,rll

rot.b #-1,rlh ; counter sift

rot.b #-1,rll

jmp U_Freqg_check_6

U_Freq_check_4:

btst freq_setl ; Min-Baud get ?
jc U_Freqg_set 1 ; Yes, finished
bset freq_setl

cmp.b #00h,r0l ; "00h"?

jeq U_Freq_check 5
xor.b data,rilh
mov.b rlh,data
U_Freqg_check_5:
mov.b data,data+1 : Min Baud --> data+1
mov.b #01000000b,r1l ; counter reset

56

M16C/20 Group
2.3 Sample List

mov.b #10000000b,r1h
mov.b #01111111b,data ; Reset

U_Freqg_check_6:
mov.b data,uObrg
?:
btst p5_1
iz ?-

jmp U_Loop_main

U_Freq_set_1:
btst 13,r0
jz U_Freq_set 2
xor.b data,rlh
mov.b rlh,data
U_Freq_set_2:
bset freq_set2
mov.b data+1,rll
sub.b data,ril
shl.b #-1,r1l
add.b data,rll

mov.b rll,baud
shl.b #-1,r1l
mov.b rll,baud+1
shl.b #-1,r1l
mov.b rll,baud+2
mov.b baud,rOl
mov.b #0,r0Oh
divu.b #6

mov.b rOl,baud+3
mov.b baud,data
mov.b #0bOh,rOl
mov.b data,uObrg
jmp U_BPS_SET

; Transmission late

; fer_ulrd

; 9600bps
; 19200bps

; 38400bps

; 57600bps

: "BOh" set
; Transmission late

+ 6usec timer wait

U_wait_6usec:

bset thOs
?:
btst ir_tbOic
iz ?-
bclr thOs

mov.b #0,tb0ic
rts

e

;+ Subroutine : U_Initialize_2

o

U_Initialize_2:
bset fcon00
bset fcon05
bclr fcon04
Ide.w Offffch,r0
Ide.w Offffeh,rl
and.w r1,r0
cmp.w #Offffh,r0

jne U_Blank_check_end

bset sri0
bset sril
bset blank

U_Blank_check_end:

; CPU write mode

; FA000h-FFFFFh select

; Reset vector read --> r0
: Reset vector read -->rl

0 &rl
; Blank check

; check complete

; blank flag set

; jump Blank_check_end at Blank error

57

M16C/20 Group
2.3 Sample List

)

;+ UARTO +
U_Initialize_20:
- UARTO init late generater 1

mov.b data,uObrg ; Transmission late
U_Initialize_21:

- UARTO transmit/receive mode register

mov.b #0,u0mr ; uOmr reset
mov.b #00000101b,u0mr
; [[|+++----------- transfer data 8 bit long
; [|[+--=-=-mmmm-- Internal clock
; [||#---=mmmmmme - one stop bit
; [|+----mm - parity disabled
; R sleep mode deselected

- UARTO transmit/receive control register O

mov.b #00001000b,u0cO

11T e — f1 select
;]| e —— RTS select
: [———— CTS/RTS enabled
[————— CMOS output(TxD)
; [falling edge select
: R — LSB first

- UART transmit/receive control register 2

mov.b #00000000b,ucon

; [[I[[[++----mmmm- Transmit buffer empty

; [[[[+4-mmmmmmemeee- Continuous receive mode disabled
; [[H=mmmmmmmmnneeees CLK/CLKS normal

; [+--mmmmmmmmmmeeeee CTS/RTS shared

; Fommmmmmn e fixed

- UART transmit/received control register 1

mov.b #00000000b,u0cl

; T —— Transmission disabled

; T S —— Transmission enabled

; [———— Reception disabled

; [—— Reception enabled

; e fixed

i+ Timer +
mov.b #02h,taOmr ; f1 select,one-shot mode
mov.b #0,ta0ic ; Interrupt flag clear
mov.w #3000-1,ta0 ; 300usec at 10 MHz
bset taOs
mov.b #00h,tbOmr ; f1 select
mov.w #60-1,tb0 ; Busec at 10 MHz
rs

Trans_END2:
.end

58

M16C/20 Group

2 2.3 Sample List
Header
- :
* file name : definition of M16C/20 Flash *
'3 *
¥ Version :0.07 (1999-8-5) *
* . for Boot Ver 1.03 *

* * * * *

; BUSY output

busy .btequ 3,03E9h ;p5_3
busy d .btequ 3,03EBh ;pd5_3

; define of symbols

Ram_TOP .equ 000400h
Ram_END .equ 000bffh
Istack .equ 000c00h

Version .equ 0dfbfOh
Boot_ TOP .equ 0dfo00Oh
Boot END .equ Odffffh
Vector .equ Offfdch

SB_base .equ 000400h
Ram_progTOP .equ 000600h

Download_program .equ 0df100h
U_Download_program .equ 0dflaOh

.section memory,data
.org Ram_TOP

SRD: .blkb 1
SRD1: .blkb 1
ver: .blkkb 10
SF: .blkb 1
unuse: .blkb 3
addr_ I .blkb 1
addr m: .blkb 1
addr_h: .blkb 1
data: .blkb 256
ID: .blkb 11
buff: .blkb 20
ID_err: .blkb 1
baud: .blkb 4

sr0 .btequ 0,SRD

srl .btequ 1,SRD

sr2 .btequ 2,SRD ;

sr3 .btequ 3,SRD ; Block status after program (0=OK 1=ERR))

sr4 .btequ 4,SRD ; Program status (0=OK 1=ERR))

sr5 .btequ 5,SRD ; Erase status (0=OK 1=ERR)

Sré .btequ 6,SRD ;

sr7 .btequ 7,SRD ; Write state machine status (0=BUSY 1=READY)
sr8 .btequ 0,SRD1 : Block address error

sr9 .btequ 1,SRD1 ; Time out (0=OK 1=TIME OUT)

sr1l0 .btequ 2,SRD1 ; 1D collation
srll .btequ 3,SRD1 ; (00=no check 01=error 10=-- 11=0K)

59

M16C/20 Group
2.3 Sample List

srl2 .btequ 4,SRD1
srl3 .btequ 5,SRD1
srl4 .btequ 6,SRD1
srl5 .btequ 7,SRD1

ram_check .btequ 0,SF
blank .btequ 1,SF
s_mode .btequ 2,SF
old_mode .btequ 3,SF
freq_set0 .btequ 4,SF
freq_setl .btequ 5,SF
freq_set2 .btequ 6,SF

; Check sum (0= error 1=0k)

’

’

; Download flag

60

M16C/20 Group
2 2.4 Precautions

2.4 Precautions

This section describes precautions to be observed when controlling the M16C/20's internal flash memory.

Handling of Vpp Power Supply

In addition to the operating Vcc power supply, the flash memory requires a high-voltage (12 V) Vpp power
supply for program/erase operations. We recommend that the Vpp power supply be 12 V only when you
need to program/erase the flash memory, and 0 V otherwise.

When using the Vpp power supply, pay attention to the following:

(1) Do not apply an overvoltage to the Vpp pin. If the flash memory's Vpp voltage exceeds the absolute
maximum rated voltage of 13 V, the device may be damaged.

(2) When turning the Vpp voltage on or off, make sure the Vcc power supply is turned on. Before accessing
the device, wait until the power supply stabilizes after being turned on.

(3) Set the current capacity of the Vpp power supply by considering the device's power consumption in the
same way as for the Vcc power supply. The Vpp current (Ipp) during programming/erasing reaches the
maximum value when program or erase operation is executed internally in the device after entering the
command. At this time, be careful that the Vpp voltage applied to the M16C/20 will not drop.

(4) Connect a bypass capacitor to the Vpp power supply pin as close to the Vpp pin as possible, as for the
Vcc power supply pin. To prevent a transient drop of the Vpp voltage in (3) above, connect a bypass
capacitor as close to the Vpp pin as possible. Although the value of this bypass capacitor varies with the
operating current, the appropriate value normally is 0.1 to 1 yF per device.

(5) Do not enter a low signal to the WE pin while you are applying 12 V to the Vpp pin. If the WE input is
pulled low while the Vpp pin has 12 V applied to it, the flash memory may receive the data pin status at
that point in time as a command. Therefore, if the WE input is pulled low by noise or for other reasons
while writing data, the flash memory may be erroneously programmed/erased.

61

M16C/20 Group
2 2.4 Precautions

Additional programming inhibited

Additional programming means writing data to a byte again after once writing to it (the byte that passed
verification).

Additional programming causes a high voltage to be applied to memory cells of the flash memory repeatedly,
which may result in reduced or lost margins for memory data cell readout or degraded data retention
characteristics.

Therefore, when programming the flash memory, be careful not to additionally write to the bytes that have
passed test by Program Verify. However, an exception is that only when you wrote "0016" to all bytes of
flash memory before erasing, you can additionally write data "0016" to each byte once. This is because
writing "0016" to all bytes of flash memory before erasing is indispensable to prevent overerase.

Table 2.4.1 shows inhibited additional programming and acceptable additional programming.

Table 2.4.1 Inhibited Additional Programming and Acceptable Additional Programming

Inhibited additional (1) Writing the same data to the verified bytes again.
programming Example: Writing data 25 times per byte without verifying
programmed data.
(2) Writing new data to already programmed bytes without
erasing them.

Acceptable additional | Writing "0016" to all bytes before erasing.
programming

62

Chapter 3

M16C/62 Group

3.1 Outline of Hardware

3.2 Developing Boot Program
3.3 Sample Program List

3.4 Precautions

M16C/62 Group
3 3.1 Outline of Hardware

3.1 Outline of Hardware

The M16C/62 group contains DINOR-type flash memory.
This section shows hardware information about the M16C/62 group which we think is necessary to create a
boot program.

Internal Flash Memory Outline

Table 3.1.1 shows the outline performance of M30624FG and M30624FGL of the M16C/62 group.

Table 3.1.1. Outline Performance of M30624FG and M30624FGL

Item

Performance

Power supply voltage

5V version: 2.7V to 5.5V
(f(XIN)=16MHz, without wait, 4.2V to 5.5V,
f(XIN)=10MHz, with one wait, 2.7V to 5.5V)
3V version: 2.4V to 3.6 V
(f(XIN)=10MHz, without wait, 2.7V to 3.6V,
f(XIN)=7MHz, without wait, 2.4V to 3.6V)

Program/erase voltage

5V version: 4.2Vt0 5.5V
(f(XIN)=12.5MHz, with one wait,
f(XIN)=6.25MHz, without wait)

3V version: 2.7V to 3.6 V
(f(XIN)=10MHz, with one wait,
f(XIN)=6.25MHz, without wait)

Flash memory operation mode

Three modes (parallel 1/0, standard serial I/0, CPU rewrite)

Erase block | User ROM area

See Figure 3.1.1

division
Boot ROM area

One division (8 Kbytes) (Note)

Program method

In units of pages (in units of 256 bytes)

Erase method

Collective erase/block erase

Program/erase control method

Program/erase control by software command

Protect method

Protected for each block by lock bit

Number of commands

8 commands

Program/erase count

100 times

ROM code protect

Parallel I/O and standard serial modes are supported.

Note: The boot ROM area contains a standard serial I/O mode control program which is stored in it
when shipped from the factory.This area can be erased and programmed in only parallel I/O

mode.

64

M16C/62 Group
3.1 Qutline of Hardware

Memory Map

The user ROM of M30624FG has seven blocks as block 0 to block 6. Figure 3.1.1 shows the memory map.

00000016

0C000016

User ROM area

0C000016

0D000016

OE000016

0F000016

0F800016
OFA00016

0FC00016
OFFFFF16

Figure 3.1.1 M30624FG memory Map

Block 6 : 64K bytes

Block 5 : 64K bytes

Block 4 : 64K bytes

Block 3 : 32K bytes

Block 2 : 8K bytes

Block 1 : 8K bytes

Block 0 : 16K bytes

Note 1: The boot ROM area can be rewritten in
only parallel input/output mode. (Access
to any other areas is inhibited.)

Note 2: To specify a block, use the maximum
address in the block that is an even

address.
OFEQ0016 [——
OFFFFF16 00 area

65

M16C/62 Group
3 3.1 Outline of Hardware

Related Register Configuration

Figure 3.1.2 shows related registers for making user boot program.

Flash memory control register O

b7 b6 bS5 b4 b3 b2 bl b0 Symbol Address When reset
| 0| | | | | FMRO 03B716 XX0000012

v | Bit symbol Bit name Function R w

i i bt LI FMROO [RY/BY status flag 0: Busy (being written or erased) | ',

PR 1: Ready !

FMRO1 |CPU rewrite mode 0: Normal mode

R N select bit (Note 1) (Software commands invalid)

1: CPU rewrite mode O; o

R R (Software commands acceptable)|

EMRO2 | Lock bit disable bit 0: Block lock by lock bit data is

T (Note 2) enabled Oi o

1: Block lock by lock bit data is !

I R disabled

L __________ EMRO03 | Flash memory reset bit | 0: Normal operation Oi o

(Note 3) 1: Reset !

e Reserved bit Must always be set to “0” 00

FMRO5 |User ROM area select bit (| 0: Boot ROM area is accessed

Lo Tmmmmmmmmmmmeeees Note 4) (Effectiveinonly | 1: User ROM area is accessed 00

o boot mode)

o Nothing is assigned.
When write, set "0". When read, values are indeterminate. -

Note 1: For this bit to be set to “1”, the user needs to write a “0” and then a “1” to it in succession.
When it is not this procedure, it is not enacted in “1”. This is necessary to ensure that no
interrupt or DMA transfer will be executed during the interval. Use the control program
except in the internal flash memory for write to this bit.

Note 2: For this bit to be set to “1”, the user needs to write a “0” and then a “1” to it in succession
when the CPU rewrite mode select bit = “1”. When it is not this procedure, it is not enacted in
“1". This is necessary to ensure that no interrupt or DMA transfer will be executed during the
interval.

Note 3: Effective only when the CPU rewrite mode select bit = 1. Set this bit to 0 subsequently after
setting it to 1 (reset).

Note 4: Use the control program except in the internal flash memory for write to this bit.

Flash memory control register 1

b7 b6 bS b4 b3 b2 bl b0 Symbol Address When reset

lolofo[o| [o]o]o0] FMR1 038616 XXXXOXXX2
v 1| Bitsymbol | Bit name Function R
i1 =o-t--tf Reserved bit Must always be set to “0” -

FMR13 [Flash memory power 0: Flash memory power supply is
supply-OFF bit (Note) connected 00

1: Flash memory power supply-off

------------------------ Reserved bit Must always be set to “0” -

Note : For this bit to be set to “1”, the user needs to write a “0” and then a “1” to it in succession.
When it is not this procedure, it is not enacted in “1”. This is necessary to ensure that no
interrupt or DMA transfer will be executed during the interval. Use the control program except
in the internal flash memory for write to this bit.

During parallel I/O mode,programming,erase or read of flash memory is not controlled by this
bit,only by external pins.

Figure 3.1.2 Related Register Configuration

66

M16C/62 Group
3 3.1 Outline of Hardware

Flash Control Circuit
The M16C/62's flash control circuit controls the block erase and page program operations performed on the
internal flash memory. Operation modes are selected by entering software commands to the flash control
circuit. The status shows the status of the flash control circuit, as well as the status of program and block
erase operations performed by the flash control circuit.
To enter commands to the flash control circuit, write the command to flash memory address.

Software Commands

Flash memory operations are selected by writing a software command to the flash control circuit. The
table below lists the operations performed by software commands.

Table 3.1.2 Software Command List

First bus cycle Second bus cycle Third bus cycle
Command Mode | Address (D(I)D?gam) Mode | Address (D(?te;tam) Mode |Address (D(I):) taot%n
Read array Write X (Note 6) FFie
Read status register Write X 7016 Read X SRD (Note 2)
Clear status register Write X 5016
Page program (Note 3) Write X 4116 Write | WAQ(Note 3) WDO (Note 3) | Write WAL WD1
Block erase Write X 2016 Write | BA (Note4) | DO16
Erase all unlock block Write X AT16 Write X D016
Lock bit program Write X 7716 Write BA D016
Read lock bit status Write X 7116 Read BA De (Note 5)

Note 1: When a software command is input, the high-order byte of data (Ds to D15) is ignored.

Note 2: SRD = Status Register Data

Note 3: WA = Write Address, WD = Write Data
WA and WD must be set sequentially from 0016 to FE16 (byte address; however, an even address). The page size is
256 bytes.

Note 4: BA = Block Address (Enter the maximum address of each block that is an even address.)

Note 5: Ds corresponds to the block lock status. Block not locked when Ds = 1, block locked when Ds = 0.

Note 6: X denotes a given address in the user ROM area (that is an even address).

Flash Memory Address

The table below shows the flash memory capacity of each block (address space, number of pages) and
the block addresses of each block.

Table 3.1.3 Flash Memory Address

Size Page No. Address Block address
Block 6 64 Kbytes 256 C000016—CFFFF16 CFFFE16
Block 5 64 Kbytes 256 D000016—DFFFF16 DFFFE16
Block 4 64 Kbytes 256 E000016—EFFFF16 EFFFE16
Block 3 32 Kbytes 128 FO000016—F7FFF16 F7FFE16
Block 2 8 Kbytes 32 F800016—F9FFF16 FOFFE16
Block 1 8 Kbytes 32 FA00016—FBFFF16 FBFFE16
Block 0 16 Kbytes 64 FC00016—FFFFF16 FFFFE16

67

M16C/62 Group
3 3.1 Outline of Hardware

Read Array Command (FF 16)

The read array mode is entered by writing the command code “FF16” in the first bus cycle. When an even
address to be read is input in one of the bus cycles that follow, the content of the specified address is read
out at the data bus (D0-D15), 16 bits at a time. The read array mode is retained intact until another
command is written.

Read Status Register Command (70 16)

When the command code “7016" is written in the first bus cycle, the content of the status register is read out
at the data bus (DO-D7) by a read in the second bus cycle.
The status register is explained in the next section.

Clear Status Register Command (50 16)

This command is used to clear the bits SR3 to 5 of the status register after they have been set. These bits
indicate that operation has ended in an error. To use this command, write the command code “5016” in the
first bus cycle.

Page Program Command (41 16)

Page program allows for high-speed programming in units of 256 bytes. Page program operation starts
when the command code “4116” is written in the first bus cycle. In the second bus cycle through the 129th
bus cycle, the write data is sequentially written 16 bits at a time. At this time, the addresses A0-A7 need to
be increased by 2 from “0016” to “FE16.” When the system finishes loading the data, it starts an auto write
operation (data program and verify operation).

Whether the auto write operation is completed can be confirmed by reading the status register or the flash
memory control register 0. At the same time the auto write operation starts, the read status register mode
is automatically entered.

After the auto write operation is completed, the status register can be read out to know the result of the
auto write operation. For details, refer to the section where the status register is detailed.

The status register bit 7 (SR7) is set to 0 at the same time the auto write operation starts and is returned to
1 upon completion of the auto write operation. In this case, the read status register mode remains active
until the Read Array command (FF16) or Read Lock Bit Status command (7116) is written or the flash
memory is reset using its reset bit.

The RY/BY status flag of the flash memory control register 0 is O during auto write operation and 1 when
the auto write operation is completed as is the status register bit 7.

Figure 3.1.3 shows an example of a page program flowchart.

Each block of the flash memory can be write protected by using a lock bit. For details, refer to the section
where the data protect function is detailed.

Additional writes to the already programmed pages are prohibited.

68

M16C/62 Group
3.1 Qutline of Hardware

[Start

Write 4116

Write address n and
datan

n=n+2

NO

RY/BY status flag
=1?

Check full status

-

Page program
completed

]

Figure 3.1.3 Page Program Flowchart

69

M16C/62 Group
3 3.1 Outline of Hardware

Block Erase Command (20 16/D016)

By writing the command code “2016” in the first bus cycle and the confirm command code “D016” in the
second bus cycle that follows to the block address of a flash memory block, the system initiates an auto
erase (erase and erase verify) operation.

Whether the auto erase operation is completed can be confirmed by reading the status register or the flash
memory control register 0. At the same time the auto erase operation starts, the read status register mode
is automatically entered, so the content of the status register can be read out. The status register bit 7
(SR7) is set to 0 at the same time the auto erase operation starts and is returned to 1 upon completion of
the auto erase operation. In this case, the read status register mode remains active until the Read Array
command (FF16) or Read Lock Bit Status command (7116) is written or the flash memory is reset using its
reset bit.

The RY/BY status flag of the flash memory control register 0 is 0 during auto erase operation and 1 when
the auto erase operation is completed as is the status register bit 7.

After the auto erase operation is completed, the status register can be read out to know the result of the
auto erase operation. For details, refer to the section where the status register is detailed.

Figure 3.1.4 shows an example of a block erase flowchart.

Each block of the flash memory can be protected against erasure by using a lock bit. For details, refer to
the section where the data protect function is detailed.

(T)

Write 2016

Write D016
to block address

IA

<

RY/BY status flag
=17

Check full status check

Block erase
completed

Figure 3.1.4 Block Erase Flowchart

70

M16C/62 Group
3 3.1 Outline of Hardware

Erase All Unlock Blocks Command (A7 16/D016)

By writing the command code “A716” in the first bus cycle and the confirm command code “D016” in the
second bus cycle that follows, the system starts erasing blocks successively.

Whether the Erase All Unlock Blocks command is terminated can be confirmed by reading the status
register or the flash memory control register 0, in the same way as for block erase. Also, the status register
can be read out to know the result of the auto erase operation.

When the lock bit disable bit of the flash memory control register O = 1, all blocks are erased no matter how
the lock bit is set. On the other hand, when the lock bit disable bit = 0, the function of the lock bit is effective
and only unlocked blocks (where lock bit data = 1) are erased.

Lock Bit Program Command (77 16/D016)

By writing the command code “7716" in the first bus cycle and the confirm command code “D016” in the
second bus cycle that follows to the block address of a flash memory block, the system sets the lock bit for
the specified block to 0 (locked).

Figure 3.1.5 shows an example of a lock bit program flowchart. The status of the lock bit (lock bit data) can
be read out by a Read Lock Bit Status command.

Whether the lock bit program command is terminated can be confirmed by reading the status register or
the flash memory control register 0, in the same way as for page program.

For details about the function of the lock bit and how to reset the lock bit, refer to the section where the data
protect function is detailed.

[Start]
|

Write 7716

Write D016
to block address

[«
<

RY/BY status flag
=1?

[Lock bit program in]
error

Lock bit program
completed

Figure 3.1.5 Lock Bit Program Flowchart

71

M16C/62 Group
3.1 Qutline of Hardware

Read Lock Bit Status Command (71 16)

By writing the command code “7116” in the first bus cycle and then the block address of a flash memory
block in the second bus cycle that follows, the system reads out the status of the lock bit of the specified
block on to the data (D6).

Figure 3.1.6 shows an example of a read lock bit program flowchart.

[St|art]

Write 7116

Enter block address

(Note)
D6 =02
YES
[Blocks locked] [Blocks not Iocked]

Note: Data bus bit 6.

Figure 3.1.6 Read Lock Bit Program Flowchart

Data Protect Function (Block Lock)

Each block in Figure 3.1.1 has a nonvolatile lock bit to specify that the block be protected (locked) against

erase/write. The Lock Bit Program command is used to set the lock bit to O (locked). The lock bit of each

block can be read out using the Read Lock Bit Status command.

Whether block lock is enabled or disabled is determined by the status of the lock bit and how the flash

memory control register 0’s lock bit disable bit is set.

(1) When the lock bit disable bit = 0, a specified block can be locked or unlocked by the lock bit status (lock
bit data). Blocks whose lock bit data = 0 are locked, so they are disabled against erase/write.
On the other hand, the blocks whose lock bit data = 1 are not locked, so they are enabled for erase/
write.

(2) When the lock bit disable bit = 1, all blocks are unlocked regardless of the lock bit data, so they are
enabled for erase/write. In this case, the lock bit data that is O (locked) is set to 1 (unlocked) after
erasure, so that the lock bit-actuated lock is removed.

72

M16C/62 Group
3 3.1 Outline of Hardware

Status Register

The status register indicates the operating status of the flash memory and whether an erase or program
operation has terminated normally or in an error. The content of this register can be read out by only
writing the read status register command (7016). Table 3.1.3 details the status register.

The status register is cleared by writing the Clear Status Register command (5016).

After a reset, the status register is set to “8016.”

Each bit in this register is explained below.

Write State Machine (WSM) Status (SR7)
After power-on, the write state machine (WSM) status is set to 1.
The write state machine (WSM) status indicates the operating status of the device, as for output on the
RY/BY pin. This status bit is set to 0 during auto write or auto erase operation and is set to 1 upon
completion of these operations.

Erase Status (SR5)
The erase status informs the operating status of auto erase operation to the CPU. When an erase error
occurs, itis setto 1.
The erase status is reset to 0 when cleared.

Program Status (SR4)
The program status informs the operating status of auto write operation to the CPU. When a write error
occurs, itis setto 1.
The program status is reset to 0 when cleared.
When an erase command is in error (which occurs if the command entered after the block erase com-
mand (2016) is not the confirm command (D016), both the program status and erase status (SR5) are set
to 1.
When the program status or erase status = 1, the following commands entered by command write are not
accepted.
Also, in one of the following cases, both SR4 and SR5 are set to 1 (command sequence error):
(1) When the valid command is not entered correctly
(2) When the data entered in the second bus cycle of lock bit program (7716/D016), block erase (2016/
DO01s), or erase all unlock blocks (A716/D016) is not the D016 or FF16. However, if FF16 is entered,
read array is assumed and the command that has been set up in the first bus cycle is canceled.

Block Status After Program (SR3)
If excessive data is written (phenomenon whereby the memory cell becomes depressed which results in
data not being read correctly), “1” is set for the program status after-program at the end of the page write
operation. In other words, when writing ends successfully, “8016” is output; when writing fails, “9016” is
output; and when excessive data is written, “8816” is output.

73

M16C/62 Group
3.1 Qutline of Hardware

Table 3.1.4 Definition of Each Bit in Status Register

Each bit of Definition

SRD Status name nqn no"
SR7 (bit7) | Write state machine (WSM) status Ready Busy
SR6 (bit6) Reserved - -
SR5 (bit5) Erase status Terminated in error | Terminated normally
SR4 (bit4) Program status Terminated in error | Terminated normally
SR3 (hit3) Block status after program Terminated in error | Terminated normally
SR2 (bit2) Reserved - -
SR1 (bitl) Reserved - -
SRO (bit0) Reserved - -

Full Status Check

By performing full status check, it is possible to know the execution results of erase and program operations.
Figure 3.1.7 shows a full status check flowchart and the action to be taken when each error occurs.

(Read status register)

. Execute the clear status register command (5016)
to clear the status register. Try performing the
operation one more time after confirming that the
command is entered correctly.

. Should a block erase error occur, the block in error

Block erase error |* ©
cannot be used.

Program error (page|. . . Execute the read lock bit status command (7116)
or lock bit) to see if the block is locked. After removing lock,

execute write operation in the same way. If the

error still occurs, the page in error cannot be

used.
Program error)_ _ _After erasing the block in error, execute write
(block) operation one more time. If the same error still
occurs, the block in error cannot be used.

[End (block erase, program)]

Note: When one of SR5 to SR3 is set to 1, none of the page program, block erase,
erase all unlock blocks and lock bit program commands is accepted. Execute the
clear status register command (5016) before executing these commands.

Figure 3.1.7 Full Status Check Flowchart and Remedial Procedure for Errors

74

M16C/62 Group
3 3.2 Developing The Boot Program

3.2 Developing The Boot Program

The standard boot program that was built into the boot ROM area of the flash microcomputer when shipped
from the factory can be used to program/erase the flash memory. In this case, the hardware resources
(internal functions) used for control are fixed. Therefore, if you want to control flash memory in the way
suitable for your system, you need to create a boot program for yourself.

This section shows an algorithm for the boot program (e.g., for erase and program) that you must at least
have in order to control the flash memory of the M16C/62 group.

System Example

By using the internal peripheral function of UART1 and a serial programmer to control flash memory, the
following shows an example of device connections is shown in Figure 3.2.1. Assignments of internal
peripheral functions are listed in Table 3.2.1.

e
:

(Clockinput)
BUSY output RTS1(BUSY)

(Data input) p=| RXD1
M16C/62 flash

i memory version
é CNVss NMI

»| CLK1

P50(CE)

P55(EPM)

(1) Control pins and external circuitry will vary according to peripheral unit (programmer). For more
information, see the peripheral unit (programmer) manual.
(2) In this example, the microprocessor mode and standard serial /O mode are switched via a switch

Figure 3.2.1 Example of Device Connection

Table 3.2.1 Assignments of Internal Peripheral Functions

Peripheral function Usage Setting example
Used for transfer/receive of serial * Clock synchronous serial 1/0

UART1 .
programmer and data External clock is used

Timer A0 Used for time-over judgment of serial * One-shot timer mode
transfer/receive * 300 ps(when 20MHz)

75

M16C/62 Group
3.2 Developing The Boot Program

Flow of The Main Processing

Figure 3.2.2 shows a flow of the main processing.
After initializing the CPU, transfer the write control program to RAM. When transfer is finished, jump to
RAM and execute the write control program from RAM.

RAM transfer program on ROM Write control program on RAM

(CPU programming mod§ R >ﬁ>

| E Initial setting 2

Initial setting 1 :
I : —>|

Transfer to RAM 5 Data receive
LJMP fo 5 Command processing
RAM -=====mmmmmmmee N

Data transfer

Time out processing

Figure 3.2.2 Flow of The Main Processing

76

M16C/62 Group
3.2 Developing The Boot Program

Initialization 1 (CPU, Memory)

The CPU and RAM are initialized. Figure 3.2.3 shows a flow of initialization 1. To clear RAM, use of string
instructions will prove effective.

Initial setting 1

| Set ISP and SB |

| Set 'H" to BUSY pin | Port 6 (P6: addrilss 03EC16)

HENENEEN

Fomtmmmnneeees Set 'H' data
Port 6 direction register (PD6: address 03EE16)
b4

HENENNEE

. Set output port
RAM clear RO #0000H | <— Setinitial value

Al #0400H | <— Settop address of RAM

R3 |:| < Programing control program size /2+a
After setting these registers, execute SSTR.W

Protect register (PRCR: address 000A16)

bl bo

HENNNREE

L. System clock write enabled
----- Processor mode register write enabled

Set system clock System clock control register 0 (CMO: address 000616)
COntrOI I’egister b7 b6 b5 b4 b3 b2 bl b0
[o[o[ofofo]o]o]o]
 EREEELL LR CM16 and CM17 is enabled
System clock control register 1(CM1: address 000716)

b7 b6 b5 b4 b3 b2 bl b0
Lo o]1[ofo]o]o]o]
. No divided mode

Set processor mode Processor mode register 0(PMO: address 000416)
register b7 b6 b5 b4 b3 b2 bl bo
o o[o[o]0 0]0]0

Processor mode register 1(PM1: address 000516)
b7 b6 b5 b4 b3 b2 bl b0

Protect release

| Set protect |

Figure 3.2.3 Initialization 1

77

M16C/62 Group
3 3.2 Developing The Boot Program

Transfer to RAM Area

The version information of write program and write control program are transferred to RAM. After transferring,
jump to write control program on RAM. To transfer, use of string instructions will prove effective.
Figure 3.2.4 shows the algorithm.

(Transfer to RAM)
[

| Transfer version information|
| ROHl:I <— Set source address (high-order 4 bits)

| Transfer preparing |)
A0 I:I <— Set source address (low-order 16 bits)

Al |:| < Set destination address
R3 I:I <¢— Programing control program size /2+a

Transfer Execute SMOVF.W

Jump to RAM area JMP
|

(END)

Figure 3.2.4 Transfer to RAM Area

Initialization 2

Set of write to Flash memory and initialization of serial communication are executed. To switch erase/write
mode, clear the CPU rewrite mode select bit (bit 1 of address 3B716), then set 1.
Figure 3.2.5 shows a algorithm.

(Initial setting 2)

Flash memory control register O(address 03B716)
| Select user ROM area | b7 b6 _bS b4 b3 b2 bl b0

HEENNEER

[Select user ROM area

Change to CPU rewrite Flash memory control register O(address 03B716)
b7 b6 b5 b4 b3 b2 bl bo

mode
| | | | | | |O%Write‘0‘,andthen'1'in
* succession.
[TTTTET

Go to initial setting of | | . _
peripheral functon 7777 CPU rewrite mode

Figure 3.2.5 Initialization 2

78

M16C/62 Group
3.2 Developing The Boot Program

Initialization 2 (Peripheral Function)

The peripheral functions used for programming flash memory is initialized. Figure 3.2.6 shows initialization
of UART1 for data transmit and timer AO for time-out calculation.

From initial setting 2

Set UART1 UART1 transmit/receive mode register (ULMR: address 03A816)

b7 b6 b5 b4 b3 b2 bl b0
[0l o of o[t]ofo]1]
L__i__i..Clock synchronous serial I/O mode
------------ External clock
UART1 transmit/receive control register 0 (U1CO: address 03AC16)

b7 b6 b5 b4 b3 b2 bl b0

o oLl (f)

o e RTS function
P CTS/RTS function enabled
L et TxD CMOS output
........................ LSB first

UART transmit/receive control register 2 (UCON: address 03B016)
b7 b6 b5 b4 b3 b2 bl bO

[o[o] o] o[o[o o] 0]
¢+ L..t_ (Transfer buffer empty)
------------ (Continuous receive mode disabled)
. CLK1 clock output
B R EEEEE R CLK normal mode first
--------------------- CTS/RTS shared pin
UART transmit/receive control register 1 (UOC1: address 03A516)
b7 b6 b5 b4 b3 b2 bl bo
[o[o[o[ofo[1]0]1]
! L. Transfer enabled
-------- Receive enabled

Set timer Timer AO mode register (TAOMR: address 039616)
b7 b6 b5 b4 b3 b2 bl bo

L o[o o] o[of o] 1]o0]

- One-shot timer mode

--------- No pulse output
.............. One-shot start flag is valid

Timer AO register (TAO: address 038716,038616)

(END) #6000-1 | «— When 20MHz, 300ps

Figure 3.2.6 Initialization 2 (Peripheral Function)

79

M16C/62 Group
3 3.2 Developing The Boot Program

Receiving Commands

Commands are received from the serial programmer.

Write dummy data to the transmit buffer, enable reception (the BUSY signal = low), and wait for data from
the serial programmer. At the timing of start reception (the BUSY signal = high), the timer used to check
data reception time-out is started. When data is not received within 300 msec, a time-out error is judged
and time-out processing flag is set.

When command reception flag is set (cmd_flg = "1"), processing jumps to data reception cycle number
check processing. When it is not set (cmd_flg = "0"), command reception flag is set. After that, jump
address is set based on the received serial command and processing jumps to the corresponding process.
When the serial command is not matched, serial initialization flag is set and processing is ended. When
the number of receive cycle matches to the prescribed number of serial reception command, command
reception flag is initialized (cmd_flg = "0") and processing is ended.

Figure 2.2.7 shows a processing flow.

80

M16C/62 Group
3 3.2 Developing The Boot Program

(Data receive)

Is command receive

Flag initialization |
[

Write to transfer buffer
register

Set time-out
processing flag

| Read receive buffer
‘ r3<=3

| Set write address |

\
| Write to data buffer |

| Loop counter + 1 |

Is command
eceive flag set?

Set command receive
flag

Set jump address

Address setting
finished?

FFh [.
|| ID command receive ”7@
Set serial

initialization flag 7@

Command except FFh | -
I| Set reception cycle ”7
o

Except command

Reception cycle
completed?

| Flag initialization |
1

(RTS)

Figure 3.2.7 Data Reception

81

3

M16C/62 Group

3.2 Developing The Boot Program

ID Check Receive Processing

ID check data is received. Transferred ID data is saved to RAM.

Figure 3.2.8 shows a processing flow.

ID check receive
processing

r3=0

Transfer/receive cycles

Set ID size (al)
temporarily

r3=al

r3=ID size(al)?

register

Write to transmit buffer

| Start one-shot timer |

Set time-out
processing flag

Read the receive buffer
register

RAM

Store reception data to

| r3=r3+1

13=4

| Set "ID size+4" to al |

\

Figure 3.2.8 ID Data Receive Process

Receive Cycle Setting Processi

ng

Data receive cycle is set by referring to transferred serial command.

Figure 3.2.9 shows processing flow.

(Reception cycle setting)

Set the prescribed receive
cycle to receive cycle buffer

(End)

Figure 3.2.9 Receive Cycle Setting Processing

82

3

M16C/62 Group

3.2 Developing The Boot Program

Command Processing

Flash control command is written into memory by referring to received serial programmer command.
The ID check is checked as to whether it has been completed or not. (ID check completed bits:

SR10 =1, SR11 = 1) When the ID check has been completed, decisions are made on commands such as
page read and page program, and processing branches to the process in the match commands.

When the ID check has not been completed, decisions are made on 3 types of commands such as ID
processing, and processing jumps to the process in the match commands. With mismatch commands,

processing returns to main part.

Figure 3.2.10 shows processing flow.

(Command process)

Time-out processing

Read receive buffer
register

ID check completed?

Command?

ﬂ” Page read ||7
S Page program |-
-2on] Block erase ||
ﬂ“ Erase all unlock blocks | |—>
m” Clear status register ||—>
L| | Read lock bit status | |—>
L” Lock bit program ||—>
"0 Lockbitvalid ||
80T Lock bitinvalid ||

ﬂ|| Read status register H—>
i| | ID check | |—>

FBh Version information
output .

other

Figure 3.2.10 Command Process

83

M16C/62 Group
3 3.2 Developing The Boot Program

Page Read

To read data from the user area in blocks of 256 bytes, read address is stored to RAM and Read Array
command (FF1e) is written. The address of the read area is changed from xxx0016 to xxxFF16, and the
data following xxx001s6 is transferred in succession.

Figure 3.2.11 shows processing flowchart.

(Page read)
|

| Receive cycles r3=0 |

Set low-order address,
addr_I=0

<
r3=r3+1 |

|

Set reception address

| Read data buffer |

|

Store reception data to
address buffer

Write read array
command

|

| Set transfer flag |

C E‘nd)

Figure 3.2.11 Page Read

84

3

M16C/62 Group

3.2 Developing The Boot Program

Page Program

Data is written into the user area in blocks of 256 bytes.
Read 258 bytes data from RAM: 2 bytes of address and 256 bytes of write data received from serial
programer. Status data is read from the flash memory. The read status is checked. When it is under error
state, processing does not write but returns to the main part.
When it is not under error state, the page program command (4116) is written in the flash memory, then 256
bytes of data is written. After data has been written, the read array command (FF16) is written and processing

returns to the main part.

Figure 3.2.12 shows processing flow.

Figure 3.2.12 Page Program

(Page program)
I

Receive cycles
r3=0
[
Set low-order address,
addr_I=0

-

| r3=r3+1 |

\

| Set reception address |

l

Read the receive buffer
register

l

Store the reception data
to RAM

r3=258

” Read array command ”

” Read status command ”

” Read array command ”

OK

Write the page program
command

| Write cy]cles r3=0 |

-

| Read RAM data |

| Write daéa to flash |

\
Increase write address
by 2

r3<258

85

M16C/62 Group
3 3.2 Developing The Boot Program

Block Erase

A specified block area of the flash memory is erased. However, blocks that are locked by Lock Bit Program
command cannot be erased. To erase these blocks, you need to disable the lock bit.

After confirming the two bytes of address and one byte of confirm command (DO0z16) received from the serial
programmer and stored in RAM, write Block Erase command (2016) and confirm command (DO01s) to the
area specified by the received address for block erase processing.

If the received confirm command is incorrect, block erase processing cannot be performed. In this case,
write Read Array command (FF16) to the flash memory to return the processing to the main routine.
Figure 3.2.13 shows a processing flow.

(Block erase)

|

Receive cycles
r3=1

|

Set low-order address,
addr_|=0FEh

Set reception address

|

Read the receive buffer
register

|

Store reception data to
RAM

|

r3=r3+1

13<4

Confirm the
confirm

Write the block erase
command

Write confirm
command

e

Write read array
command

| Initialize transfer flag |

|
(End)

Figure 3.2.13 Block Erase

86

3

M16C/62 Group

3.2 Developing The Boot Program

Erase All Unlock Block

A specified block area of the flash memory is erased. However, blocks that are locked by Lock Bit Program

command cannot be erased. To erase these blocks, you need to disable the lock bit.

When the all erase command is received from a serial programmer, receive more 1 byte data in succession.
After the second data is checked to see if it is confirm command (DO01s), write Erase All Unlock command
(2016) and confirm command (D016) to the area specified by the received address for erase all unlock

block processing.

If the received confirm command is incorrect, erase all unlock block processing cannot be performed. In

this case, write Read Array command (FF16) to the flash memory to end the processing.
Figure 3.2.14 shows a processing flow.

(Erase all unlock blocks)

|

Set read address |

|

Read the receive
buffer register

Confirm the

confirm command

Set dummy address

Write the erase all
unlock block command

Write confirm

command

e

Write read array

command

| Initialize transfer flag |

C

Figure 3.2.14 Erase All Unlock Block

End)

87

M16C/62 Group
3 3.2 Developing The Boot Program

Read Status Register

Two bytes of status data indicating the flash memory's operating status is stored to RAM to transmit via
serial 1/0.

Write the Read Array command (FF16) to the flash memory, then write the Read Status command (7016).
After status register reception, write the Read Array command and return to the main routine.

Figure 3.2.15 shows a processing flow.

(Read status register)

Transfer/receive cycles
r3=0

Set dummy address

Write read array
command

Write read status
register command

Read SRD

Write read array
command

Clear timer interrupt
request flag

| Initialize transfer flag |

C E‘nd)

Figure 3.2.15 Read Status Register

88

M16C/62 Group
3 3.2 Developing The Boot Program

Clear Status Register

Status register error information is cleared.

The Read Array command (FF16), Clear Status command (5016) and Read Array command (FF16) are
written into the flash memory in succession.

The logic sum for the status register 1 (SRD1) is obtained on #9C16 and the error flag is cleared. Processing
returns to the main part.

Figure 3.2.16 shows a processing flow.

(Clear status register)

| Set dummy address |

Write read array
command

Write clear status
register command

Write read array
command

| Clear SRD1 error flag |

| Initialize transfer flag |

|
(End)

Figure 3.2.16 Clear Status Register

89

3

M16C/62 Group

3.2 Developing The Boot Program

Read Lock Bit Status

One byte of data indicating the lock status of each individual block in the flash memory is saved via serial
I/0. Of the 1-byte data, the 6th bit indicates lock status. When "1", the block is unlocked. When "0", the

block is locked.

After receiving two byte of data indicating address, store specified address in the address buffer. At this
time, set #FE16 to the low order address.
The Read Array command (FF16) and the Read Lock Bit command (7116) are written and, there after, the
lock bit information is read from the flash memory. After the lock bit information has been read, the read

array command (FF1e) is written again. Processing then returns to main part.

Figure 3.2.17 shows a processing flow.

(Read lock bit status)

Transfer/receive cycles
r3=1

Set low-order address,

addr_|=0FEh

-
Set read address

Read the receive buffer
register

Store the reception data
to address buffer

r3=r3+1

r3<3?

r3<3

r3=3

Write the read lock bit
status command

Read the read lock
bit data

Write the read array

command

Set transfer flag

C E‘nd)

Figure 3.2.17 Read Lock Bit Status

90

M16C/62 Group
3 3.2 Developing The Boot Program

Lock Bit Program

Blocks in the flash memory is locked. Locked block areas cannot be erased.

After receiving two byte of data indicating address, store specified address in the address buffer. At this
time, set #FE16 to the low order address.

If the received confirm command is incorrect, lock bit program processing cannot be performed. If correct,
for lock bit program processing, write the Lock Bit Program command (7716) to the flash memory and the
Confirm command (DO016) in succession. Write Read Array command (FF16) and processing returns to the
main part.

Figure 3.2.18 shows a processing flow.

(Lock bit program)

Transfer/receive cycles
r3=1

Set low-order address,
addr_|=0FEh

-

Set read address |

Read the receive buffer
register

Store reception data to
address buffer

| r3=r3+1 |

Confirm confirm
command

OK

Write the lock bit
program command

|

Write the confirm
command

Write the read array
command

-
| Initialize transfer flag |

C ErLd D)

Figure 3.2.18 Lock Bit Program

91

M16C/62 Group
3 3.2 Developing The Boot Program

Lock Bit Enable/Disable

Enables/disables the lock bit function of flash memory. The lock bit disable command cancels the lock on

all blocks.
To enable the lock bit, "0" is written for the lock bit cancel bit. To disable the lock bit, "0" followed by "1" is

written for the lock bit cancel bit.
Figure 3.2.19 shows a processing flow.

(Lock bit valid) (Lock bit invalid)
Clear the lock bit Clear the lock bit
cancel bit cancel bit
| Initialize transfer flag | Set the lock bit

‘ cancel bit to "1"

| Initialize transfer flag |

|
(End)

(End)

Figure 3.2.19 Lock Bit Enable/Disable

92

M16C/62 Group
3 3.2 Developing The Boot Program

ID Check

The ID data stored in the flash memory is compared with the data received by serial I/O. This process
judges whether the flash memory is blank or not. When blank, the ID check is ended and processing
returns to the main part. When something is written in the ROM, the received ID address, the ID data size
and ID data contents are checked. When mismatch, ID check error is generated (SR10 = 1, SR11 = 0) and
processing returns to the main part. When match, the ID check is ended (SR10 = 1, SR11 = 1) and
processing returns to the main part.

Figure 3.2.20 shows a processing flow.

(ID check)

Blank

Blank flag?
Not blank

Error

Check address & ID

| ID check cycles r3=1 |

S ——

| Read ID data from flash |

OK
| r3=r3+1 |
ID check error
SR11=0, SR10=1
r3=8

ID check completed
SR11=1, SR10=1

-

| Initialize transfer flag |

|
(End)

Figure 3.2.20 ID Check

93

3

M16C/62 Group
3.2 Developing The Boot Program

Version Information Output

Transfer flag is set to transfer the version information of the boot program via serial 1/O.

Figure 3.2.21 shows a processing flow.

Version information
output

|

| Set transfer flag |

C

End)

Figure 3.2.21 Version Information Output

Data Transfer Processing

The result of process after receiving a control command from serial programer is transfered via serial I/0.
When transfer flag is O, or time-out flag is 1, the processing returns to the main part. Otherwise next
process is executed. Command buffer is read, the serial command is compared, and processing branches
to the process in the match commands. After processing, initialize the transfer flag and return to main part.
With mismatch command, initialize the transfer flag and return to main part.

Figure 3.2.22 shows a processing flow.

(Data transfer

)

| Timer initialization

Is transfer flag set2

Read receive
command

Command?

FFh |

Page read output ”7

&” Read status register output ”—»
i” Read lock bit status output [}

FBh | Version information output |)

other

|

| Initialize transfer flag |
[

(End)

Figure 3.2.22 Data Transfer

94

M16C/62 Group
3 3.2 Developing The Boot Program

Page Read Transfer Processing

Data from the user area in blocks of 256 bytes is read and the read data is sent via serial I/O.

Data is read from the flash memory and set to transfer buffer register. The timer used to check data
reception time-out is started. When data is not received within 300 msec, a time-out error is judged, time-
out processing flag is set and processing jumps to data transfer processing. After 256 bytes of data is sent,
processing jumps to data transfer processing.

Figure 3.2.23 shows a processing flow.

(Page read)

|

Transfer/receive cycles
r3=0
—~

Read data |

|

Write to transmit buffer
register

|

Start one-shot timer

Over

>300 psec?

Set time-out
processing flag

Reception
completed?

Read the receive buffer
register

|

| r3=r3+1 |

| Address = address + 1 |

r3=/256

Figure 3.2.23 Page Read Transfer Processing

95

3

M16C/62 Group
3.2 Developing The Boot Program

Read Status Register Transfer Processing

The two-byte status data (SRD: status register and SRD1: status register 1) that indicates flash memory
operating status is sent via serial 1/0.

The SRD is read from flash memory and written into transmit buffer register. The timer used to check data
reception time-out is started. When data is not received within 300 msec, a time-out error is judged, time-
out processing flag is set and processing jumps to data transfer processing. After data reception is
completed, receive buffer register is read.

The SRD1 is read from flash memory and written into transmit buffer register. The timer used to check
data reception time-out is started. When data is not received within 300 msec, a time-out error is judged,
time-out processing flag is set and processing jumps to data transfer processing. After data reception is
completed, reception buffer register is read and processing returns to data transfer processing.

Figure 3.2.24 shows a processing flow.

Read status register
output

Transfer/receive cycles
r3=0

<

Write to transmit buffer
register

Start one-shot timer

Clear timer interrupt
request flag

Over

>300 psec?

Set time-out
processing flag

Reception
completed?

Read the receive buffer
register

| Read SRD1 |

| r3=r3+1 |

r3<2

(End)

Figure 3.2.24 Read Status Register Transfer Processing

96

3

M16C/62 Group

3.2 Developing The Boot Program

Read Lock Bit Status Transfer Processing

The lock bit status that set in command processing is sent via serial I/O.

The lock bit status data that set in command processing is read from RAM and written into transmit buffer
register. The timer used to check data reception time-out is started. When data is not received within 300
msec, a time-out error is judged, time-out processing flag is set and processing jumps to data transfer
processing. After data reception is completed, processing jumps to data transfer processing.

Figure 3.2.25 shows a processing flow.

Read lock bit status
output

Write to transmit buffer
register

Start one-shot timer

Over

#

Jump to time-out
processing

>300 psec?

Reception
completed?

Read the receive buffer
register

>
(End)

Figure 3.2.25 Read Lock Bit Data Transfer Processing

97

M16C/62 Group
3 3.2 Developing The Boot Program

Version Information Output Processing

The version information of boot program is sent via serial 1/0.

Version information is read and written in the transmit buffer register.

The timer used to check data reception time-out is started. When data is not received within 300 msec, a
time-out error is judged, time-out processing flag is set and processing jumps to data transfer processing.
After all version information is send, processing jumps to data transfer processing.

Figure 3.2.26 shows a processing flow.

Version information
output

Transfer/receive cycles
a0=0

<

Write version information
to transfer buffer register

Start one-shot timer

Over

>300 psec?

Set time-out
processing flag

Reception
completed?

Read the receive buffer
register

| a0=a0+1 |

Figure 3.2.26 Version Information Output Processing

98

M16C/62 Group
3.2 Developing The Boot Program

Time-Out Processing

When time-out flag is set, serial /0 and time-out flag are initialized.
Figure 3.2.27 shows a processing flow.

(Time-out process)

Is serial initialization
flag set?

Is time-out
processing flag set?2

Time-out flag
(SRD1)=1

~

Initialize time-out
processing flag

Initialize serial 1/10
initiallization flag

Initial setting 2
UART1 setting

-

(End)

Figure 3.2.27 Time-Out Processing

Command Write

Commands are written in the flash memory. Commands are accepted when the flash memory is in the
ready state (RY/BY signal status flag [bit O in address 03B716 of the flash memory

control register] is "1").

Figure 3.2.28 shows a processing flow.

(Write command)

”

| Set address |

| Write command |

|
C RTS)

Figure 3.2.28 Command Write

99

M16C/62 Group
3 3.2 Developing The Boot Program

Status Register (SRD)

The status register indicates operating status of the flash memory and status such as whether an erase
operation or a program ended successfully or in error. It can be read by writing the Read Status Register
command (7016). Also, the status register is cleared by writing the Clear Status Register command (5016).
Table 3.2.2 shows the definition of each status register bit. After clearing the reset, the status register
outputs "8016".

Table 3.2.2 Status Register (SRD)

Each bit of Definition

SRD Status name e g
SR7 (bit7) | Write state machine (WSM) status Ready Busy
SR6 (bit6) Reserved - -
SR5 (bit5) | Erase status Terminated in error | Terminated normally
SR4 (bit4) Program status Terminated in error | Terminated normally
SR3 (bit3) Block status after program Terminated in error | Terminated normally
SR2 (bit2) Reserved - -
SR1 (bitl) Reserved - -
SRO (bit0) Reserved - -

Write State Machine (WSM) Status (SR7)
The write state machine (WSM) status indicates the operating status of the flash memory. When power is
turned on, "1" (ready) is set for it. The bit is set to "0" (busy) during an auto write or auto erase operation,
but it is set back to "1" when the operation ends.

Erase Status (SR5)
The erase status reports the operating status of the auto erase operation. If an erase error occurs, it is set
to "1". When the erase status is cleared, it is set to "0".

Program Status (SR4)
The program status reports the operating status of the auto write operation. If a write error occurs, it is set
to "1". When the program status is cleared, it is set to "0".

Block Status After Program (SR3)

If excessive data is written (phenomenon whereby the memory cell becomes depressed which results in
data not being read correctly), "1" is set for the block status after-program at the end of the page write
operation. In other words, when writing ends successfully, "8016" is output; when writing fails, "9016" is
output; and when excessive data is written, "8816" is output.

If "1" is written for any of the SR5, SR4 or SR3 bits, the Page Program, Block Erase, Erase All Unlocked
Blocks and Lock Bit Program commands are not accepted. Before executing these commands, execute
the Clear Status Register command (5016) and clear the status register.

100

M16C/62 Group
3.2 Developing The Boot Program

Status Register 1 (SRD1)

Status register 1 indicates the status of serial communications, results from ID checks and results from
check sum comparisons. It can be read after the SRD by writing the Read Status Register command
(7016). Also, status register 1 is cleared by writing the Clear Status Register command (5016).

Table 3.2.3 gives the definition of each status register 1 bit. "0016" is output when power is turned ON and
the flag status is maintained even after the reset.

Table 3.2.3 Status Register 1 (SRD1)

Each bit of Definition
SRD1 Status name wqn nn
1 0
SR15 (bit7) | Boot update completed bit Update completed Not update

SR14 (bit6) | Reserved - -
SR13 (bit5) | Reserved - -

SR12 (bit4) | Checksum match bit Match Mismatch
SR11 (bit3) | ID check completed bits 00 Not verified
SR10 (bit2) 01 Verification mismatch
10 Reserved
11 Verified
SR9 (bitl) Data receive time out Time out Normal operation

SR8 (bit0) Reserved - -

Boot Update Completed Bit (SR15)
This flag indicates whether the control program was downloaded to the RAM or not, using the download
function.

Checksum Match Bit (SR12)
This flag indicates whether the check sum matches or not when a program, is downloaded for execution
using the download function.

ID Check Completed Bits (SR11 and SR10)
These flags indicate the result of ID checks. Some commands cannot be accepted without an ID check.

Data Reception Time Out (SR9)
This flag indicates when a time out error is generated during data reception. If this flag is attached during
data reception, the received data is discarded and the microcomputer returns to the command wait state.

101

M16C/62 Group
3 3.3 Sample List

3.3 Sample List

This section shows a sample list of the program described in Section 3.2.

In addition to the processing explained in Section 3.2, the sample shown below includes the programmer
command processing used by a synchronous serial programmer and the command processing used by an
asynchronous serial communication programmer (M16C Flash Start).

Source
;¥ System Name : Sample Program for M16C/62 Flash *
* File Name : M624SAMP.a30 *
* Version :1.00 *
;¥ Original Ver :2.02 *
¥ MCU : M30624FG(L)FP/GP *
i : M30625FG(L)GP *
¥ Xin : 2MHz - 16MHz (for UART mode) *
* Assembler : AS30 ver 3.00 *
* Linker : LN30 ver 3.00 *
* Programmer : T.Sawa *
;¥ Copyright,1999,2000 MITSUBISHI ELECTRIC CORPORATION *
;* AND MITSUBISHI SEMICONDUCTOR SYSTEMS CORPORATION *
“k *
;¥ History 21999.2.26 Ver.0.00 (1.08) *
* :1998.4.23 Ver.0.00 (1.09) *
* :1999.8.18 Ver.0.01(2.02) *
i :1999.10.28 Ver.1.00 (2.02) *
* :2000.2.24 Ver.1.01(2.03) *
B T o o S
7+ Include file +
B a0 0 o
list off

.include sfr62.inc
.include flash624.inc
list on

)

L o I L L o
;+ Version table +
o S T o o o

.section rom,code

.org Version

.byte 'VER.1.01(VER.2.03)'
B L o o S
;+ Program section start +
e L o 0

.section prog,code

.org Boot_TOP

.sh SB base

.sbsym SRD

.sbsym SRD1

.shsym ver

.shsym SF

.sbsym addr_|

.sbsym addr_m

.sbsym addr_h

102

M16C/62 Group
3.3 Sample List

;+ Boot program start +
Reset:
;+ Initialize_1 +
Idc #lstack,ISP ; stack pointer set
ldc #SB_base,SB ; SB register set
bset busy
bset busy_d ; BUSY "H"output
bclr s mode d ; Serial mode select input
;+ Hot start & RAM clear +
j-m--- RAM Check -----
RAM_Check:
mov.b #0,r1l

cmp.b SRD1,SRD1_bak : checkl
jeqg RAM_Check2

cmp.b SRD1_bak,SRD1_bak+2 ; check2
jeq RAM_Check3

cmp.b SRD1,SRD1 bak+2 ;check3
jne CRC_Check

RAM_Check2:
mov.b SRD1,r1l 1 rll <- SRD1
jmp CRC_Check

RAM_Checka3:
mov.b SRD1_bak,ril ; r'll <- SRD1_bak
jmp CRC_Check

i+ CRC Check +
P CRC Check -----
CRC_Check:
jsr SUB_CRC ; Ram data CRC

mov.b Ram_progTOP[a0],r0l ; old CRC code
mov.b ROL,crcin
mov.b Ram_progTOP+1[a0],r0l

mov.b rOl,crcin ; CRC input data
mov.w crcd,r0
cmp.w #0,r0
jne RAM_clear ; jump RAM clear
:+ UPDATE Check +
bset ram_check ; RAM Check OK flag set

jmp CPU_set

RAM_clear:
mov.w #0,r0
mov.w #(Ram_END+1-Ram_TOP)/2,r3
mov.w #Ram_TOP,al
sstr.w
and.b #Och,r1l

103

M16C/62 Group
3.3 Sample List

1

1

;+ Processor mode register +
;+ & System clock control register +

CPU_set:

mov.b #3,prcr : Protect off
mov.w #8000h,pm0 » 1 wait
mov.w #6008h,cm0 f2

mov.b #0,prcr ; Protect on

Reload_chack:

btst srl5 ; Update ?
jc Transfer_end
btst ram_check : Reload ?
jz Version_inf ;Yes
:+ SI/O Mode Check +
btst s_mode ; SI/O Mode old = new ?
bxor old_mode
jnc Transfer_end ; Yes, jump Transfer_end
+ Version information +
Version_inf:
belr dwn_flg
mov.w #0,a0 ;a0=0
Ver_loop:
Ide.w Version+9[a0],ver[a0] ; Version data store
add.w #2,a0 ; address increment
cmp.w #8,a0 ;a0=8"7?
jltu Ver_loop ; jump Ver_loop at a0<8
;+ Program_transfer +
btst s_mode ; Serial 1/0 mode select
jz Transfmcr2 : UART mode
Transfmerl:
bset old_mode ; clock synchronous mode

mov.w #(Trans_TOP1 & Offffh),a0 ; Transfer source address (Low)
mov.b #(Trans_TOP1 >> 16),r1h ; Transfer source address (high)

mov.w #Ram_progTOP,al : Transfer destination address
mov.w #(Trans_ENDL1 - Trans_TOP1)/2,r3 ; Transfer number
smovf.w ; String move

jmp Transfer_endO

Transfmcr2:

bclr old_mode : UART mode
mov.w #(Trans_TOP2 & Offffh),a0 ; Transfer source address (Low)
mov.b #(Trans_TOP2 >>16),rlh ; Transfer source address (high)

mov.w #Ram_progTOP,al ; Transfer destination address
mov.w #(Trans_END?2 - Trans_TOP2)/2,r3 ; Transfer number
smovf.w ; String move

Transfer_endO:

jsr SUB_CRC : Transfer data CRC
mov.w crcd,r0 ; CRC code -->r0
mov.w r0,Ram_progTOP[a0]

104

M16C/62 Group
3.3 Sample List

Transfer_end:

;+ Jump to RAM +

jmp Ram_progTOP
o e L L
+ Subroutine : SUB_CRC +
o e L L
SUB_CRC:

mov.w #0FFFFh,crcd ; CRC data register set
mov.w #0,a0

?:
mov.b Ram_progTOP[a0],r0l ; Ram data --> rol
mov.b rOl,crcin ; CRC input register
incw a0
cmp.w #Ram_progEND-Ram_progTOP-2,a0
jne ?-
rts

;+ Download program +

.org Download_program

jsr set_TAO

mov.w #0,r3 ; receive number (r3=0)
mov.w #0,al ; sumcheck buffer

bclr sr15 ; Download flag reset

bclr sr12 ; Check sum flag reset

Download_loop:
jsr SIO_D_rcv

btst tout_flg ; time out error ?

jc Download_err ; jJump Download_err at time out

mov.w rcv_d,r0 ; receive data read --> r0

add.w #1,r3 : r3 +1 increment

cmp.w #3,r3 1 1r3=37?

jgtu Version_store ; jump Version_store at r3>3

mov.w r3,a0 ;r3-->a0

mov.b rOl,addr_I[a0] ; Store program size

mov.w #0,a0 ; a0 initialize

cmp.w #3,r3 13 =37

jne Download_loop ; No, jump Download_loop

cmp.w #0,addr_m ; program size =0 ?

jz Version_inf ; jump to Version_inf at program size error

jmp Download_loop ; jJump Download_loop
Version_store:

cmp.w #11,r3 ;r3=117?

jgtu Program_store ; jump Program_store at r3 >11

mov.b rOl,ver[a0] ; version data store to RAM

jmp Program_store_1
Program_store:

mov.b rOl,Ram_progTOP-8[a0] ; program data store to RAM
Program_store_1:

add.b rOl,al ; add data to al

add.w #1,a0 ; a0(downloa0 offset) +1 increment

cmp.w addr_m,a0 ; a0 = program size (addr_m,h)?

jltu Download_loop ; jJump Download_loop at aO< program size
jmp Download_CRC ; jJump Download_CRC

Download_err:

105

M16C/62 Group
3.3 Sample List

bset busy ; busy "H"

bset busy d ; busy output

mov.b #0,ulcl ; transmit/receive disable
mov.b #0,ulmr ;ulmr reset

jmp Version_inf

)

)

;+ Download program - UART mode - +

1

1

.org U_Download_program

mov.w #0,r3 ; receive number (r3=0)
mov.w #0,al ; sumcheck buffer

bclr srl5 ; Download flag reset
bclr sr12 ; Check sum flag reset

U_Download_loop:
jsr U_SIO_D_rcv
mov.w rcv_d,r0

add.w #1,r3 ; 13 +1 increment

cmp.w #3,r3 1 1r3=37?

jotu U_Version_store ; jump U_Version_store at r3>3
mov.w r3,a0 1 r3-->al

mov.b rOl,addr_I[a0] ; Store program size

mov.w #0,a0 ; a0 initialize

cmp.w #3,r3 ;13 =237

jne U_Download_loop ; No, jump U_Download_loop
cmp.w #0,addr_m ; program size = 0?

jz Version_inf ; jJump to Version_inf at program size error

jmp U_Download_loop
U_Version_store:

cmp.w #11,r3 ;r3=117?
jotu U_Program_store ;jump U_Program_store at r3 >11
mov.b rOl,ver[a0] ; version data store to RAM

jmp U_Program_store_1

U_Program_store:
mov.b rOl,Ram_progTOP-8[a0] ; program data store to RAM
U_Program_store_1:

add.b rOl,al ; add data to al
add.w #1,a0 ; a0(downloa0 offset) +1 increment
cmp.w addr_m,a0 ; a0 = program size (addr_m,h)?

jltu U_Download_loop ;jump Download_loop at a0< program size

1

Download_CRC:
mov.w al,r0

cmp.b data,rOl ; compare check sum

bmeq sri2 ; check sum flag set at data=r0l

jne Version_inf ; jump Version_inf at check sum error
bset srl5 ; Download flag set

jsr SUB_CRC ; Download data CRC

mov.w crcd,r0
mov.w r0,Ram_progTOP[a0]
jmp Ram_progTOP ; jJump Ram_progTOP

o T L T e I B o o
;+ Subroutine : a synchronized signal I/O receive dwn+

)

o 2 B T T B o o

SIO_D_rcev:
mov.b rll,ultb
bset taOos ; ta0 start
?:
btst ir_taOic ; time out error ?

106

M16C/62 Group
3.3 Sample List

bmc sr9 ; time out flag set

jc SIO_D_rcv_err ; jump SIO_D_rcv_err

btst ri_ulcl ; receive complete ?

jnc ?-

mov.w ulrb,rcv_d ; receive data read --> r0
SIO_D_rcv_end:

rts
SIO_D rev_err:

bset tout_flg

jmp SIO_D_rcv_end
e L T L o o o0 B
+ Subroutine : UART receive dwn +
o T L e T T A i I o o o
U_SIO D rcv:

btst ri_ulcl ; receive complete ?

jnc U_SIO_D_rcv

mov.w ulrb,rcv_d ; receive data read --> rO

rts

;+ Transfer Program -- clock synchronous serial I/O mode +
i+ (1) Main flow +

+ (2) Flash control program +

+ Read,Program,Erase,All_erase,etc. +

+ (3) Other program +

i+ ID_check,Download,Version_output etc. +

.section dump,code

.org Trans_TOP1
T i a2 B L L
;+ Main flow - clock synchronous serial I/O mode - +
T L e B L o
Main:

jsr Initialize_2 ; clock synchronous serial I/0O mode

mov.b #0,data
Loop_main:

mov.b SRD1,SRD1_bak ; SRD1 back up

mov.b SRD1,SRD1_bak+2

jsr time_init

jsr SIO_rcv_first_data
jsr Flash_func

jsr SIO_send_data
jsr Time_out

jmp Loop_main

4+ initialize SIO +

time_init:
bclr tout_flg
bclr tint_flg
bset taOos
mov.b #0,ta0ic
Loop_main1:
btst ir_taOic ; 300 usec ?
jz Loop_mainl
bset rcv_flg
rts

107

M16C/62 Group
3.3 Sample List

;+ SI/O time out +

Time_out:
btst tint_flg
jc Time_out_init
btst tout_flg
jnc Time_out_end
bset sr9 ; SRD1 time out flag set
bclr tout_flg
Time_out_init:
belr tint_flg

jsr Initialize_21 ; command error,UART1 reset

Time_out_end:
rts

1

1

:+ SI/O recieve data +

SIO_rcv_first_data:
mov.b #0,cmd_d
bclr cmd_flg
btst rcv_flg
jnc SIO_rcv_end
btst tout_flg
jc SIO_rcv_end
mov.b #0,ta0ic
mov.w #0,r2

SIO_rcv_first_data_loop:

mov.b #0ffh,rll ; #ffh --> rll (transfer data)
mov.b rllultb
btst cmd_flg
jc SIO_rcv_first_data_loopl
bclr busy d ; busy input
?. btst busy ; Reception start?
iz ?-
SIO_rcv_first_data_loopl:
bset taOos : 300 usec timer start

SIO_rcev_first_data_loop2:

btst ir_taOic ; 300 usec ?
jnc 2+
bset tout_flg ; time out

?: btst tout_flg
jc SIO_rcv_end

btst ri_ulcl ; receive complete ?
jz SIO_rcv_first_data_loop2
mov.w ulrb,r0 ; receive data -->r0

mov.w r2,a0
mov.b rOl,data[a0]
add.w #1,r2

btst cmd_flg

jc SIO_loop_chk
bset cmd_flg
mov.b rOl,cmd_d
mov.w #15,a0
SIO_rcv_command_chk:

Ide.b Index_tbl-Trans_TOP1+Ram_progTOP-1[a0],rOh

cmp.b rOh,rOl

jeq SIO_cmd_jmp_2

sbjnz.w #1,a0,SI0_rcv_command_chk
jmp SIO_rcv_end_1

108

M16C/62 Group
3.3 Sample List

SIO_cmd_jmp_2:

shl.w #1,a0

Ide.w jmp_tbl_2-Trans_TOP1+Ram_progTOP-2[a0],r0
SIO_cmd_jmp_2_1:

jmpi.w r0

SIO_2:

mov.w #2,loop_cnt
jmp SIO_loop_chk
SIO0_259:

mov.w #259,loop_cnt
jmp SIO_loop_chk
SIO_4:

mov.w #4 loop_cnt
jmp SIO_loop_chk
SIO_3:

mov.w #3,loop_cnt
jmp SIO_loop_chk

+ IDcheck SI/O +

SIO_rcv_ID_check:
mov.w #0,r3 ; receive number (r3=0)
mov.w #0ffh,al ; ID size (dummy data = ffh)
mov.b #0,ta0ic

SIO_ID_data_store:

cmp.w alr3 ; r13=al(ID size)
jeq SIO_ID_address_check; jump ID_address_check at r3=ID size
mov.b rll,ultb ; data transfer
bset taOos ; ta0 start
SIO_ID_data_loop:
btst ir_taOic ; 300 usec ?
jnc 2+
bset tout_flg ; time out

?: btst tout_flg
jc SIO_ID_address_check

btst ri_ulcl ; receive complete ?

jnc SIO_ID_data_loop

mov.w ulrb,r0 ; receive data read --> r0

mov.w r3,a0 ;r3-->al

mov.b rOl,addr_lI[a0] ; Store address

add.w #1,r3 : r3 +1 increment

cmp.w #4,r3 1 13=47?

jne SIO_ID_data_store ;jump ID_data_store at r3 not=4
mov.b data,al : ID size --> al

add.w #4,al ;al=al+4

jmp SIO_ID_data_store ;jump ID_data_store
SIO_ID_address_check:
jmp SIO_rcv_end

SIO_rcv_end_1:
bset tint_flg
jmp SIO_rcv_end

SIO_loop_chk:
cmp.w loop_cnt,r2
jltu SIO_rcv_first_data_loop

SIO_rev_end:
bclr cmd_flg
bclr rev_flg
rts

109

M16C/62 Group
3.3 Sample List

1

i+ SIO_send data

SIO_send_data:
jsr set_TAO
btst send_flg

jnc SIO_send_data_end

btst tout_flg

jc SIO_send_data_end

mov.b cmd_d,rlh

cmp.b #0ffh,rih
jeg Read_data
cmp.b #070h,r1h

; Read(ffh)

; Read SRD (70h)

jeg Read_SRD_data

cmp.b #071h,rlh

jeqg Read_LB_data

cmp.b #0fbh,rlh

; Read LB (71h)

; Version_output(fbh)

jeq Ver_output_data

cmp.b #0fdh,rlh

; Read_check(fdh)

jeg Read_check_data

cmp.b #0fch,rih
jeq Boot_data

; Boot_check(fch)

jmp SIO_send_func

Read_check_data:
mov.w #0,r3
mov.w sum,rl

Read_check_data_loop:

mov.b rll,ultb
bset taOos

; ta0 start

Read_check_data_check:

btst ir_taOic
jnc 2+
bset tout_flg

btst tout_flg

jc SIO_send_data_
; receive complete ?

btst ri_ulcl

end

jnc Read_check_data_check
; receive data read -->r0

mov.w ulrb,rO
mov.b rlh,ril
add.w #1,r3
cmp.w #2,r3

jltu Read_check_data_loop

Read_check_data_end:
mov.w #0,sum

; reset

jmp SIO_send_data_end

Read_data:
mov.w #0,r3

Read_data_loop:
Ide.b [alaO],r1l
mov.b rll,ultb
bset ta0Oos

Read_data_chk:

; Flash memory read

ta0 start

btst ir_taOic ; 300 usec ?
jnc 2+
bset tout_flg time out

?:
btst tout_flg

jc Read_data_end
btst ri_ulcl

receive complete ?

110

M16C/62 Group
3.3 Sample List

jnc Read_data_chk

mov.w ulrb,r0 : receive data read --> r0
add.w #1,r3

add.w #1,a0

cmp.w #256,r3 ;13 =256 7?

jne Read_data_loop
Read_data_end:
jmp SIO_send_data_end

Ver_output_data:

mov.w #0,a0 ; Version address offset (a0=0)
Ver_output_data_loop:

mov.b ver[a0],ultb ;send_data set

bset taOos ; ta0 start
Ver_output_data_check:

btst ir_taOic ; 300 usec ?

jnc ?+

bset tout_flg ; time out

?:
btst tout_flg
jc Ver_output_data_end

btst ri_ulcl ; receive complete ?

jnc Ver_output_data_check

mov.w ulrb,r0 ; receive data read --> r0
add.w #1,a0

cmp.w #8,a0 :a0=87

jne Ver_output_data_loop
Ver_output_data_end:
jmp SIO_send_data_end

Read_SRD_data:
mov.w #0,r3
Read_SRD_data_loop:

mov.b rll,ultb ; data transfer

bset taOos ; ta0 start ; test

bclr tout_flg ; clear time out

mov.b #0,ta0ic ; clear time out
Read_SRD_data_check:

btst ir_taOic ; 300 usec ?

jnc 2+

bset tout_flg ; time out

?: btst tout_flg
jc Read_SRD_data_end

btst ri_ulcl ; receive complete ?

jnc Read_SRD_data_check

mov.w ulrb,r0 ; receive data read --> r0
mov.b SRD1,r1l : SRD1 data -->r1l
add.w #1,r3

cmp.w #2,r3 13=27?

jltu Read_SRD_data_loop ;jump Read_SRD_loop at r3<2

Read_SRD_data_end:
jmp SIO_send_data_end

Read_LB_data:
Read_LB_data_loop:

mov.b rll,ultb ; data transfer

bset taOos ; ta0 start
Read_LB_data_check:

btst ir_taOic ; 300 usec ?

jnc 2+

bset tout_flg ; time out

?:
btst tout_flg
jc Read_LB_data_end

111

M16C/62 Group
3.3 Sample List

btst ri_ulcl ; receive complete ?

jnc Read_LB_data_check

mov.w ulrb,r0 : receive data read --> r0
Read LB data_end:

jmp SIO_send_data_end

Boot_data:
bclr fmcrs
mov.w addr_l,a0
mov.b addr_h,al
mov.w #0,r3

Boot_data_loop:
Ide.b [alaO],r1l
mov.b rll,ultb

; Flash memory read

bset taOos ; ta0 start
Boot_data_chk:

btst ir_taOic ; 300 usec ?

jnc 2+

bset tout_flg ; time out
-

btst tout_flg

jc Boot_data_end

btst ri_ulcl

jnc Boot_data_chk

mov.w ulrb,r0

add.w #1,r3

add.w #1,a0

cmp.w #256,r3

jne Boot_data_loop
Boot_data_end:

bset fmcr5

jmp SIO_send_data_end

; receive complete ?

; receive data read -->r0

113 =256 7

SIO_send_func:
mov.w start_cnt,r3

SIO_send_data_loop:
mov.w r3,a0
mov.b data[a0],r1l

mov.b rll,ultb ; data transfer

bset taOos ; ta0 start
SIO_send_chk:

btst ir_taOic ; 300 usec ?

jnc ?+

bset tout_flg ; time out

?: btst tout_flg
jc SIO_send_data_end
btst ri_ulcl ; receive complete ?
jnc SIO_send_chk
mov.w ulrb,r0
add.w #1,r3
cmp.w send_cnt,r3 ;r3=send_cnt ?
jne SIO_send_data_loop
mov.w r3,r0

SIO_send_data_end:
bclr send_flg
rts

; receive data read --> r0

)

Mo o o 0
;+ Subroutine : Time_over_flg +
Mo o o 0
Time_over_flg:

bset tout_flg

rts

112

M16C/62 Group
3.3 Sample List

o

;+ jump table for Flash_func +
A 2 L o

jmp_tbl:
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word

Read - cmd_jmp
Program - cmd_jmp
Erase - cmd_jmp
All_erase - cmd_jmp
Clear_SRD - cmd_jmp
Read_LB - cmd_jmp
Program_LB - cmd_jmp
LB_enable - cmd_jmp
LB_disable - cmd_jmp
Download - cmd_jmp
Boot_output - cmd_jmp
Read_check - cmd_jmp

e L T L o o o0 B
;+ jump table for SIO_rcv_first_data +
e L L T o o o
jmp_tbl_2:

.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word

SIO_3-SIO_cmd_jmp_2_1 ; Read

SIO_259 - SIO_cmd_jmp_2_1 ; Program
SIO_4-SIO_cmd_jmp_2_1 ; erase
SIO_2-SIO_cmd_jmp_2_1 ; All erase
SIO_rcv_end - SIO_cmd_jmp_2_1 ; Clear SRD
SIO_3-SIO_cmd_jmp_2_1 ; Read LB
SIO_4-SIO_cmd_jmp_2_1 ; LB Program
SIO_rcv_end - SIO_cmd_jmp_2_1 ; LB enable
SIO_rcv_end - SIO_cmd_jmp_2_1 ; LB disable
SIO_rcv_end - SIO_cmd_jmp_2_1 ; Download
SIO_3-SIO_cmd_jmp_2_1 ; Boot output
SIO_rcv_end - SIO_cmd_jmp_2_1 ; Read check
SIO_rcv_end - SIO_cmd_jmp_2_1 ; Read SRD
SIO_rcv_ID_check - SIO_cmd_jmp_2_1 ; ID check
SIO_rcv_end - SIO_cmd_jmp_2_1 ; Version out

I T L I o o
;+ serch table for Flash_func,SIO_rcv_first_data +
T L e B L o

Index_tbl:

.byte 0ffh ; Read(ffh)

.byte 041h ; Program(41h)

.byte 020h ; Erase(20h)

.byte 0a7h ; All_erase(a7h)

.byte 050h ; Clear SRD(50h)

.byte 071h ; Read LBS(71h)

.byte 077h ; LB program(77h)

.byte 07ah ; LB enable (7ah)

.byte 075h ; LB disable(75h)

.byte Ofah ; Download (fah)

.byte 0Ofch ; Boot output(fch)

.byte 0Ofdh ; Read check(fdh)

.byte 070h ; Read SRD(70h)

.byte 0f5h ; ID check(f5h)

.byte 0fbh ; Version output(fbh)
B L e a
;+ Subroutine : Initialize_2 +
i o T
Initialize_2:

;+ Flash mode set +

113

)

1

fmecrs
fmecrl
fmerl

bset
bclr
bset

)

: User ROM select
; Flash entry bit clear
; Flash entry bit set (E/W mode)

)

i+

1

Blank check

+

1

Ide.w Offffch,r0
Ide.w Offffeh,rl

; Reset vector read
; Reset vector read

M16C/62 Group
3.3 Sample List

and.w r1,r0 ;r0&rl
cmp.w #Offffh,r0 ; ro=ffffh ?
jne blank_end
bset sr10 ; check complete at rO=ffffh
bset srll
bset blank ; blank flag set
blank_end:
;+ UART1 +
Initialize_21.:

UART1 transmit/receive mode register

bset busy
bset busy d
mov.b #0,ulcl
mov.b #0,ulmr

; busy "H"
; busy output
; transmit/receive disable
;ulmr reset

mov.b #00001001b,ulmr

: [[[]|++4+------- clock synchronous SI/O
: 1R — external clock
: L e R fixed

)

UART1 transmit/receive control register O

mov.b #00000100b,ulcO

f1 select

RTS select
CTS/RTS enabled
CMOS output(TxD)
falling edge select
LSB first

’

UART transmit/receive control register 2

mov.b #00000000b,ucon

: 1 |++------ Transmit buffer empty

: [I][++-------- Continuous receive mode disabled
: ||[++--mmmm- CLK/CLKS normal

: [ES—— CTS/RTS shared

: S —— fixed

)

UART1 transmit/receive control register 1

mov.b #00000101b,ulcl

; i +------ Transmission enabled
; [l +-------- Reception enabled

; ottt toaeeeen fixed

i+ Timer Al +

set_TAO:

114

M16C/62 Group
3.3 Sample List

— Timer A1 mode register

mov.b #00000010b,taOmr

: | [++------- One-shot mode
; | +--------- Pulse not output
[R —— One-shot start flag
; ||+--mmmmm - fixed
; I f1 select
mov.w #6000-1,ta0 ; set 300 usec at 20 MHz
bset taOs
mov.b #0,ta0ic ; clear TAO interrupt flag
rts
:+ FLASH function main +
Flash_func:

btst tout_flg
jc Flash_func_end

bclr taOs

mov.b cmd_d,r0l ; receive data --> rOl

mov.b #0ch,rOh ; #00001100b sr10,11 mask data
and.b SRD1,rOh ; sr10,11 pick up

cmp.b #0ch,rOh : ID check OK?

jne Command_check_2 ;jump Command_check_2 at ID unchecked
mov.w #12,a0

Command_check:
Ide.b Index_tbl-Trans_TOP1+Ram_progTOP-1[a0],rOh
cmp.b rOh,rOl
jeq cmd_jmp_1
sbjnz.w #1,a0,Command_check
jmp Command_check_2

cmd_jmp_1:

shl.w #1,a0

Ide.w jmp_tbl-Trans_TOP1+Ram_progTOP-2[a0],r0
cmd_jmp:

jmpi.w r0

Command_check_2:

?: cmp.b #070h,r0l ; Read SRD (70h)
jne ?+
jmp Read_SRD

?. cmp.b #0f5h,r0l ; ID check (f5h)
jne 7?2+
jmp ID_check

?: cmp.b #0fbh,r0l ; Version out (fbh)
jne Flash_func_end
jmp Ver_output

Flash_func_end:

rts
+ Read +
Read:
mov.w #0,r3 : receive number
mov.b #0,addr_| ;addr 1=0
Read_loop:

115

M16C/62 Group
3.3 Sample List

)
1
1

1

add.w #1,r3

mov.w r3,a0
mov.w data[a0],r0
mov.b rOl,addr_lI[a0]
cmp.w #2,r3

jltu Read_loop
mov.w #00ffh,r2

jsr Command_write
bset send_flg
mov.w #3,start_cnt

: r3 +1 increment

1 r3-->al

; Store address
i r3=27?
; jump Read_loop at r3<2
; Read array command
; command_write

mov.w #258,send_cnt

jmp Flash_func_end

; jump Flash_func_end

;+ Program

Program:

mov.w #0,r3
mov.b #0,addr_|
mov.w sum,crcd

Program_loop_1:

add.w #1,r3

mov.w r3,a0

mov.b data[a0],r0l
mov.b rOl,addr_lI[a0]
cmp.w #259,r3

jltu Program_loop_1

mov.w #00ffh,r2

jsr Command_write
mov.w #0070h,r2
jsr Command_write
lde.w [alaO],r1
mov.w #00ffh,r2

jsr Command_write
cmp.b #80h,r1l

jne Program_end

mov.w #0041h,r2
jsr Command_write
mov.w #0,r3

mov.b addr_h,al

Program_loop_2:

mov.w r3,a0
mov.w data[a0],r1
mov.w addr_l,a0
ste.w rl,[ala0]

mov.b rll,crcin
mov.b rlh,crcin

add.w #2,addr_|
add.w #2,r3
cmp.w #255,r3

jltu Program_loop_2

Program_end:
mov.w crcd,sum
bclr send_flg
mov.w #0,send_cnt
mov.w #0,start_cnt

jmp Flash_func_end

1

; receive number
;addr_1=0
; for Read check command

: r3 +1 increment
;r3-->al

; Store address
:1r3=2597?
; jump Program_loop_1 at r3<258

; Read array command

; command_write
: Read SRD command
; Command write
: SRD read

; Read array command
; command_write

; error check

; Page program command
; command_write
; writing number (r3=0)
;addr_h -->al

013 -->al
;data -->rl
;addr_I,m --> a0

; data write

; for Read check command
; address +2 increment
; writing number +2 increment
;r3=2557?
; jump Program_loop_2 at r3<255

; for Read check command

; jump Flash_func_end

)

:+ Block erase

)

116

M16C/62 Group
3.3 Sample List

Erase:
mov.w #1,r3 ; receive number (r3=1)
mov.b #0feh,addr_| ;addr_| = ffh
Erase_loop:
mov.w r3,a0 ;r3-->al

mov.b data[a0],r0l
mov.b rOl,addr_I[a0] ; Store address

add.w #1,r3 : r3 +1 increment
cmp.w #4,r3 1 13=47?
jltu Erase_loop ; jump Erase_loop at r3<4
cmp.b #0dOh,data ; Confirm command check
jne Erase_end ; Jump Erase_end at Confirm command error
mov.w #0020h,r2 ; Erase command
jsr Command_write ; command write
mov.w #00d0h,r2 ; Confirm command
ste.w r2,[ala0] ; command write
Erase_end:
mov.w #00ffh,r2 ; Read array command
jsr Command_write ; command_write
bclr send_flg

mov.w #0,send_cnt
mov.w #0,start_cnt
jmp Flash_func_end ;jump Flash_func_end

;+ All erase (unlock block) +

All_erase:

mov.w #1,a0

mov.b data[a0],r0l ; receive data read --> r0

cmp.b #0dOh,rOl ; Confirm command check

jne All_erase_end ; jJump All_erase_end at Confirm command
error

mov.w #0000h,addr_| ; 0f0000h --> addr

mov.b #000fh,addr_h

mov.w #00a7h,r2 ; All erase command

jsr Command_write ; command write

mov.w #00d0h,r2 ; Confirm command

ste.w r2,[ala0] ; command write
All_erase_end:

mov.w #00ffh,r2 ; Read array command

jsr Command_write ; command_write

bclr send_flg

mov.w #0,send_cnt
mov.w #0,start_cnt
jmp Flash_func_end ;jump Flash_func_end

:+ Read SRD +
Read_SRD:
mov.w #0,r3 ; receive number (r3=0)
mov.w #0000h,addr_| ; 0f0000h --> addr
mov.b #000fh,addr_h
mov.w #00ffh,r2 ; Read array command
jsr Command_write ; command_write
mov.w #0070h,r2 : Read SRD command
jsr Command_write ; command write
Ide.w [alaO],rl ; SRD read
mov.w #00ffh,r2 ; Read array command
jsr Command_write ; command_write

mov.w #1,start_cnt
mov.w #3,send_cnt
bset send_flg

117

M16C/62 Group
3.3 Sample List

jmp Flash_func_end

1

; jump Flash_func_end

1

:+ Clear SRD

1

Clear_SRD:

mov.w #0000h,addr_|
mov.b #000fh,addr_h
mov.w #00ffh,r2 ;
jsr Command_write
mov.w #0050h,r2

jsr Command_write
mov.w #00ffh,r2 :
jsr Command_write

; 0f0000h --> addr

Read array command
; command write

; Clear SRD command
; command write

Read array command
; command write

and.b #10011100b,SRD1 ; SRD1 clear

mov.w #0,start_cnt

mov.w #0,send_cnt

bclr send_flg

jmp Flash_func_end

1

; jump Flash_func_end

1

:+ Read Lock Bit +
Read_LB:

mov.w #1,r3 ; receive number (r3=1)

mov.b #0feh,addr_| ;addr_| =ffh
Read_LB_loop:

mov.w r3,a0 1r3-->al

mov.b data[a0],r0l
mov.b rOl,addr_lI[a0]

; Store address

add.w #1,r3 : r3 +1 increment
cmp.w #3,r3 1 1r3=37?

jltu Read_LB_loop
mov.w #0071h,r2
jsr Command_write

; jump Read_LB_loop at r3<3

: Read LB command
; command write

lde.w [alaO],r1 ;read LB

mov.w #00ffh,r2

jsr Command_write
Read LB _end:

mov.w #1,start_cnt

mov.w #1,send_cnt

bset send_flg

jmp Flash_func_end

’

; Read array command
; command write

; jump Flash_func_end

’

;+ Program Lock Bit

1

Program_LB:
mov.w #1,r3 ;
mov.b #0feh,addr_|

Program_LB_loop:
mov.w r3,a0 ;
mov.b data[a0],r0l
mov.b rOl,addr_I[a0]
add.w #1,r3 :
cmp.w #4,r3 ;
jltu Program_LB_loop
cmp.b #0dOh,data

jne Program_LB_end

mov.w #0077h,r2
jsr Command_write
mov.w #00dO0h,r2

ste.w r2,[ala0] ;

mov.w #00ffh,r2

receive number (r3=1)
;addr_| =ffh

r3 -->al
; Store address

r3 +1 increment
r3=4 ?

; jump Program_LB_loop at r3<4
; Confirm command check
; jump Program_LB_end at Confirm command error
; Program LB command

; command write
; Confirm command
command write
; Read array command

118

M16C/62 Group
3.3 Sample List

jsr Command_write ; command write
Program_LB_end:

mov.w #0,start_cnt

mov.w #0,send_cnt

bclr send_flg

jmp Flash_func_end ;jump Flash_func_end

:+ Lock Bit enable +
LB_enable:
bclr fmcr2 ; Lock disable bit=0

mov.w #0,start_cnt
mov.w #0,send_cnt

bclr send_flg

jmp Flash_func_end ;jump Flash_func_end
;+ Lock Bit disable +
LB_disable:

bclr fmcr2 : Lock disable bit =0

bset fmcr2 ; Lock disable Bit = 1

mov.w #0,start_cnt
mov.w #0,send_cnt

bclr send_flg

jmp Flash_func_end ;jump Flash_func_end
:+ ID check +
ID_check:

btst blank ; blank flag check

jc ID_check_end ; jump ID_check_end at blank

cmp.w #Offdfh,addr_| ; lower ID address check

jne ID_error ; jump ID_error at ID address error

cmp.w #0070fh,addr_h ; higher ID address check

jne ID_error ; jump ID_error at ID address error
ID_data_check:

mov.w #0000fh,al ; ID higher address --> al

mov.w #0ffdfh,ri : ID lower address -->rl

mov.w #1,r3 ; check loop number (r3=1)
ID_check_loop:

mov.w rl,a0 irl-->al

Ide.b [ala0],rOl ; ID data read from Flash memory

mov.w r3,a0 ;r3-->a0

cmp.b rOl,data[a0] ; compare ID data

jne ID_error ; jump ID_error at ID error

add.w #4,r1 ; 1l +4 increment (next ID address)

cmp.w #0ffe7h,rl ; r1=0ffefh ?

jne 7?2+ ; jump ? at not equal

mov.w #0ffebh,rl ; r1=0ffeb at equal
s

add.w #1,r3 ; 13 +1 increment

cmp.w #8,r3 1 1r3=87?

jltu 1D_check_loop ; jump ID_check_loop at r3<8
ID_OK:

bset sr10

bset sril ; ID check OK (sr11=1,sr10=1)

jmp ID_check_end ; jump ID_check_end
ID_error:

bset srl0

belr srll ; ID error (sr11=0,sr10=1)
ID_check_end:

119

M16C/62 Group
3.3 Sample List

mov.w #0,start_cnt
mov.w #0,send_cnt

bclr send_flg
jmp Flash_func_end ;jump Flash_func_end
;+ Boot output +

1

Boot_output:

bclr fmer5 : Boot ROM select

mov.w #0,r3 ; receive number

mov.b #0,addr_| ;addr_1=0
Boot_loop:

add.w #1,r3 : r3 +1 increment

mov.w r3,a0 1 r3-->al

mov.w data[a0],r0

mov.b rOl,addr_I[a0] ; Store address
cmp.w #2,r3 r3=27?

jltu Boot_loop ; jJump Read_loop at r3<2
bset send_flg

mov.w #3,start_cnt

mov.w #258,send_cnt

jmp Flash_func_end ;jump Flash_func_end
:+ Read check +
Read_check:

mov.w #0,start_cnt
mov.w #2,send_cnt
bset send_flg

jmp Flash_func_end ;jump Flash_func_end
;+ Download +

Download:

bclr fmcer5 : Boot ROM select

jmp.a Download_program ; jump Download_program

)

)

;+ Version output +

Ver_output:

mov.w #0,start_cnt

mov.w #8,send_cnt

bset send_flg

jmp Flash_func_end ;jump Flash_func_end
e a2 B L L
;* Subroutine : Command write +
e L o o o
Command_write:

btst fmcrO ; RY/BY status check
jz Command_write

mov.w addr_l,a0 ;addr_I,m --> a0
mov.b addr_h,al ;addr h -->al
ste.w r2,[ala0] ; command write
rts

)

e L L L
;+ Subroutine : a synchronized signal I/O receive data+
B e L B
SIO_rcv_data:

120

M16C/62 Group
3.3 Sample List

jsr set_TAO
SIO_rcv_data_1:

btst ir_taOic ; time out error ?

jnc ?+

jsr Time_over_flg ; jump Time_over at time out
s

btst ri_ulcl ; receive complete ?

jnc SIO_rcv_data_1

mov.w ulrb,rcv_d ; receive data read --> r0

rts

T L L o L T o o o
;+ Subroutine : a synchronized signal I/O receive data+

T L T e T ot o B
SIO_rcv_data_rom:

jsr set_TAO
SIO_rcv_data_rom_1:
btst ir_taOic ; time out error ?
bmc fmcr5 ; time out, User ROM select
jnc ?+
jsr Time_over_flg ; jump Time_over at time out
o
btst ri_ulcl ; receive complete ?
jnc SIO_rcv_data_rom_1
mov.w ulrb,rcv_d ; receive data read --> r0
rts

e L T o o o
;+ Subroutine : a synchronized signal 1/0 send +
T L e B L o
SIO_send:

jsr set_TAO

jsr SIO_send_data

jsr SIO_rcv_data

rts
e L T o o o
;+ Subroutine : a synchronized signal 1/0 send +
e L L T o o o o
SIO_send_rom:

jsr set_TAO

jsr SIO_send_data

jsr SIO_rcv_data_rom

rts
;+ Transfer Program -- UART mode +
i+ (1) Main flow +
+ (2) Flash control program +
+ Read,Program,All_erase,Read_SRD,Clear_SRD +
+ (3) Other program +
+ ID_check +

.org Trans_TOP2

o

:+ Main flow - UART mode - +
L T Lt I L
U_Main:

jmp U_SIO_init_first

U_Loop_main:
mov.b SRD1,SRD1_bak ; SRD1 back up
mov.b SRD1,SRD1_bak+2

121

M16C/62 Group
3.3 Sample List

jsr U_SIO_rcv
mov.w rcv_d,r0
mov.b rOl,cmd_d
mov.w #0,r2
mov.w r2,a0
mov.b rOl,data[a0]
bclr cmd_flg

jmp U_SIO_freq
jsr U_time_init

jmp U_SIO_rcv_first_data
U_Flash_set:
jmp U_Flash_func
U_Flash_send:
jmp U_SIO_send_data
U_Flash_int:
btst tint_flg
jnc U_Main_end
jsr Initialize_31 ; command error,UART mode Initialize

U_Main_end:
jmp U_Loop_main ; jump U_Loop_main

1

1

4+ initialize SIO +

U_time_init:
bset rcv_flg
bclr tint_flg
rts

)

)

:+ SI/O recieve data +

U_SIO rcv_first_data:
btst rcv_flg
jnc U_SIO_rcv_end
jc U_SIO_rcv_first_data_set

U_SIO_rcv_first_data_loop:

jsr U_SIO_rcv_only

mov.w rcv_d,r0 ; receive data --> r0
U_SIO_rcv_first_data_set:

mov.w r2,a0

mov.b rOl,data[a0]

add.w #1,r2

btst cmd_flg
jc U_SIO_loop_chk
bset cmd_flg
mov.b rOl,cmd_d
mov.w #19,a0
U_SIO _rcv_command_chk:
Ide.b U_Index_thl-Trans_TOP2+Ram_progTOP-1[a0],rOh
cmp.b rOh,rOl
jeqg U_SIO_cmd_jmp_2
sbjnz.w #1,a0,U_SIO_rcv_command_chk
jmp U_SIO_rcv_end

U_SIO_cmd_jmp_2:
shl.w #1,a0

122

M16C/62 Group
3.3 Sample List

I[de.w U_jmp_tbl_2-Trans_TOP2+Ram_progTOP-2[a0],r0

U_SIO_cmd_jmp_2_1:
jmpi.w r0

U_SIO_2:

mov.w #2,loop_cnt
jmp U_SIO_loop_chk
U_SIO_259:

mov.w #259,loop_cnt
jmp U_SIO_loop_chk
U_SIO_4:

mov.w #4,loop_cnt
jmp U_SIO_loop_chk
U_SIO_3:

mov.w #3,loop_cnt
jmp U_SIO_loop_chk

:+ IDcheck SI/O

U_SIO rcv_ID_check:
mov.w #0,r3
mov.w #0ffh,al
mov.b #0,ta0ic

U_SIO_ID_data_store:
cmp.w al,r3

jsr U_SIO_rcv_only
mov.w rcv_d,r0

; receive number (r3=0)
; ID size (dummy data = ffh)

; r13=al(ID size)
jeqg U_SIO_ID_address_check; jump ID_address_check at r3=ID size

mov.w r3,a0 ;r3-->al

mov.b rOl,addr_I[a0]
add.w #1,r3

; Store address
;13 +1 increment

cmp.w #4,r3 1 13=47?

jne U_SIO_ID_data_store ; jump ID_data_store at r3 not= 4
: ID size --> al

mov.b data,al

add.w #4,al ;al=al+4
jmp U_SIO_ID_data_store ; jump ID_data_store

U_SIO_ID_address_check:
jmp U_SIO_rcv_end

U_SIO rcv_end_1:
bset tint_flg
jmp U_SIO_rcv_end

U_SIO_loop_chk:
cmp.w loop_cnt,r2

jltu U_SIO_rcv_first_data_loop

U_SIO_rcv_end:
bclr cmd_flg
belr rev_flg
jmp U_Flash_set

;+ SIO_send data

U_SIO_send_data:
btst send_flg

jnc U_SIO_send_data_end

mov.b cmd_d,rlh

cmp.b #0ffh,rih :
jeqg U_Read_data
cmp.b #070h,r1h

Read(ffh)

; Read SRD (70h)

jeqg U_Read_SRD_data

123

M16C/62 Group
3.3 Sample List

cmp.b #071h,rlh ; Read LB (71h)
jeg U_Read_LB_data

cmp.b #0fbh,rlh ; Version_output(fbh)
jeq U_Ver_output_data

cmp.b #0fdh,rih ; Read_check(fdh)
jeqg U_Read_check_data

cmp.b #0fch,rlh ; Boot_check(fch)
jeqg U_Boot_data

cmp.b #0bOh,r1h ; BPS SET(b0Oh)
jeqg U_BPS_BO_data

cmp.b #0blh,rlh ; BPS SET(b1h)
jeqg U_BPS_B1 data

cmp.b #0b2h,rlh ; BPS SET(b2h)
jeqg U_BPS_B2_ data

cmp.b #0b3h,rlh ; BPS SET(b3h)

jeqg U_BPS_B3 data
jmp U_SIO_send_func

U_Read_check_data:

mov.w #0,r3

mov.w sum,rl
U_Read_check_data_loop:

mov.b rll,send_d

jsr U_SIO_send

mov.b rlh,ril

add.w #1,r3

cmp.w #2,r3

jltu U_Read_check_data_loop
U_Read_check_data_end:

mov.w #0,sum ; reset

jsr U_SIO_exit

jmp U_SIO_send_data_end

U_Read_data:
mov.w #0,r3
U_Read_data_loop:
lde.b [alaO],rll ; Flash memory read
mov.b rll,send_d
jsr U_SIO_send
add.w #1,r3
add.w #1,a0
cmp.w #256,r3 ;13 =256 7?
jne U_Read_data_loop
U_Read_data end:
jsr U_SIO_exit
jmp U_SIO_send_data_end

U_Ver_output_data:

mov.w #0,a0 ; Version address offset (a0=0)
U_Ver_output_data_loop:

mov.b ver[a0],send_d ; send_data set

jsr U_SIO_send

add.w #1,a0

cmp.w #8,a0 ;a0=87?

jne U_Ver_output_data_loop
U_Ver_output_data_end:

jsr U_SIO_exit

jmp U_SIO_send_data_end

U_Read_SRD_data:
mov.w #0,r3
U_Read_SRD_data_loop:
mov.b rll,send_d ; data transfer
jsr U_SIO_send

124

M16C/62 Group
3.3 Sample List

mov.b SRD1,rll

; SRD1 data --> r1l

add.w #1,r3
cmp.w #2,r3 13=27?
jltu U_Read_SRD_data_loop; jump Read_SRD_loop at r3<2

U_Read_SRD_data_end:

jsr

jmp

jsr

U_SIO_exit
U_SIO_send_data_end

U Read LB data:
mov.b rll,send_d

; data transfer
U_SIO_send

U_Read_LB_data_end:

jsr

jmp

U_SIO_exit
U_SIO_send_data end

U_Boot_data:
belr

fmers

mov.w addr_l,a0
mov.b addr_h,al
mov.w #0,r3

U_Boot_data_loop:

Ide.b [alaO],rll

; Flash memory read

mov.b rll,send_d

jsr

U_SIO_send

add.w #1,r3
add.w #1,a0
cmp.w #256,r3 113 =256 7

jne

U_Boot_data_loop

U_Boot_data_end:

bset

jsr

jmp

fmers
U_SIO_exit
U_SIO_send_data end

U_BPS_BO0_data:

mov.b buff,data_BPS
jmp

; Baud rate 9600bps
U_BPS_SET_data

U BPS B1 data:
mov.b buff+1,data BPS ; Baud rate 19200bps

jmp

U_BPS_SET data

U_BPS_B2_data:
mov.b buff+2,data_BPS ; Baud rate 38400bps

jmp

U_BPS_SET_data

U _BPS B3 data:

mov.b buff+3,data_BPS ; Baud rate 57600bps
U BPS SET data:

mov.b rOl,send_d

jsr
jsr
jsr

jmp

U_SIO_send

U_SIO_exit

U_blank_end ; UART mode Initialize
U_SIO_send_data end

U_SIO_send_func:
mov.w start_cnt,r3
U_SIO_send_data_loop:
mov.w r3,a0

mov.b data[a0],r1l
mov.b rll,send_d

jsr

U_SIO_send

add.w #1,r3
cmp.w send_cnt,r3 ;r3=send_cnt?

jne

U_SIO_send_data_loop

mov.w r3,r0
U_SIO_send_data end:

bclr

send_flg

125

M16C/62 Group
3.3 Sample List

jmp

1

U_Flash_int

w2
;+ jump table for Flash_func +
o a a aat o
U_jmp_tbl:

.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word

)

U_Read - U_cmd_jmp
U_Program - U_cmd_jmp
U_Erase - U_cmd_jmp
U_All_erase - U_cmd_jmp
U_Clear_SRD - U_cmd_jmp
U_Read_LB-U_cmd_jmp
U_Program_LB - U_cmd_jmp
U_LB_enable - U_cmd_jmp
U_LB_disable - U_cmd_jmp
U_Download - U_cmd_jmp
U_Boot_output - U_cmd_jmp
U_Read_check - U_cmd_jmp

o A S

;+ jump table for SIO_rcv_first_data +
B T o o S
U_jmp_tbl_2:
.word U_SIO_3-U_SIO cmd_jmp_2_1 ; Read
.word U_SIO_259-U_SIO_cmd_jmp_2_1 ; Program
.word U_SIO_4-U_SIO_cmd_jmp_2_1 ; erase
.word U_SIO_2-U_SIO_cmd_jmp_2_1 ; All erase
.word U_SIO_rcv_end - U_SIO_cmd_jmp_2 1 ; Clear SRD
.word U_SIO_3-U_SIO cmd_jmp_2_1 ; Read LB
.word U_SIO_4-U_SIO cmd_jmp_2_1 ; LB Program
.word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ;LB enable
.word U_SIO_rcv_end - U_SIO _cmd_jmp_2_1 ;LB disable
.word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; Download
.word U_SIO_3-U_SIO cmd_jmp_2_1 ; Boot output
.word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; Read check
.word U_SIO_rcv_end-U_SIO_cmd_jmp_2 1 ; Read SRD
.word U_SIO_rcv_ID_check - U_SIO_cmd_jmp_2_1; ID check
.word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; Version out
.word U_SIO_rcv_end - U_SIO_cmd_jmp_2 1 ; U_BPS_BO
.word U_SIO_rcv_end-U_SIO _cmd_jmp_2 1 ; U_BPS_B1
.word U_SIO_rcv_end-U_SIO_cmd_jmp_2 1 ; U_BPS_B2

.word

1

U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; U_BPS B3

B S T o o o
;+ serch table for Flash_func,SIO_rcv_first data +
e L o o o

U_Index_tbl:
.byte Offh ; Read(ffh)
.byte 041h ; Program(41h)
.byte 020h ; Erase(20h)
.byte 0a7h ; All_erase(a7h)
.byte 050h ; Clear SRD(50h)
.byte 071h ; Read LBS(71h)
.byte 077h ; LB program(77h)
.byte 07ah ; LB enable (7ah)
.byte 075h ; LB disable(75h)
.byte Ofah ; Download (fah)
.byte Ofch ; Boot output(fch)
.byte 0Ofdh ; Read check(fdh)
.byte 070h ; Read SRD(70h)
.byte 0f5h ; ID check(f5h)
.byte 0fbh ; Version output(fbh)
.byte ObOh ; BPS_SET 9600 (bOh)
.byte Oblh ; BPS_SET 19200 (b1h)
.byte 0Ob2h ; BPS_SET 38400(b2h)

126

M16C/62 Group
3.3 Sample List

.byte 0b3h : BPS_SET 57600(b3h)

;
e L L L T o o o
;+ Subroutine : Initialize_3 - UART mode +

L T L ot o

Initialize_3:

:+ Flash mode set +

bset fmcr5 ; User ROM select

belr fmerl ; Flash entry bit clear

bset fmcrl ; Flash entry bit set (E/W mode)
:+ Blank check +

Ide.w Offffch,r0 ; Reset vector read

Ide.w Offffeh,rl ; Reset vector read

and.w r1,r0 r0&rl

cmp.w #Offffh,r0 ; rO=ffffh ?

jne U_blank_end

bset sr10 ; check complete at rO=ffffh

bset sril

bset blank ; blank flag set
U_blank_end:
+ UART1 +

- UART nit rate generator
mov.w data_BPS,ulbrg
Initialize_31:

- UART1 transmit/receive mode register

mov.b #0,ulcl : transmit/receive disable
mov.b #0,ulmr ;ulmr reset
mov.b #00000101b,ulmr

; T R —— transfer data 8 bit long

;] R — Internal clock

; [——— one stop bit

; [|[++---mmmmeeeee- parity disabled

; [+--mmmmmmm e sleep mode deselected

- UART1 transmit/receive control register O

mov.b #00000100b,ulcO

: T fl select

: (]| — RTS select

: [———— CRT/RTS enabled

: [——— CMOS output(TxD)
: b Must always be "0"

jmm-- UART transmit/receive control register 2

mov.b #00000000b,ucon

; [[[]++--=-=---- Transmit buffer empty
; [||[+++--mmmm - Invalid

; [[#--mmmmemmeee Must always be "0"

; [r-mmsmmmemmeeeee CTSIRTS shared

; oo fixed

- UART1 transmit/received control register 1

127

M16C/62 Group
3.3 Sample List

mov.b #00000000b,ulcl

; 1T R — Transmission disabled

; [][+----m=-==- Transmission enabled

; [[[[[=-==-==-=- Reception disabled
[[[[-==mmmmmmem Reception enabled

; R fixed

rts
;+ FLASH function main +
U_Flash_func:

mov.b cmd_d,r0l ; receive data --> rOl

mov.b #0ch,rOh ; #00001100b sr10,11 mask data

and.b SRD1,rOh ; sr10,11 pick up

cmp.b #0ch,rOh ; ID check OK?

jne U_Command_check_2 ;jump Command_check_2 at ID unchecked
mov.w #12,a0

U_Command_check:
Ide.b U_Index_tbl-Trans_TOP2+Ram_progTOP-1[a0],rOh
cmp.b rOh,rOl
jeqg U_cmd_jmp_1
shjnz.w #1,a0,U_Command_check
jmp U_Command_check_2

U_cmd_jmp_1:

shl.w #1,a0

lde.w U_jmp_tbl-Trans_TOP2+Ram_progTOP-2[a0],r0
U_cmd_jmp:

jmpi.w r0

U_Command_check 2:
?: cmp.b #070h,r0l
jne ?+

jmp U_Read_SRD
?: cmp.b #0f5h,r0l
jne 7?2+
jmp U_ID_check
cmp.b #0bOh,rOl
jne ?+
jmp U_BPS_BO
?: cmp.b #0blh,rOl
jne 7?2+
jmp U_BPS B1
cmp.b #0b2h,r0l
jne ?+
jmp U_BPS_B2
cmp.b #0b3h,r0l
jne 7?2+
jmp U_BPS B3
cmp.b #0fbh,r0l ; Version out (fbh)
jne U_Flash_func_end

jmp U_Ver_output

; Read SRD (70h)

; ID check (f5h)

N

: BPS_SET 9600 (bOh)

: BPS_SET 19200 (bl1h)

N

. BPS_SET 38400 (b2h)

N

: BPS_SET 57600 (b3h)

N

U_Flash_func_end:
jmp U_Flash_send

+ Read +

’

128

M16C/62 Group
3.3 Sample List

U_Read:
mov.w #0,r3 : receive number
mov.b #0,addr_| ;addr 1=0
U_Read_loop:
add.w #1,r3 ;13 +1 increment
mov.w r3,a0 ;r3-->al
mov.w data[a0],r0
mov.b rOl,addr_lI[a0] ; Store address
cmp.w #2,r3 13=27?
jltu U_Read_loop ; jump Read_loop at r3<2
mov.w #00ffh,r2 ; Read array command

jsr U_Command_write ; command_write

bset send_flg

mov.w #3,start_cnt

mov.w #258,send_cnt

jmp U_Flash_func_end ;jump Flash_func_end

;+ Program +
U_Program:

mov.w #0,r3 : receive number

mov.b #0,addr_| ;addr_1=0

mov.w sum,crcd ; for Read check command
U_Program_loop_1:

add.w #1,r3 : r3 +1 increment

mov.w r3,a0 1r3-->al

mov.b data[a0],r0l

mov.b rOl,addr_I[a0] ; Store address

cmp.w #259,r3 ;13 =2597?

jltu U_Program_loop_1 ;jump Program_loop_1 at r3<258

mov.w #00ffh,r2 ; Read array command
jsr U_Command_write ; command_write
mov.w #0070h,r2 ; Read SRD command
jsr U_Command_write ; Command write
Ide.w [alaO],r1 : SRD read

mov.w #00ffh,r2 ; Read array command
jsr U_Command_write ; command_write
cmp.b #80h,r1l ; error check

jne U_Program_end

mov.w #0041h,r2 ; Page program command

jsr U_Command_write ; command_write

mov.w #0,r3 ; writing number (r3=0)

mov.b addr_h,al ;addr_h -->al
U_Program_loop_2:

mov.w r3,a0 ;3 -->a0

mov.w data[a0],r1 ;data ->rl

mov.w addr_l,a0 ;addr_I,m --> a0

ste.w rl,[ala0] ; data write

mov.b rllcrcin ; for Read check command

mov.b rlh,crcin

add.w #2,addr_| ; address +2 increment
add.w #2,r3 ; writing number +2 increment
cmp.w #255,r3 ;r3=2557?

jltu U_Program_loop_2 ;jump Program_loop_2 at r3<255
U_Program_end:

mov.w crcd,sum ; for Read check command

bclr send_flg

mov.w #0,send_cnt

mov.w #0,start_cnt

129

M16C/62 Group
3.3 Sample List

jmp U_Flash_func_end ;jump Flash_func_end

1

1

:+ Block erase +
U_Erase:

mov.w #1,r3 ; receive number (r3=1)

mov.b #Ofeh,addr_| ;addr_| =ffh
U_Erase_loop:

mov.w r3,a0 1 r3-->al

mov.b data[a0],r0l
mov.b rOl,addr_I[a0] ; Store address

add.w #1,r3 ; r3 +1 increment

cmp.w #4,r3 1 13=47?

jltu U_Erase_loop ; jump Erase_loop at r3<4

cmp.b #0dOh,data ; Confirm command check

jne U_Erase_end ; jump Erase_end at Confirm command error
mov.w #0020h,r2 ; Erase command

jsr U_Command_write ; command write

mov.w #00dO0h,r2 ; Confirm command

ste.w r2,[ala0] ; command write
U_Erase_end:

mov.w #00ffh,r2 ; Read array command

jsr U_Command_write ; command_write

bclr send_flg

mov.w #0,send_cnt

mov.w #0,start_cnt

jmp U_Flash_func_end ;jump Flash_func_end

)

)

;+ All erase (unlock block) +

U_All_erase:

mov.w #1,a0

mov.b data[a0],r0l ; receive data read --> r0

cmp.b #0dOh,rOl ; Confirm command check

jne U_AIl_erase_end ;jump All_erase_end at Confirm command
error

mov.w #0000h,addr_| : 0f0000h --> addr

mov.b #000fh,addr_h

mov.w #00a7h,r2 ; All erase command

jsr U_Command_write ; command write

mov.w #00dO0h,r2 ; Confirm command

ste.w r2,[ala0] ; command write

U_All_erase_end:

mov.w #00ffh,r2 ; Read array command
jsr U_Command_write ; command_write
bclr send_flg

mov.w #0,send_cnt
mov.w #0,start_cnt
jmp U_Flash_func_end ;jump Flash_func_end

)

)

;+ Read SRD +

U _Read_SRD:
mov.w #0,r3 ; receive number (r3=0)
mov.w #0000h,addr_| ; 0f0000h --> addr
mov.b #000fh,addr_h
mov.w #00ffh,r2 ; Read array command
jsr U_Command_write ; command_write
mov.w #0070h,r2 ; Read SRD command
jsr U_Command_write ; command write
Ide.w [alaO],r1 ; SRD read
mov.w #00ffh,r2 ; Read array command

130

M16C/62 Group
3.3 Sample List

jsr U_Command_write ; command_write
mov.w #1,start_cnt

mov.w #3,send_cnt

bset send_flg

jmp U_Flash_func_end ;jump Flash_func_end

:+ Clear SRD +

U _Clear_SRD:
mov.w #0000h,addr_|
mov.b #000fh,addr_h
mov.w #00ffh,r2 ; Read array command
jsr U_Command_write ; command write
mov.w #0050h,r2 ; Clear SRD command
jsr U_Command_write ; command write
mov.w #00ffh,r2 ; Read array command
jsr U_Command_write ; command write
and.b #10011100b,SRD1 ; SRD1 clear
mov.w #0,start_cnt
mov.w #0,send_cnt
bclr send_flg
jmp U_Flash_func_end ;jump Flash_func_end

; 0f0000h --> addr

:+ Read Lock Bit +

U _Read LB:

mov.w #1,r3 ; receive number (r3=1)

mov.b #0feh,addr_| ; addr_| = ffh
U_Read_LB_loop:
mov.w r3,a0 1r3-->al

mov.b data[a0],r0l
mov.b rOl,addr_I[a0] ; Store address
add.w #1,r3 ; 13 +1 increment
cmp.w #3,r3 ;1r3=37
jltu U_Read LB loop ;jump Read LB_loop at r3<3
mov.w #0071h,r2 : Read LB command
jsr U_Command_write ; command write
lde.w [alaO],rl ;read LB
mov.w #00ffh,r2 ; Read array command
jsr U_Command_write ; command write
U Read LB end:
mov.w #1,start_cnt
mov.w #1,send_cnt
bset send_flg
jmp U_Flash_func_end ;jump Flash_func_end

;+ Program Lock Bit +

U_Program_LB:

mov.w #1,r3 ; receive number (r3=1)

mov.b #0feh,addr_| ; addr_| = ffh
U_Program_LB_loop:
mov.w r3,a0 1r3-->al

mov.b data[a0],r0l

mov.b rOl,addr_I[a0] ; Store address

add.w #1,r3 ; 13 +1 increment

cmp.w #4,r3 1 r3=4 7

jltu U_Program_LB_loop ;jump Program_LB_ loop at r3<4

cmp.b #0dOh,data ; Confirm command check

jne U_Program_LB_end ;jump Program_LB_end at Confirm command
error

131

M16C/62 Group
3.3 Sample List

mov.w #0077h,r2 ; Program LB command
jsr U_Command_write ; command write
mov.w #00dO0h,r2 ; Confirm command
ste.w r2,[ala0] ; command write

mov.w #00ffh,r2 ; Read array command

jsr U_Command_write ; command write
U_Program_LB_end:

mov.w #0,start_cnt

mov.w #0,send_cnt

bclr send_flg

jmp U_Flash_func_end ;jump Flash_func_end

)

)

:+ Lock Bit enable +
U _LB_enable:
bclr fmcr2 ; Lock disable bit=0

mov.w #0,start_cnt

mov.w #0,send_cnt

bclr send_flg

jmp U_Flash_func_end ;jump Flash_func_end

1

)

;+ Lock Bit disable +
U_LB_disable:
bclr fmcr2 : Lock disable bit =0
bset fmcr2 : Lock disable Bit = 1

mov.w #0,start_cnt

mov.w #0,send_cnt

bclr send_flg

jmp U_Flash_func_end ;jump Flash_func_end

1

)

:+ ID check +
U_ID_check:
btst blank ; blank flag check
jc U_ID_check_end ;jump ID_check_end at blank
cmp.w #Offdfh,addr_| ; lower ID address check
jne U_ID_error ; jump ID_error at ID address error
cmp.w #0070fh,addr_h ; higher ID address check
jne U_ID_error ; jump ID_error at ID address error
U_ID_data_check:
mov.w #0000fh,al ; ID higher address --> al
mov.w #0ffdfh,r1 : ID lower address -->rl
mov.w #1,r3 ; check loop number (r3=1)
U_ID_check_loop:
mov.w rl,a0 irl-->al
Ide.b [ala0],rOl ; ID data read from Flash memory
mov.w r3,a0 1 r3-->al
cmp.b rOl,dataja0] ; compare ID data
jne U_ID_error ; jump ID_error at ID error
add.w #4,r1 ; 11 +4 increment (next ID address)
cmp.w #0ffe7h,rl ; r1=0ffefh ?
jne 7?2+ ; jump ? at not equal
mov.w #Offebh,rl ; r1=0ffeb at equal
s
add.w #1,r3 ; 13 +1 increment
cmp.w #8,r3 ;1r3=87?

jltu U_ID_check_loop ;jump ID_check_loop at r3<8
U_ID_OK:

bset srl0

bset sril ; ID check OK (sr11=1,sr10=1)

132

M16C/62 Group
3.3 Sample List

jmp U_ID_check_end ;jump ID_check end
U_ID_error:

bset srl0

belr srll ; ID error (sr11=0,sr10=1)
U_ID_check_end:

mov.w #0,start_cnt

mov.w #0,send_cnt

bclr send_flg

jmp U_Flash_func_end ;jump Flash_func_end

;+ Boot output +

U_Boot_output:

bclr fmer5 : Boot ROM select

mov.w #0,r3 : receive number

mov.b #0,addr_| ;addr_1=0
U_Boot_loop:

add.w #1,r3 : r3 +1 increment

mov.w r3,a0 1r3-->al

mov.w data[a0],r0

mov.b rOl,addr_lI[a0] ; Store address

cmp.w #2,r3 r3=27

jltu U_Boot_loop ; jJump Read_loop at r3<2

bset send_flg

mov.w #3,start_cnt

mov.w #258,send_cnt

jmp U_Flash_func_end ;jump Flash_func_end

;+ Read check +

U_Read_check:
mov.w #0,start_cnt
mov.w #2,send_cnt
bset send_flg
jmp U_Flash_func_end ;jump Flash_func_end

:+ Download +
U_Download:
bclr fmer5 : Boot ROM select

jmp.a U_Download_program ; jump Download_program

;+ Version output +

U_Ver_output:
mov.w #0,start_cnt
mov.w #8,send_cnt
bset send_flg
jmp U_Flash_func_end ;jump Flash_func_end

o

+ Subroutine : Command write +

o

U_Command_write:

btst fmcrO ; RY/BY status check
jz U_Command_write

mov.w addr_l,a0 ;addr_I,m --> a0
mov.b addr_h,al ;addr h -->al
ste.w r2,[ala0] ; command write
rts

133

M16C/62 Group
3.3 Sample List

1

1

:+ Main Init first - UART mode - +

U_SIO_init_first:
bclr freq_set0
bclr freq_setl
bclr freq_set2
mov.b #100,data_BPS

; freq set flag clear

; 9600bps for 16MHz

jsr Initialize_3 ; UART mode Initialize

jsr U_SIO_rev

mov.w rcv_d,r0

cmp.b #0bOh,rO0l

jeq U_Freq_Getl

cmp.b #0f4h,r0l

jne U_Freq_Get3
jmmmee 10MHZ -----===--emmmmeem :

mov.b #64,buff ; 9600bps

mov.b #32,buff+1
mov.b #15,buff+2
mov.b #10,buff+3
mov.b #0bO0h,r0l

jmp U_Freq_Get2

jmm——- 16MHZ --------m-mmmmem- ;

U_Freqg_Getl:
mov.b #103,buff ;
mov.b #50,buff+1
mov.b #25,buff+2
mov.b #17,buff+3

U_Freq_Get2:
mov.b #0b0h,r0l
mov.b buff,data_BPS

jsr U_blank_end ;
; "BOh" get flag set

bset freq_setO
mov.b #0bOh,cmd_d
jmp U_Flash_set

U_Freq_Get3:
mov.b #80h,data_BPS
mov.b #01000000b,r1l
mov.b #10000000b,r1h
jsr U_blank_end
jmp U_Loop_main

19200bps
38400bps
57600bps

9600bps

; 19200bps
; 38400bps
; 57600bps

UART mode Initialize

; counbterl,?2 reset

4+ SIO Init - UART mode -

+
U_SIO_freq:
btst freq_set2 ; freq fixed ?

jc U_SIO_rcv_first_data_set; jump Command_check_2 at data

btst freq_set0

jz U_Freqg_check
cmp.b #00h,r0l ;
bmgtu freq_set2

; jump U_Freq_check

"00h" get?

jne U_SIO_rev_first_data_set ; jump U_Freq_check

bclr freq_set0
mov.b #0ffh,rOl
mov.b #01000000b,r1l
mov.b #10000000b,r1h
mov.b #80h,data_BPS
jmp U_Freq_check

; dummy data set

; counbterl,?2 reset

134

M16C/62 Group
3.3 Sample List

;+ Baud rate change - UART mode +

U_BPS_BO:
U_BPS BI:
U_BPS_B2:
U_BPS_B3:

mov.w #0,start_cnt

mov.w #1,send_cnt

bset send_flg

jmp U_Flash_func_end ;jump Flash_func_end
e L L L T o o o
;+ Freq check - UART mode - +

e L L T o o o
U_Freqg_check:

bclr re_ulcl ; Reception disabled

btst 8,r1 ; counter = 8 times

jc U_Freqg_check_4

btst freq_setl

jc U_Freqg_check_1

cmp.b #00h,r0l ; "00h"?

jeq U_Freq_check_3

jmp U_Freq_check_2
U_Freqg_check_1:

btst 13,r0 ; fer_ulrb

jz U_Freq_check_3
U_Freq_check_2:

or.b rih,ril
U_Freqg_check_3:

xor.b data BPS,rll

: rll = counterl or counter2

; Baud = Baud xor r1l

mov.b rll,data BPS : data set
mov.b rlh,ril

rot.b #-1,rll

rot.b #-1,r1h ; counter sift

rot.b #-1,rll
jmp U_Freq_check_6

U_Freqg_check_4:
btst freq_setl
jc U_Freg_set 1
bset freq_setl
cmp.b #00h,r0l ; "ooh"?
jeqg U_Freq_check_5
xor.b data_BPS,rlh
mov.b rlh,data_BPS

U_Freqg_check_5:
mov.b data BPS,data BPS+1 : Min Baud --> data+1
mov.b #01000000b,r1l ; counter reset
mov.b #10000000b,r1h
mov.b #01111111b,data_ BPS ; Reset

U_Freqg_check_6:
jsr U_blank_end

?:
btst p6_6
iz ?-
bset re_ulcl
jmp U_Loop_main

; Min-Baud get ?
: Yes , finished

; UART mode Initialize

; Reception enabled

U_Freq_set_1:
btst 13,10
jz U_Freqg_set_2

; fer_ulrd

135

M16C/62 Group
3.3 Sample List

xor.b data_BPS,rlh

mov.b rlh,data BPS
U_Freq_set_2:

bset freq_set2

mov.b data_BPS+1,rll

sub.b data_BPS,ril

shl.b #-1,r1l

add.b data BPS,rll

mov.b rll,buff ; 9600bps

shl.b #-1,r1l ; 19200bps

mov.b rll,buff+1

shl.b #-1,r1l ; 38400bps

mov.b rll,buff+2

mov.b buff,rOl ; 57600bps
mov.b #0,r0Oh

divu.b #6

mov.b rOl,buff+3

mov.b buff,data_BPS

mov.b #0bOh,rOl : "BOh" set

jsr U_blank_end ; UART mode Initialize

jmp U_BPS_SET_data
B a0 0 o
;+ Subroutine : serial I/O send - UART mode +
B T o o S
U_SIO_send:

bclr re_ulcl

bset te_ulcl

mov.b send_d,ultb ; transmit buffer register

?:
btst ti_ulcl ; transmit buffer empty?
jnc ?-
rts

e L o 0
+ Subroutine : serial I/O send - UART mode +
B T o o o o
U_SIO_send_only:

mov.b send_d,ultb ; transmit buffer register

?:
btst ti_ulcl ; transmit buffer empty?
jnc ?-
rts

e L o o o
;+ Subroutine : serial I/O receive - UART mode +
e L o o o
U_SIO rcv:

bclr te ulcl

bset re ulcl

™
btst ri_ulcl ; receive complete?
jnc ?-
mov.w ulrb,rcv_d
rts

)

Mo o o 0
;+ Subroutine : serial 1/0 receive - UART mode +
Mo o o 0
U_SIO_rcv_only:
?:

btst ri_ulcl ; receive complete?

jnc ?-

136

M16C/62 Group
3.3 Sample List

o o

+

T e e o B T o o

mov.w ulrb,rcv_d
rts

Subroutine : serial I/0 receive - UART mode

U_SIO_exit:

btst txept_ulcO
jnc U_SIO_exit
rts

+

+

Vector Table

.section inter,romdata
.org Vector+(5*4)
Jdword Reset|0ff000000h ; WDT

.org Vector+(7*4)
.lword Reset|0ff000000h ; NMI
.lword Reset : Reset

.end

137

3

M16C/62 Group
3.3 Sample List

Header

* * * *

* file name : definition of M16C/62 Flash

* * * *

rhkk *kkkkkkkkkkhhkkhhkkhrrkk
1

*kkkkkkkhkkhhkhhkkkhrrk

1

BUSY output

busy .btequ 4,03ECh

1

1

; p6_4
busy d .btequ 4,03EEh ; pd6_4
Serial 1/0O select bit
s_mode .btequ 5,03ECh ;p6_5
s_mode_d .btequ 5,03EEh ;pd6_5

1

1

define of symbols

Ram_TOP .equ 000400h
Ram_END .equ O00fffh
Istack .equ 003000h
Version .equ 0fe000h
Boot TOP .equ 0fe020h
Trans_TOP1 .equ 0fe310h
Trans_END1 .equ 0feb90h
Trans_TOP2 .equ 0fedOOh
Trans_END2 .equ 0ff630h
Vector .equ Offfdch

Download_program .equ 0fe200h

U_Download_program .equ

SB_base .equ 000400h

0fe270h

Ram_progTOP .equ 000600h
Ram_progEND .equ 000e00h

1

.section memory,data
.org Ram_TOP

SRD: .blkb 1
SRD1: .blkb 1
ver: .blkb 10
SF: .blkb 1

unuse: .blkb 4
addr_I: .blkb 1
addr_m: .blkb 1
addr_h: .blkb 1
data: .blkb 300
buff: .blkb 20
ID_err: .blkb 1
sum: .blkb 2

rcv_d: .blkb 2

send d: .blkb 1
t flg: .blkb 1

cmd_d: .blkb 1
loop_cnt: .blkw 1
send_cnt: .blkw 1
start_cnt: .blkw 1

M16C/62 Group
3.3 Sample List

SRD1 bak: .blkb 3
data BPS: .blkb 2
sr0 .btequ 0,SRD
srl .btequ 1,SRD
sr2 .btequ 2,SRD
sr3 .btequ 3,SRD
sr4 .btequ 4,SRD
sr5 .btequ 5,SRD
sr6 .btequ 6,SRD
sr7 .btequ 7,SRD
sr8 .btequ 0,SRD1
sr9 .btequ 1,SRD1
sr1l0 .btequ 2,SRD1
srll .btequ 3,SRD1
srl2 .btequ 4,SRD1
srl3 .btequ 5,SRD1
srl4 .btequ 6,SRD1
srl5 .btequ 7,SRD1

ram_check .btequ 0,SF
blank .btequ 1,SF

old_mode .btequ 2,SF
freq_set0 .btequ 3,SF
freq_setl .btequ 4,SF
freq_set2 .btequ 5,SF

tout_flg .btequ O, flg
dwn_flg .btequ 1, flg
cmd_flg .btequ 2t flg
send_flg .btequ 3.t _flg
rcv_flg .btequ 4.t flg
tint_flg .btequ 5,t flg

139

M16C/62 Group
3 3.4 Precautions

3.4 Precautions

This section describes precautions to be observed when controlling the M16C/62's internal flash memory.

When Powering On/Off

When powering on/off, pay attention to the following:

(1) Be careful that noise will not get into the control pins (WE, CE, OE). If a noise pulse is applied to the
control pins when turning the power on or off, a program/erase error will occur, which in the worst case
may destroy the memory data.

(2) A finite wait time is required before you can start read or program/erase operation after power-on.
Specifically, a wait time of 2uis is required before read or program/erase operation can be started after
Vcc reached Vcemin (3.0 V).

140

Chapter 4

M16C/80 Group

4.1 Outline of Hardware

4.2 Developing Boot Program
4.3 Sample Program List

4.4 Precautions

4

M16C/80 Group
4.1 Outline of Hardware

4.1 Outline of Hardware

The M16C/80 group contains DINOR-type flash memory.

This section shows hardware information about the M16C/80 group which we think is necessary to create a

boot program.

Internal Flash Memory Outline

Table 4.1.1 shows the outline performance of M30800FC/M30803FC of the M16C/80 group.

Table 4.1.1. Outline Performance of M30800FC and M30803FC

Item Performance

Power supply voltage 5V version:

f(XIN)=20MHz, without wait, 4.2V to 5.5V
f(XIN)=10MHz, without wait, 2.7V to 5.5V (under planning)

Program/erase voltage 5V version: 4.2V to 5.5V

f(XIN)=12.5MHz, with one wait
f(XIN)=6.25MHz, without wait, 2.7 to 5.5V

Flash memory operation mode | Three modes (parallel /0, standard serial I/O, CPU rewrite)

Erase block | User ROM area | See Figure 4.1.1

division

Boot ROM area One division (8 Kbytes) (Note 1)

Program method In units of pages (in units of 256 bytes)

Erase method Collective erase/block erase

Program/erase control method | Program/erase control by software command

Protect method Protected for each block by lock bit

Number of commands 8 commands

Program/erase count 100 times

ROM code protect Parallel /0 and standard serial modes are supported.

Note: The boot ROM area contains a standard serial /O mode control program which is stored in
it when shipped from the factory. This area can be erased and programmed in only parallel

1/0 mode.

142

M16C/80 Group
4.1 Outline of Hardware

Memory Map

The user ROM of M30800FC has six blocks as block 0 to block 5 and that of M30803FC has seven blocks
as block 0 to block 6. Figure 4.1.1 shows the memory map.

0FC000016
Block 6 : 64K bytes
O0FD000016
Block 5 : 64K bytes
OFE000016
Block 4 : 64K bytes Note 1: The boot ROM area can be rewritten in
only parallel input/output mode. (Access
to any other areas is inhibited.)
Note 2: To specify a block, use the maximum
OFF000016 address in the block that is an even
Block 3 : 32K bytes address.
Flash memory | Flash memory
size start address OFF800016
OFE0000 Block 2 : 8K bytes
128Kbytes FE 16
Y OFFAD0D16 Block 1 : 8K bytes
256Kbytes OFC000016 OFFCO00016 Block 0 : 16K bytes OFFE00016 oK bytes
OFFFFFF16 OFFFFFF16
User ROM area Boot ROM area

Figure 4.1.1 Memory Map

143

A7

é'NaTov

M16C/80 Group
4 4.1 Outline of Hardware

Related Register Configuration

Figure 4.1.2 shows related registers for making user boot program.

Flash memory control register 0

boot mode)

Nothing is assigned.
When write, set "0". When read, values are indeterminate.

b7 b6 b5 b4 b3 b2 bl bO Symbol Address When reset

| 0| | | | | FMRO 037716 XX0000012
¢+ 4| Bit symbol Bit name Function Ri W
0! [AR |RviBvstawsfiag | O Busy (being writen or erased) |
oo 1: Ready !
FMRO1 |CPU rewrite mode 0: Normal mode
T select bit (Note 1) (Software commands invalid)
Do 1: CPU rewrite mode 0.0
[(Software commands acceptable)|
EMRO2 | Lock bit disable bit 0: Block lock by lock bit data is
R (Note 2) enabled
Do 1: Block lock by lock bit data is 0.0
R disabled
A EMR03 | Flash memory reset bit | 0: Normal operation o0
(Note 3) 1: Reset !
. Reserved bit Must always be set to “0” 0 0
FMRO5 |User ROM area select bit (| 0: Boot ROM area is accessed
Por Tt Note 4) (Effectiveinonly | 1: User ROM area is accessed 0.0

Note 1: For this bit to be set to “1”, the user needs to write a “0” and then a “1” to it in
succession. When it is not this procedure, it is not enacted in “1”. This is necessary to
ensure that no interrupt or DMA transfer will be executed during the interval. Use the
control program except in the internal flash memory for write to this bit.

Note 2: For this bit to be set to “1”, the user needs to write a “0” and then a “1” to it in succession
when the CPU rewrite mode select bit = “1”. When it is not this procedure, it is not
enacted in “1”. This is necessary to ensure that no interrupt or DMA transfer will be
executed during the interval.

Note 3: Effective only when the CPU rewrite mode select bit = 1. Set this bit to O subsequently
after setting it to 1 (reset).

Note 4: Use the control program except in the internal flash memory for write to this bit.

Flash memory control register 1
b7 b6 b5 b4 b3 b2 bl b0

Symbol Address When reset
| 0| 0| 0| 0| | 0| 0| 0| FMR1 037616 XXXXOXXX2
© 1 1+ | Bitsymbol | Bit name Function RIW
i1 ---t--t-f Reserved bit Must always be set to “0” -

FMR13 [Flash memory power 0: Flash memory power supply is :
supply-OFF bit (Note) connected 0.0

1: Flash memory power supply-off

------------------------ Reserved bit Must always be set to “0” -0

Note : For this bit to be set to “1”, the user needs to write a “0” and then a “1” to it in
succession. When it is not this procedure, it is not enacted in “1”. This is necessary to
ensure that no interrupt or DMA transfer will be executed during the interval. Use the
control program except in the internal flash memory for write to this bit.

During parallel I/O mode,programming,erase or read of flash memory is not controlled by
this bit,only by external pins.

Figure 4.1.2 Related Register Configuration

144

M16C/80 Group
4 4.1 Outline of Hardware

Flash Control Circuit
The M16C/80's flash control circuit controls the block erase and page program operations performed on the
internal flash memory. Operation modes are selected by entering software commands to the flash control
circuit. The status shows the status of the flash control circuit, as well as the status of program and block
erase operations performed by the flash control circuit.
To enter commands to the flash control circuit, write the command to flash memory address.

Software commands

Flash memory operations are selected by writing a software command to the flash control circuit. The
table below lists the operations performed by software commands.

Table 4.1.2 Software Command List

First bus cycle Second bus cycle Third bus cycle
Command Mode | Address (D(I)D?gam) Mode | Address (D(?te;tam) Mode |Address (D(I):) taot%n
Read array Write X (Note 6) FFie
Read status register Write X 7016 Read X SRD (Note 2)
Clear status register Write X 5016
Page program (Note 3) Write X 4116 Write | WAQ(Note 3) WDO (Note 3) | Write WAL WD1
Block erase Write X 2016 Write | BA (Note4) | DO16
Erase all unlock block Write X AT16 Write X D016
Lock bit program Write X 7716 Write BA D016
Read lock bit status Write X 7116 Read BA De (Note 5)

Note 1: When a software command is input, the high-order byte of data (Ds to D15) is ignored.

Note 2: SRD = Status Register Data

Note 3: WA = Write Address, WD = Write Data
WA and WD must be set sequentially from 0016 to FE16 (byte address; however, an even address). The page size is
256 bytes.

Note 4: BA = Block Address (Enter the maximum address of each block that is an even address.)

Note 5: Ds corresponds to the block lock status. Block not locked when Ds = 1, block locked when Ds = 0.

Note 6: X denotes a given address in the user ROM area (that is an even address).

Flash memory address

The table below shows the flash memory capacity of each block (address space, number of pages) and
the block addresses of each block.

Table 4.1.3 Flash Memory Address

Size Page No. Address Block address
Block 6 64 Kbytes 256 FC000016—FCFFFF16 FCFFFEz16
Block 5 64 Kbytes 256 FD000016—FDFFFF16 FDFFFE16
Block 4 64 Kbytes 256 FEO00016—FEFFFF16 FEFFFE16
Block 3 32 Kbytes 128 FF000016—FF7FFF16 FF7FFE16
Block 2 8 Kbytes 32 FF800016—FF9FFF16 FF9FFE16
Block 1 8 Kbytes 32 FFAO00016—FFBFFF16 FFBFFE16
Block 0 16 Kbytes 64 FFCO00016—-FFFFFF16 FFFFFE16

145

M16C/80 Group
4 4.1 Outline of Hardware

Read Array Command (FF 16)

The read array mode is entered by writing the command code “FF16” in the first bus cycle. When an even
address to be read is input in one of the bus cycles that follow, the content of the specified address is read
out at the data bus (D0-D15), 16 bits at a time. The read array mode is retained intact until another
command is written.

Read Status Register Command (70 16)

When the command code “7016" is written in the first bus cycle, the content of the status register is read out
at the data bus (DO-D7) by a read in the second bus cycle.
The status register is explained in the next section.

Clear Status Register Command (50 16)

This command is used to clear the bits SR3 to 5 of the status register after they have been set. These bits
indicate that operation has ended in an error. To use this command, write the command code “5016” in the
first bus cycle.

Page Program Command (41 16)

Page program allows for high-speed programming in units of 256 bytes. Page program operation starts
when the command code “4116” is written in the first bus cycle. In the second bus cycle through the 129th
bus cycle, the write data is sequentially written 16 bits at a time. At this time, the addresses A0-A7 need to
be increased by 2 from “0016” to “FE16.” When the system finishes loading the data, it starts an auto write
operation (data program and verify operation).

Whether the auto write operation is completed can be confirmed by reading the status register or the flash
memory control register 0. At the same time the auto write operation starts, the read status register mode
is automatically entered.

After the auto write operation is completed, the status register can be read out to know the result of the
auto write operation. For details, refer to the section where the status register is detailed.

The status register bit 7 (SR7) is set to 0 at the same time the auto write operation starts and is returned to
1 upon completion of the auto write operation. In this case, the read status register mode remains active
until the Read Array command (FF16) or Read Lock Bit Status command (7116) is written or the flash
memory is reset using its reset bit.

The RY/BY status flag of the flash memory control register 0 is O during auto write operation and 1 when
the auto write operation is completed as is the status register bit 7.

Figure 4.1.3 shows an example of a page program flowchart.

Each block of the flash memory can be write protected by using a lock bit. For details, refer to the section
where the data protect function is detailed.

Additional writes to the already programmed pages are prohibited.

146

M16C/80 Group
4.1 Outline of Hardware

[Start

Write 4116

datan

Write address n and

n=n+2

NO

RY/BY status flag
=1?

Check full status

-

Page program
completed

]

Figure 4.1.3 Page Program Flowchart

147

M16C/80 Group
4 4.1 Outline of Hardware

Block Erase Command (20 16/D016)

By writing the command code “2016” in the first bus cycle and the confirm command code “D016” in the
second bus cycle that follows to the block address of a flash memory block, the system initiates an auto
erase (erase and erase verify) operation.

Whether the auto erase operation is completed can be confirmed by reading the status register or the flash
memory control register 0. At the same time the auto erase operation starts, the read status register mode
is automatically entered, so the content of the status register can be read out. The status register bit 7
(SR7) is set to 0 at the same time the auto erase operation starts and is returned to 1 upon completion of
the auto erase operation. In this case, the read status register mode remains active until the Read Array
command (FF16) or Read Lock Bit Status command (7116) is written or the flash memory is reset using its
reset bit.

The RY/BY status flag of the flash memory control register 0 is 0 during auto erase operation and 1 when
the auto erase operation is completed as is the status register bit 7.

After the auto erase operation is completed, the status register can be read out to know the result of the
auto erase operation. For details, refer to the section where the status register is detailed.

Figure 4.1.4 shows an example of a block erase flowchart.

Each block of the flash memory can be protected against erasure by using a lock bit. For details, refer to
the section where the data protect function is detailed.

[Start]
|

Write 7716

Write D016
to block address

[«
<

RY/BY status flag
=1?

[Lock bit program in]
error

Lock bit program
completed

Figure 4.1.4 Block Erase Flowchart

148

M16C/80 Group
4 4.1 Outline of Hardware

Erase All Unlock Blocks Command (A7 16/D016)

By writing the command code “A716” in the first bus cycle and the confirm command code “D016” in the
second bus cycle that follows, the system starts erasing blocks successively.

Whether the Erase All Unlock Blocks command is terminated can be confirmed by reading the status
register or the flash memory control register 0, in the same way as for block erase. Also, the status register
can be read out to know the result of the auto erase operation.

When the lock bit disable bit of the flash memory control register O = 1, all blocks are erased no matter how
the lock bit is set. On the other hand, when the lock bit disable bit = 0, the function of the lock bit is effective
and only unlocked blocks (where lock bit data = 1) are erased.

Lock Bit Program Command (77 16/D016)

By writing the command code “7716" in the first bus cycle and the confirm command code “D016” in the
second bus cycle that follows to the block address of a flash memory block, the system sets the lock bit for
the specified block to 0 (locked).

Figure 4.1.5 shows an example of a lock bit program flowchart. The status of the lock bit (lock bit data) can
be read out by a Read Lock Bit Status command.

Whether the lock bit program command is terminated can be confirmed by reading the status register or
the flash memory control register 0, in the same way as for page program.

For details about the function of the lock bit and how to reset the lock bit, refer to the section where the data
protect function is detailed.

[StTrt J

Write 7716

Write D016
to block address

[«
<

RY/BY status flag
=1?

[Lock bit program in J
error

Lock bit program
completed

Figure 4.1.5 Lock Bit Program Flowchart

149

M16C/80 Group
4.1 Outline of Hardware

Read Lock Bit Status Command (71 16)

By writing the command code “7116” in the first bus cycle and then the block address of a flash memory
block in the second bus cycle that follows, the system reads out the status of the lock bit of the specified
block on to the data (D6).

Figure 4.1.6 shows an example of a read lock bit program flowchart.

[St|art]

Write 7116

Enter block address

(Note)
D6 =02
YES
[Blocks locked] [Blocks not Iocked]

Note: Data bus bit 6.

Figure 4.1.6 Read Lock Bit Program Flowchart

Data Protect Function (Block Lock)

Each block in Figure 4.1.1 has a nonvolatile lock bit to specify that the block be protected (locked) against

erase/write. The Lock Bit Program command is used to set the lock bit to O (locked). The lock bit of each

block can be read out using the Read Lock Bit Status command.

Whether block lock is enabled or disabled is determined by the status of the lock bit and how the flash

memory control register 0’s lock bit disable bit is set.

(1) When the lock bit disable bit = 0, a specified block can be locked or unlocked by the lock bit status (lock
bit data). Blocks whose lock bit data = 0 are locked, so they are disabled against erase/write.
On the other hand, the blocks whose lock bit data = 1 are not locked, so they are enabled for erase/
write.

(2) When the lock bit disable bit = 1, all blocks are unlocked regardless of the lock bit data, so they are
enabled for erase/write. In this case, the lock bit data that is O (locked) is set to 1 (unlocked) after
erasure, so that the lock bit-actuated lock is removed.

150

M16C/80 Group
4 4.1 Outline of Hardware

Status Register

The status register indicates the operating status of the flash memory and whether an erase or program
operation has terminated normally or in an error. The content of this register can be read out by only
writing the read status register command (7016). Table 4.1.3 details the status register.

The status register is cleared by writing the Clear Status Register command (5016).

After a reset, the status register is set to “8016.”

Each bit in this register is explained below.

Write state machine (WSM) status (SR7)
After power-on, the write state machine (WSM) status is set to 1.
The write state machine (WSM) status indicates the operating status of the device, as for output on the
RY/BY pin. This status bit is set to 0 during auto write or auto erase operation and is set to 1 upon
completion of these operations.

Erase status (SR5)
The erase status informs the operating status of auto erase operation to the CPU. When an erase error
occurs, itis setto 1.
The erase status is reset to 0 when cleared.

Program status (SR4)
The program status informs the operating status of auto write operation to the CPU. When a write error
occurs, itis setto 1.
The program status is reset to 0 when cleared.
When an erase command is in error (which occurs if the command entered after the block erase com-
mand (2016) is not the confirm command (D016), both the program status and erase status (SR5) are set
to 1.
When the program status or erase status = 1, the following commands entered by command write are not
accepted.
Also, in one of the following cases, both SR4 and SR5 are set to 1 (command sequence error):
(1) When the valid command is not entered correctly
(2) When the data entered in the second bus cycle of lock bit program (7716/D016), block erase (2016/
DO01s), or erase all unlock blocks (A716/D016) is not the D016 or FF16. However, if FF16 is entered,
read array is assumed and the command that has been set up in the first bus cycle is canceled.

Block status after program (SR3)
If excessive data is written (phenomenon whereby the memory cell becomes depressed which results in
data not being read correctly), “1” is set for the program status after-program at the end of the page write
operation. In other words, when writing ends successfully, “8016” is output; when writing fails, “9016” is
output; and when excessive data is written, “8816” is output.

151

M16C/80 Group
4.1 Outline of Hardware

Table 4.1.4 Definition of Each Bit in Status Register

Each bit of Definition

SRD Status name nqn no"
SR7 (bit7) | Write state machine (WSM) status Ready Busy
SR6 (bit6) Reserved - -
SR5 (bit5) Erase status Terminated in error | Terminated normally
SR4 (bit4) Program status Terminated in error | Terminated normally
SR3 (hit3) Block status after program Terminated in error | Terminated normally
SR2 (bit2) Reserved - -
SR1 (bitl) Reserved - -
SRO (bit0) Reserved - -

Full Status Check

By performing full status check, it is possible to know the execution results of erase and program operations.
Figure 4.1.7 shows a full status check flowchart and the action to be taken when each error occurs.

(Read status register]

SRa=1 and SREYES [Command] . . Execute the clear status register command (5016)

sequence error to clear the status register. Try performing the
operation one more time after confirming that the
command is entered correctly.

. . Should a block erase error occur, the block in error
cannot be used.

)

Block erase error J

Program error (page|. . . Execute the read lock bit status command (7116)

or lock bit) to see if the block is locked. After removing lock,
execute write operation in the same way. If the
error still occurs, the page in error cannot be
used.

)

(block) operation one more time. If the same error still

[Program error J . _After erasing the block in error, execute write
occurs, the block in error cannot be used.

[End (block erase, program)]

Note: When one of SR5 to SR3 is set to 1, none of the page program, block erase,
erase all unlock blocks and lock bit program commands is accepted. Execute the
clear status register command (5016) before executing these commands.

Figure 4.1.7 Full Status Check Flowchart and Remedial Procedure for Errors

152

M16C/80 Group
4 4.2 Developing The Boot Program

4.2 Developing The Boot Program

The standard boot program that was built into the boot ROM area of the flash microcomputer when shipped
from the factory can be used to program/erase the flash memory. In this case, the hardware resources
(internal functions) used for control are fixed. Therefore, if you want to control flash memory in the way
suitable for your system, you need to create a boot program for yourself.

This section shows an algorithm for the boot program (e.g., for erase and program) that you must at least
have in order to control the flash memory of the M16C/80 group.

System Example

By using the internal peripheral function of UARTO and a serial programmer to control flash memory, the
following shows an example of device connections is shown in Figure 4.2.1. Assignments of internal
peripheral functions are listed in Table 4.2.1.

e
:

(Clockinput)
BUSY output RTS1(BUSY)

(Data input) p=| RXD1
M16C/80 flash

i memory version
é CNVss NMI

»| CLK1

P50(CE)

P55(EPM)

(1) Control pins and external circuitry will vary according to peripheral unit (programmer). For more
information, see the peripheral unit (programmer) manual.
(2) In this example, the microprocessor mode and standard serial /O mode are switched via a switch

Figure 4.2.1 Example of Device Connection

Table 4.2.1 Assignments of Internal Peripheral Functions

Peripheral function Usage Setting example
Used for transfer/receive of serial * Clock synchronous serial 1/0

UART1 .
programmer and data External clock is used

Timer A0 Used for time-over judgment of serial * One-shot timer mode
transfer/receive * 300 ps(when 20MHz)

153

M16C/80 Group
4 4.2 Developing The Boot Program

Flow of The Main Processing

Figure 4.2.2 shows a flow of the main processing.
After initializing the CPU, transfer the write control program to RAM. When transfer is finished, jump to
RAM and execute the write control program from RAM.

RAM transfer program on ROM Write control program on RAM

(CPU programming mod@ g ><f>
I !

| ‘ Initial setting 2 | |

| ‘ Initial setting 1 | | —>|
, :

| ‘ Transfer to RAM | | ; | ‘ Data receive | |
JMP to : | ‘ Command processing | |
RAM ----==mmmmmmmmnd

| ‘ Data transfer | |

| ‘ Time out processing | |

Figure 4.2.2 Flow of The Main Processing

154

M16C/80 Group
4.2 Developing The Boot Program

Initialization 1 (CPU, Memory)

The CPU and RAM are initialized. Figure 4.2.3 shows a flow of initialization 1. To clear RAM, use of string
instructions (e.g., SSTR.W) will prove effective.

Initial setting 1

| Set ISP and SB | Function select register A0 (PSO: address 03B016)
b4
HNEEREEE
EEEEEEEEEEEEE Set P64 1/0 port
| Set 'H" to BUSY pin | Port 6 (P6: addrifs 03EC16)

""""""" Set 'H' data
Port 6 direction register (PD6: address 032C16)
b4

HENENNEN

R T Set output port
RAM clear RO #0000H | <— Setinitial value

Al #0400H | <— Settop address of RAM

R3 I:l <— Programing control program size /2+a

After setting these registers, execute SSTR.W

Protect register (PRCR: address 000A16)

bl bo

LT [e]s

i i.System clock write enabled

- ----Processor mode register write enabled
Set system clock System clock control register 0 (CMO: address 000616)

control register b7 b6 b5 b4 b3 b2 bl b0
[o] o] o] o] 1]0]0]0]

Protect release

System clock control register 1(CM1: address 000716)
b7 b6 b5 b4 b3 b2 bl bo

[o[o[2] o] o] 0]0]0]

System clock control register 1(CM1: address 000C16)
b7 b6 b5 b4 b3 b2 bl bo

o[o[o[o[o[1]0]0]
L__l..1._1_ 1. Divided by-4 mode

Set processor mode Processb?r [Eodee L«fggtebrz Og—’l\ﬂg) address 000416)

register
[o[o[ofofo]o]o]o]
Processor mode register 1(PM1: address 000516)
b7 b6 b5 b4 b3 b2 bl bo
(] 2][0]o]o]ofo]o]
| Set protect | ERREEEEE LR LR 1 wait

Figure 4.2.3 Initialization 1

155

4

M16C/80 Group
4.2 Developing The Boot Program

Transfer to RAM Area

The version information of write program and write control program are transferred to RAM. After transferring,
jump to write control program on RAM. To transfer, use of string instructions will prove effective.

Figure 4.2.4 shows the algorithm.

(Transfer to RAM)
[
| Transfer version information|

| Transfer preparing |

Transfer

Jump to RAM area
I

C END)

Figure 4.2.4 Transfer to RAM Area

Initialization 2

ROHl:I < Set source address (high-order 4 bits)

AO I:l <— Set source address (low-order 16 bits)

Al I:l <— Set destination address
R3 |:| <— Programing control program size /2+a

Execute SMOVF.W

JMP

Set of write to Flash memory and initialization of serial communication are executed. To switch erase/write
mode, clear the CPU rewrite mode select bit (bit 1 of address 37716), then set 1.

Figure 4.2.5 shows a algorithm.

(Initial setting 2)

| Select user ROM area |

Change to CPU rewrite
mode

Go to initial setting of
peripheral function

Figure 4.2.5 Initialization 2

Flash memory control register 0 (address 037716)
b7 b6 b5 b4 b3 b2 bl bo

HEENEEER

I Select user ROM area

Flash memory control register 0 (address 037716)
b7 b6 b5 b4 b3 b2 bl b0

| | | | | | |$% Write '0', and then '1".

[TTTTTTET

""" CPU rewrite mode

156

M16C/80 Group
4.2 Developing The Boot Program

Initialization 2 (Peripheral Function)

The peripheral functions used for programming flash memory is initialized. Figure 4.2.6 shows initialization
of UART1 for data transmit and timer AO for time-out calculation.

From initial setting 2

Set UART1

Set timer

Function select register AO (PS0: address 03B016)
b7 b6 b5 b4 b3 b2 bl bo

[aLe[o[[o[o[o[o]

- P64 peripheral function output (PSLO_4 enabled)
- P65 1/0 port
------------------------ P67 TxD1 output

Function select register BO (PSLO: address 03B216)
b7 b6 b5 b4 b3 b2 bl bO

Lo o[o[o] o[oofo|
e RTS1 output
UART1 transmit/receive mode register (U1IMR: address 036816)

b7 b6 b5 b4 b3 b2 bl b0
Lo[o[o] o]] 0] o] 1]
' L_.l__I..Clock synchronous serial I/0 mode
------------ External clock
UART1 transmit/receive control register 0 (U1CO: address 036C16)

b7 b6 b5 b4 b3 b2 bl bo

' boLeilo(f)
i RTS function
R AREEEEEE CTS/RTS function enabled
! I TxD CMOS output
B L L L e LSB first
UART transmit/receive control register 2 (UCON: address 037016)

b7 b6 b5 b4 b3 b2 bl b0

¢ 1 t.-t. (Transfer buffer empty)
------------ (Continuous receive mode disabled)
Vo S CLK1 clock output
B R EEEE CLK normal mode first
..................... CTS/RTS shared pin
UART1 transmit/receive control register 1 (U1C1: address 036D16)
b7 b6 b5 b4 b3 b2 bl b0

[o[of of o] o] 2] o] 1]

: - Transfer enabled
-------- Receive enabled

Timer AO mode register (TAOMR: address 035616)
b7 b6 b5 b4 b3 b2 bl b0
Lo[o[o] o] o] 0] 1] 0]

R TEEE One-shot timer mode
--------- No pulse output
-------------- One-shot start flag is valid
------------------------ f1

Timer AO register (TAO: address 034716,034616)

#6000-1 <— When 20MHz, 300ps

Figure 4.2.6 Initialization 2 (Peripheral Function)

157

M16C/80 Group
4 4.2 Developing The Boot Program

Receiving Commands

Commands are received from the serial programmer.

Write dummy data to the transmit buffer, enable reception (the BUSY signal = low), and wait for data from
the serial programmer. At the timing of start reception (the BUSY signal = high), the timer used to check
data reception time-out is started. When data is not received within 300 psec, a time-out error is judged
and time-out processing flag is set.

When command reception flag is set (cmd_flg = "1"), processing jumps to data reception cycle

number check processing. When it is not set (cmd_flg = "0"), command reception flag is set. After that,
jump address is set based on the received serial command and processing jumps to the corresponding
process. When the serial command is not matched, serial initialization flag is set and processing is ended.
When the number of receive cycle matches to the prescribed number of serial reception command, command
reception flag is initialized (cmd_flg = "0") and processing is ended.

Figure 4.2.7 shows a processing flow.

158

M16C/80 Group
4 4.2 Developing The Boot Program

(Data receive)

Is command receive

Flag initialization |
[

Write to transfer buffer
register

Set time-out
processing flag

| Read receive buffer
‘ r3<=3

| Set write address |

\
| Write to data buffer |

| Loop counter + 1 |

Is command
eceive flag set?

Set command receive
flag

Set jump address

Address setting
finished?

FFh [.
|| ID command receive ”7@
Set serial

initialization flag 7@

Command except FFh | -
I| Set reception cycle ”7
o

Except command

Reception cycle
completed?

| Flag initialization |
1

(RTS)

Figure 4.2.7 Data Reception

159

4

M16C/80 Group

4.2 Developing The Boot Program

ID Check Receive Process

ID check data is received. Transferred ID data is saved to RAM.

Figure 4.2.8 shows a process flow.

ID check receive
processing

r3=0

Transfer/receive cycles

Set ID size (al)
temporarily

r3=al

r3=ID size(al)?

register

Write to transmit buffer

| Start one-shot timer |

Set time-out
processing flag

Read the receive buffer
register

RAM

Store reception data to

| r3=r3+1

| Set "ID size+4" to al |

\

Figure 4.2.8 ID Data Receive Process

Receive Cycle Setting Process

Data receive cycle is set by referring to transferred serial command.

Figure 4.2.9 shows process flow.

(Reception cycle setting)

Set the prescribed receive
cycle to receive cycle buffer

(End)

Figure 4.2.9 Receive Cycle Setting Process

160

M16C/80 Group
4 4.2 Developing The Boot Program

Command Processing

Flash control command is written into memory by referring to received serial programmer command.
The ID check is checked as to whether it has been completed or not. (ID check completed bits:

SR10 =1, SR11 = 1) When the ID check has been completed, decisions are made on commands such as
page read and page program, and processing branches to the process in the match commands.

When the ID check has not been completed, decisions are made on 3 types of commands such as ID
processing, and processing jumps to the process in the match commands. With mismatch commands,
processing returns to main part.

Figure 4.2.10 shows processing flow.

(Command process)

Time-out processing

Read receive buffer
register

ID check completed?

Command?

ﬂ” Page read ||7
S Page program |-
-2on] Block erase ||
ﬂ“ Erase all unlock blocks | |—>
m” Clear status register ||—>
L| | Read lock bit status | |—>
L” Lock bit program ||—>
"0 Lockbitvalid ||
80T Lock bitinvalid ||

ﬂ|| Read status register H—>
i| | ID check | |—>

FBh Version information
output .

other

Figure 4.2.10 Command Processing

161

M16C/80 Group
4 4.2 Developing The Boot Program

Page Read

To read data from the user area in blocks of 256 bytes, read address is stored to RAM and Read Array
command (FFz1e) is written. The address of the read area is changed from xxxx0016 to xxxxFF16, and the
data following xxxx0016 is transferred in succession.

Figure 4.2.11 shows processing flowchart.

(Page read)
|

| Receive cycles r3=0 |

Set low-order address,
addr_I=0

<
r3=r3+1 |

|

Set reception address

| Read data buffer |

|

Store reception data to
address buffer

Write read array
command

|

| Set transfer flag |

C E‘nd)

Figure 4.2.11 Page Read

162

4

M16C/80 Group

4.2 Developing The Boot Program

Page Program

Data is written into the user area in blocks of 256 bytes.
Read 258 bytes data from RAM: 2 bytes of address and 256 bytes of write data received from serial
programer. Status data is read from the flash memory. The read status is checked. When it is under error
state, processing does not write but returns to the main part.
When it is not under error state, the page program command (4116) is written in the flash memory, then 256
bytes of data is written. After data has been written, the read array command (FF16) is written and processing

returns to the main part.

Figure 4.2.12 shows processing flow.

Figure 4.2.12 Page Program

(Page program)
I

Receive cycles
r3=0
[
Set low-order address,
addr_I=0

-

| r3=r3+1 |

\

| Set reception address |

l

Read the receive buffer
register

l

Store the reception data
to RAM

r3=258

” Read array command ”

” Read status command ”

” Read array command ”

OK

Write the page program
command

| Write cy]cles r3=0 |

-

| Read RAM data |

| Write daéa to flash |

\
Increase write address
by 2

r3<258

163

M16C/80 Group
4 4.2 Developing The Boot Program

Block Erase

A specified block area of the flash memory is erased. However, blocks that are locked by Lock Bit Program
command cannot be erased. To erase these blocks, you need to disable the lock bit.

After confirming the two bytes of address and one byte of confirm command (DO0z16) received from the serial
programmer and stored in RAM, write Block Erase command (2016) and confirm command (DO01s) to the
area specified by the received address for block erase processing.

If the received confirm command is incorrect, block erase processing cannot be performed. In this case,
write Read Array command (FF16) to the flash memory to return the processing to the main routine.
Figure 4.2.13 shows a processing flow.

(Block erase)

|

Receive cycles
r3=1

|

Set low-order address,
addr_|=0FEh

Set reception address

|

Read the receive buffer
register

|

Store reception data to
RAM

|

r3=r3+1

13<4

Confirm the
confirm

Write the block erase
command

Write confirm
command

e

Write read array
command

| Initialize transfer flag |

|
(End)

Figure 4.2.13 Block Erase

164

4

M16C/80 Group

4.2 Developing The Boot Program

Erase All Unlock Blocks

A specified block area of the flash memory is erased. However, blocks that are locked by Lock Bit Program

command cannot be erased. To erase these blocks, you need to disable the lock bit.

When the all erase command is received from a serial programmer, receive more 1 byte data in succession.
After the second data is checked to see if it is confirm command (DO01s), write Erase All Unlock command
(2016) and confirm command (D016) to the area specified by the received address for erase all unlock

blocks processing.

If the received confirm command is incorrect, erase all unlock blocks processing cannot be performed. In

this case, write Read Array command (FF16) to the flash memory to end the processing.
Figure 4.2.14 shows a processing flow.

(Erase all unlock blocks)

|

Set read address |

|

Read the receive
buffer register

Confirm the

confirm command

Set dummy address

Write the erase all
unlock block command

Write confirm

command

e

Write read array

command

| Initialize transfer flag |

C

Figure 4.2.14 Erase All Unlock Block

End)

165

M16C/80 Group
4 4.2 Developing The Boot Program

Read Status Register

Two bytes of status data indicating the flash memory's operating status is stored to RAM to transmit via
serial 1/0.

Write the Read Array command (FF16) to the flash memory, then write the Read Status command (7016).
After status register reception, write the Read Array command and return to the main routine.

Figure 4.2.15 shows a processing flow.

(Read status register)

Transfer/receive cycles
r3=0

Set dummy address

Write read array
command

Write read status
register command

Read SRD

Write read array
command

Clear timer interrupt
request flag

| Initialize transfer flag |

C E‘nd)

Figure 4.2.15 Read Status Register

166

M16C/80 Group
4 4.2 Developing The Boot Program

Clear Status Register

Status register error information is cleared.

The Read Array command (FF16), Clear Status command (5016) and Read Array command (FF16) are
written into the flash memory in succession.

The logic sum for the status register 1 (SRD1) is obtained on 9C16 and the error flag is cleared. Processing
returns to the main part.

Figure 4.2.16 shows a processing flow.

(Clear status register)

| Set dummy address |

Write read array
command

Write clear status
register command

Write read array
command

| Clear SRD1 error flag |

| Initialize transfer flag |

|
(End)

Figure 4.2.16 Clear Status Register

167

4

M16C/80 Group

4.2 Developing The Boot Program

Read Lock Bit Status

One byte of data indicating the lock status of each individual block in the flash memory is saved via serial
I/0. Of the 1-byte data, the 6th bit indicates lock status. When "1", the block is unlocked. When "0", the

block is locked.

After receiving two byte of data indicating address, store specified address in the address buffer. At this
time, set #FE16 to the low order address.
The Read Array command (FF16) and the Read Lock Bit command (7116) are written and, there after, the
lock bit information is read from the flash memory. After the lock bit information has been read, the Read

Array command (FF16) is written again. Processing then returns to main part.

Figure 4.2.17 shows a processing flow.

(Read lock bit status)

Transfer/receive cycles
r3=1

Set low-order address,

addr_|=0FEh
-

Set read address

Read the receive buffer
register

Store the reception data
to address buffer

r3=r3+1

r3<3?

r3<3

r3=3

Write the read lock bit
status command

Read the read lock
bit data

Write the read array

command

Set transfer flag |

C E‘nd)

Figure 4.2.17 Read Lock Bit Status

168

M16C/80 Group
4 4.2 Developing The Boot Program

Lock Bit Program

Blocks in the flash memory is locked. Locked block areas cannot be erased.

After receiving two byte of data indicating address, store specified address in the address buffer. At this
time, set #FE16 to the low order address.

If the Received Confirm command is incorrect, lock bit program processing cannot be performed. If correct,
for lock bit program processing, write the Lock Bit Program command (7716) to the flash memory and the
Confirm command (DO016) in succession. Write Read Array command (FF16) and processing returns to the
main part.

Figure 4.2.18 shows a processing flow.

(Lock bit program)

Transfer/receive cycles
r3=1

Set low-order address,
addr_|=0FEh

-

Set read address |

Read the receive buffer
register

Store reception data to
address buffer

| r3=r3+1 |

Confirm confirm
command

OK

Write the lock bit
program command

|

Write the confirm
command

Write the read array
command

-
| Initialize transfer flag |

C ErLd D)

Figure 4.2.18 Lock Bit Program

169

M16C/80 Group
4 4.2 Developing The Boot Program

Lock Bit Enable/Disable

Enables/disables the lock bit function of flash memory. The lock bit disable command cancels the lock on

all blocks.
To enable the lock bit, "0" is written for the lock bit cancel bit. To disable the lock bit, "0" followed by "1" is

written for the lock bit cancel bit.
Figure 4.2.19 shows a processing flow.

(Lock bit valid) (Lock bit invalid)
Clear the lock bit Clear the lock bit
cancel bit cancel bit
| Initialize transfer flag | Set the lock bit

‘ cancel bit to "1"

| Initialize transfer flag |

|
(End)

(End)

Figure 4.2.19 Lock Bit Enable/Disable

170

M16C/80 Group
4 4.2 Developing The Boot Program

ID Check

The ID data stored in the flash memory is compared with the data received by serial I/O. This process
judges whether the flash memory is blank or not. When blank, the ID check is ended and processing
returns to the main part. When something is written in the ROM, the received ID address, the ID data size
and ID data contents are checked. When mismatch, ID check error is generated (SR10 = 1, SR11 = 0) and
processing returns to the main part. When match, the ID check is ended (SR10 = 1, SR11 = 1) and
processing returns to the main part.

Figure 4.2.20 shows a processing flow.

(ID check)

Blank

Blank flag?
Not blank

Error

Check address & ID

| ID check cycles r3=1 |

S ——

| Read ID data from flash |

OK
| r3=r3+1 |
ID check error
SR11=0, SR10=1
r3=8

ID check completed
SR11=1, SR10=1

-

| Initialize transfer flag |

|
(End)

Figure 4.2.20 ID Check

171

4

M16C/80 Group
4.2 Developing The Boot Program

Version Information Output

Transfer flag is set to transfer the version information of the boot program via serial 1/O.

Figure 4.2.21 shows a processing flow.

Version information
output

|

| Set transfer flag |

C

End)

Figure 4.2.21 Version Information Output

Data Transfer Processing

The result of process after receiving a control command from serial programer is transfered via serial 1/0.
When transfer flag is O, or time-out flag is 1, the processing returns to the main part. Otherwise next
process is executed. Command buffer is read, the serial command is compared, and processing branches
to the process in the match commands. After processing, initialize the transfer flag and return to main part.
With mismatch command, initialize the transfer flag and return to main part.

Figure 4.2.22 shows a processing flow.

(Data transfer

)

i
| Timer initialization

Is transfer flag set2

Read receive
command

Command?

FFh |

[—

Page read output

&” Read status register output ”—»

&” Read lock bit status output ||—>

FBh | Version information output |)

other

Figure 4.2.22 Data Transfer

|

Y

| Initialize transfer flag |
[

(End)

172

M16C/80 Group
4 4.2 Developing The Boot Program

Page Read Transfer Processing

Data from the user area in blocks of 256 bytes is read and the read data is sent via serial I/O.

Data is read from the flash memory and set to transfer buffer register. The timer used to check data
reception time-out is started. When data is not received within 300 msec, a time-out error is judged, time-
out processing flag is set and processing jumps to data transfer processing. After 256 bytes of data is
received, processing jumps to data transfer processing.

Figure 4.2.23 shows a processing flow.

(Page read)

|

Transfer/receive cycles
r3=0
—~

Read data |

|

Write to transmit buffer
register

|

Start one-shot timer

Over

>300 psec?

Set time-out
processing flag

Reception
completed?

Read the receive buffer
register

|

| r3=r3+1 |

| Address = address + 1 |

r3=/256

Figure 4.2.23 Page Read Transfer Processing

173

4

M16C/80 Group

4.2 Developing The Boot Program

Read Status Register Transfer Processing

The two-byte status data (SRD: status register and SRD1: status register 1) that indicates flash memory
operating status is sent via serial 1/0.
The SRD is read from flash memory and written into transmit buffer register. The timer used to check data
reception time-out is started. When data is not received within 300 msec, a time-out error is judged, time-
out processing flag is set and processing jumps to data transfer processing. After data reception is
completed, receive buffer register is read.
The SRD1 is read from flash memory and written into transmit buffer register. The timer used to check
data reception time-out is started. When data is not received within 300 msec, a time-out error is judged,
time-out processing flag is set and processing jumps to data transfer processing. After data reception is
completed, reception buffer register is read and processing returns to data transfer processing.

Figure 4.2.24 shows a processing flow.

Read status register
output

Transfer/receive cycles
r3=0

<

Write to transmit buffer
register

Start one-shot timer

Clear timer interrupt
request flag

Over

Set time-out
processing flag

>300 psec?

Reception
completed?

Read the receive buffer
register

| Read SRD1

| r3=r3+1

(End)

Figure 4.2.24 Read Status Register Transfer Processing

174

4

M16C/80 Group

4.2 Developing The Boot Program

Read Lock Bit Status Transfer Processing

The lock bit status that set in command processing is sent via serial I/O.

The lock bit status data that set in command processing is read from RAM and written into transmit buffer
register. The timer used to check data reception time-out is started. When data is not received within 300
msec, a time-out error is judged, time-out processing flag is set and processing jumps to data transfer
processing. After data reception is completed, processing jumps to data transfer processing.

Figure 4.2.25 shows a processing flow.

Read lock bit status
output

Write to transmit buffer
register

Start one-shot timer

Over

#

Jump to time-out
processing

>300 psec?

Reception
completed?

Read the receive buffer
register

>
(End)

Figure 4.2.25 Read Lock Bit Data Transfer Processing

175

M16C/80 Group
4 4.2 Developing The Boot Program

Version Information Output Processing

The version information of boot program is sent via serial 1/0.

Version information is read and written in the transmit buffer register.

The timer used to check data reception time-out is started. When data is not received within 300 msec, a
time-out error is judged, time-out processing flag is set and processing jumps to data transfer processing.
After all version information is send, processing jumps to data transfer processing.

Figure 4.2.26 shows a processing flow.

Version information
output

Transfer/receive cycles
a0=0

<

Write version information
to transfer buffer register

Start one-shot timer

Over

>300 psec?

Set time-out
processing flag

Reception
completed?

Read the receive buffer
register

| a0=a0+1 |

Figure 4.2.26 Version Information Output Processing

176

M16C/80 Group
4.2 Developing The Boot Program

Time-Out Processing

When time-out flag is set, serial /0 and time-out flag are initialized.
Figure 4.2.27 shows a processing flow.

(Time-out process)

Is serial initialization
flag set?

Is time-out
processing flag set?2

Time-out flag
(SRD1)=1

~

Initialize time-out
processing flag

Initialize serial 1/10
initiallization flag

Initial setting 2
UART1 setting

-

(End)

Figure 4.2.27 Time-Out Processing

Command Write

Commands are written in the flash memory. Commands are accepted when the flash memory is in the
ready state (RY/BY signal status flag [bit O in address 03B716 of the flash memory

control register] is "1").

Figure 4.2.28 shows a processing flow.

(Write command)

”

| Set address |

| Write command |

|
C RTS)

Figure 4.2.28 Command Write

177

M16C/80 Group
4 4.2 Developing The Boot Program

Status Register (SRD)

The status register indicates operating status of the flash memory and status such as whether an erase
operation or a program ended successfully or in error. It can be read by writing the read status register
command (7016). Also, the status register is cleared by writing the clear status register command (50186).
Table 4.2.2 shows the definition of each status register bit. After clearing the reset, the status register
outputs "8016".

Table 4.2.2 Status Register (SRD)

Each bit of Definition

SRD Status name e g
SR7 (bit7) | Write state machine (WSM) status Ready Busy
SR6 (bit6) Reserved - -
SR5 (bit5) | Erase status Terminated in error | Terminated normally
SR4 (bit4) Program status Terminated in error | Terminated normally
SR3 (bit3) Block status after program Terminated in error | Terminated normally
SR2 (bit2) Reserved - -
SR1 (bitl) Reserved - -
SRO (bit0) Reserved - -

Write State Machine (WSM) Status (SR7)
The write state machine (WSM) status indicates the operating status of the flash memory. When power is
turned on, "1" (ready) is set for it. The bit is set to "0" (busy) during an auto write or auto erase operation,
but it is set back to "1" when the operation ends.

Erase Status (SR5)
The erase status reports the operating status of the auto erase operation. If an erase error occurs, it is set
to "1". When the erase status is cleared, it is set to "0".

Program Status (SR4)
The program status reports the operating status of the auto write operation. If a write error occurs, it is set
to "1". When the program status is cleared, it is set to "0".

Block Status After Program (SR3)

If excessive data is written (phenomenon whereby the memory cell becomes depressed which results in
data not being read correctly), "1" is set for the block status after-program at the end of the page write
operation. In other words, when writing ends successfully, "8016" is output; when writing fails, "9016" is
output; and when excessive data is written, "8816" is output.

If "1" is written for any of the SR5, SR4 or SR3 bits, the Page Program, Block Erase, Erase All Unlocked
Blocks and Lock Bit Program commands are not accepted. Before executing these commands, execute
the Clear Status Register command (5016) and clear the status register.

178

M16C/80 Group
4.2 Developing The Boot Program

Status Register 1 (SRD1)

Status register 1 indicates the status of serial communications, results from ID checks and results from
check sum comparisons. It can be read after the SRD by writing the Read Status Register command
(7018).

Also, status register 1 is cleared by writing the Clear Status Register command (5016).

Table 4.2.3 gives the definition of each status register 1 bit. "0016" is output when power is turned ON and
the flag status is maintained even after the reset.

Table 4.2.3 Status Register 1 (SRD1)

Each bit of Definition
SRD1 Status name np "o

SR15 (bit7) | Boot update completed bit Update completed Not update
SR14 (bit6) | Reserved - -
SR13 (bit5) | Reserved - -
SR12 (bit4) | Checksum match bit Match Mismatch
SR11 (bit3) | ID check completed bits 00 Not verified
SR10 (bit2) 01 Verification mismatch

10 Reserved

11 Verified
SR9 (bitl) Data receive time out Time out Normal operation
SR8 (bit0) Reserved - -

Boot Update Completed Bit (SR15)
This flag indicates whether the control program was downloaded to the RAM or not, using the download
function.

Checksum Match Bit (SR12)
This flag indicates whether the check sum matches or not when a program, is downloaded for execution
using the download function.

ID Check Completed Bits (SR11 and SR10)
These flags indicate the result of ID checks. Some commands cannot be accepted without an ID check.

Data Reception Time Out (SR9)
This flag indicates when a time out error is generated during data reception. If this flag is attached during
data reception, the received data is discarded and the microcomputer returns to the command wait state.

179

M16C/80 Group
4 4.3 Sample List

4.3 Sample List

This section shows a sample list of the program described in Section 4.2.

In addition to the processing explained in Section 4.2, the sample shown below includes the programmer
command processing used by a synchronous serial programmer and the command processing used by an
asynchronous serial communication programmer (M16C Flash Start).

Source

* * * * * * * *

;¥ System Name : Sample Program for M16C/80 Flash *

* File Name : MB00SAMP.a30 *
* Version :0.02 *

;¥ Original Ver : 1.01 *

* MCU : M30800FCFP *

* Xin : 2M-20MHz (for UART mode) *
* Assembler : AS308 ver 1.00.00 *
* Linker : LN308 ver 1.00.00 *

* Converter : LMC308 ver 1.00.01 *
¥ Programmer : T.Sawa *

;¥ Copyright,1999,2000 MITSUBISHI ELECTRIC CORPORATION *

* AND MITSUBISHI SEMICONDUCTOR SYSTEMS CORPORATION *
ok *

;¥ History :1999.10.28 Ver.0.01 (1.00) *

* : 2000. 2.24 Ver.0.02 (1.01) *

* * * * *

)

e o o L
;+ Include file +
e o o L
list off

.include sfr800.inc

.include flash800.inc

list on
L B o B R
7+ Version table +
o I L L
.section rom,code

.org 0ffe000h

.byte 'VER.0.02(VER.1.01)'

e L o 0
-+ Program section start +
2 a0 L L L a HL L R
.section prog,code

.org Boot_TOP

.sh SB_base

.shsym SRD

.shsym SRD1

.sbsym ver

.sbsym SF

.sbsym addr_|

.sbsym addr_m

.sbsym addr_h

;+ Boot program start +

180

M16C/80 Group
4.3 Sample List

Reset:

)

+ Initialize_1 +

Idc #lIstack,ISP ; stack pointer set
ldc #SB_base,SB ; SB register set

bset busy

bset busy d ; BUSY "H"output

bclr s _mode_d ; Serial mode select input
;+ Hot start & RAM clear +

)

mov.w #0,a0
Start_check:
cmp.w #55aah,buff[a0]
jne RAM_clear
add.w #2,a0
cmp.w #18,a0
jltu Start_check
bset ram_check ; RAM check OK flag set
jmp CPU_set

RAM_clear:
mov.w #0,r0
mov.w #(Ram_END+1-Ram_TOP)/2,r3
mov.w #Ram_TOP,al
sstr.w
mov.w #0,a0
Buff_set:
mov.w #55aah,buff[a0]
add.w #2,a0
cmp.w #18,a0
jltu Buff_set

)

)

;+ Processor mode register +
i+ & System clock control register +

CPU_set:

mov.b #3,prcr : Protect off
mov.w #0000h,pmO ; wait off
mov.b #04h,mcd : f4

mov.b #20h,cm1l
mov.b #08h,cm0 ;
mov.b #0,prcr : Protect on

Reload_chack:

btst sr15 ; Update ?
jc Transfer_end
btst ram_check ; Reload ?

jz Version_inf ;
btst s_mode

bxor old_mode

jnc Transfer_end

1

1

+ Version information +

Version_inf:
mov.w #0,a0 ; a0=0

181

M16C/80 Group
4.3 Sample List

Ver_loop:
mov.w 0ffe000h+9[a0],ver[a0] ; Version data store
add.w #2,a0 ; address increment
cmp.w #8,a0 ;a0=8 ?
jltu Ver_loop ; jump Ver_loop at a0<8
;+ Program_transfer +
btst s _mode ; Serial I/0 mode select

jz Transfer2 ; UART mode

Transferl:
bset old_mode ; clock synchronous mode
mov.l #Trans_TOP1,a0 ; Transfer source address
mov.w #Ram_progTOP,al ; Transfer destination address
mov.w #(Trans_END1 - Trans_TOP1)/2,r3 ; Transfer number
smovf.w ; String move
jmp Transfer_end

Transfer2:
bclr old_mode : UART mode
mov.l #Trans_TOP2 ,a0 ; Transfer source address
mov.w #Ram_progTOP,al ; Transfer destination address
mov.w #(Trans_END?2 - Trans_TOP2)/2,r3 ; Transfer number
smovf.w ; String move

Transfer_end:

1

;+ Jump to RAM +

)

jmp Ram_progTOP

;+ Download program +

.org Download_program

jsr set_TAO

mov.w #0,r3 ; receive number (r3=0)
mov.w #0,al ; sumcheck buffer

bclr sri5 ; Download flag reset

bclr sr12 ; Check sum flag reset

Download_loop:
jsr SIO_D_rcv

btst tout_flg ; time out error ?

jc Download_err ;jump Download_err at time out
mov.w rcv_d,r0 ; receive data read -->r0
add.w #1,r3

cmp.w #3,r3 1 r3=37?

jogtu Version_store ;jump Version_store at r3>3
mov.w r3,a0 ;r3-->a0

mov.b rOl,addr_I[a0] ; Store program size

mov.w #0,a0 ; a0 initialize

cmp.w #3,r3 13=37

jne Download_loop ; No, jump to Download_loop
cmp.w #0,addr_m ; program size =0 ?

jz Version_inf ;jump to Version_inf at program size error

jmp Download_loop ;jump Download_loop
Version_store:

cmp.w #11,r3 ;r3=11 7

jogtu Program_store ; jump Program_store at r3 >11

mov.b rOl,ver[a0] ; version data store to RAM

jmp Program_store_1

182

M16C/80 Group
4.3 Sample List

Program_store:
mov.b rOl,Ram_progTOP-8[a0] ; program data store to RAM
Program_store_1:

add.b rOl,al ; add data to al
add.w #1,a0 ; a0(downloa0 offset) +1 increment
cmp.w addr_m,a0 ; a0 = program size (addr_m,h)?

jltu Download_loop ;jump Download_loop at aO< program size
jmp SUM_Check ; jump SUM Check

Download_err:

bset busy ; busy "H"

bset busy d ; busy output

mov.b #0,ulcl ; transmit/receive disable
mov.b #O,ulmr ;ulmr reset

jmp Version_inf

1

1

;+ Download program - UART mode - +

.org U_Download_program

)

mov.w #0,r3 ; receive number (r3=0)
mov.w #0,al ; sumcheck buffer

bclr srl5 ; Download flag reset
bclr sr12 ; Check sum flag reset

U_Download_loop:
jsr U_SIO_D rcv
mov.w rcv_d,r0

add.w #1,r3 ; 13 +1 increment

cmp.w #3,r3 ;13=37

jotu U_Version_store ; jump U_Version_store at r3>3
mov.w r3,a0 ;r3-->al

mov.b rOl,addr_I[a0] ; Store program size

mov.w #0,a0 ; a0 initialize

cmp.w #3,r3 ;13=37

jne U_Download_loop ; No, jump U_Download_loop
cmp.w #0,addr_m ; program size =0 ?

jz Version_inf ;jump Version_inf at program size error
jmp U_Download_loop

U_Version_store:
cmp.w #11,r3 ;r3=117
jotu U_Program_store ;jump U_Program_store at r3 >11
mov.b rOl,ver[a0] ; version data store to RAM
jmp U_Program_store_1

U_Program_store:
mov.b r0l,Ram_progTOP-8[a0] ; program data store to RAM
U_Program_store_1:

add.b rOl,al ; add data to al
add.w #1,a0 ; a0(downloaO offset) +1 increment
cmp.w addr_m,a0 ; a0 = program size (addr_m,h)?

jitu U_Download_loop ;jump Download_loop at aO< program size

SUM_Check:

mov.w al,r0

cmp.b data,rOl ; compare check sum

bmeq sri12 ; check sum flag set at data=r0l

jne Version_inf ; jump Version_inf at check sum error
bset sri5 ; Download flag set

jmp Ram_progTOP ; jump Ram_progTOP

)

S a

;+ Subroutine : a synchronized signal I/0O receive dwn+

183

M16C/80 Group
4.3 Sample List

o T B B o o o

SIO_D rev:
mov.b rll,ultb
bset taOos ; ta0 start
?:
btst ir_taOic ; time out error ?
bmc sr9 ; time out flag set
jc SIO_D_rcv_err ; jump SIO_D_rcv_err
btst ri_ulcl ; receive complete ?
jnc ?-
mov.w ulrb,rcv_d ; receive data read --> r0
SIO_D_rcv_end:
rts
SIO_D rev_err:

bset tout_flg

jmp SIO_D_rcv_end
L e et ot o o0
+ Subroutine : UART receive dwn +
o T T e o o
U_SIO_D rcv:

btst ri_ulcl ; receive complete ?

jnc U_SIO_D_rcv

mov.w ulrb,rcv_d ; receive data read -->r0

rts

1

;+ Transfer Program -- clock synchronous serial I/O mode +
+ (1) Main flow +

+ (2) Flash control program +

+ Read,Program,Erase,All_erase,etc. +

i+ (3) Other program +

i+ ID_check,Download,Version_output etc. +

)

.section dump,code

.org Trans_TOP1
2 a0 L L L a HL L R
;+ Main flow - clock synchronous serial I/O mode - +
e L o 0
Main:

jsr Initialize_2 ; clock synchronous serial I/O mode

mov.b #0,data
Loop_main:

mov.b SRD1,SRD1_bak ; SRD1 back up

mov.b SRD1,SRD1_bak+2

jsr time_init

jsr SIO_rcv_first_data
jsr Flash_func

jsr SIO_send_data
jsr Time_out

jmp Loop_main

1

)

4+ initialize SIO +

time_init:
bclr tout_flg
bclr tint_flg
bset taOos
mov.b #0,ta0ic
Loop_mainl:
btst ir_taOic ; 300 usec ?
jz Loop_mainl

184

M16C/80 Group
4.3 Sample List

bset rcv_flg
rts

)

)

;+ SI/O time out +

Time_out:
btst tint_flg
jc Time_out_init
btst tout_flg
jnc Time_out_end
bset sr9 ; SRD1 time out flag set
bclr tout_flg
Time_out_init:
bclr tint_flg

jsr Initialize_21 ; command error,UART1 reset

Time_out_end:
rts

1

)

+ SI/O recieve data +

SIO_rev_first_data:
mov.b #0,cmd_d
bclr cmd_flg
btst rcv_flg
jnc SIO_recv_end
btst tout_flg
jc SIO_rcv_end
mov.b #0,ta0ic
mov.w #0,r2

SIO_rcv_first_data_loop:

mov.b #0ffh,r1l ; #ffh --> rll (transfer data)
mov.b rll,ultb
btst cmd_flg
jc SIO_rcv_first_data_loopl
bclr busy_d ; busy input
?: btst busy ; Reception start?
iz ?-
SIO_rcv_first_data_loop1:
bset taOos ; 300 usec timer start

SIO_rcv_first_data_loop2:

btst ir_taOic ; 300 usec ?
jnc 2+
bset tout_flg ; time out

?. btst tout flg
jc SIO_rcv_end

btst ri_ulcl ; receive complete ?
jz SIO_rcv_first_data_loop2
mov.w ulrb,rO ; receive data -->r0

mov.w r2,a0
mov.b rOl,data[a0]
add.w #1,r2

btst cmd_flg

jc SIO_loop_chk
bset cmd_flg
mov.b rOl,cmd_d
mov.w #15,a0
SIO_rcv_command_chk:

mov.b Index_tbl-Trans_TOP1+Ram_progTOP-1[a0],rOh

185

M16C/80 Group
4.3 Sample List

cmp.b rOh,r0l

jeq SIO_cmd_jmp_2

sbjnz.w #1,a0,SI0_rcv_command_chk
jmp SIO_rcv_end_1

SIO_cmd_jmp_2:

shl.w #1,a0

mov.w jmp_tbl_2-Trans_TOP1+Ram_progTOP-2[a0],r0
SIO_cmd_jmp_2_1:

jmpi.w r0

SIO_2:

mov.w #2,loop_cnt
jmp SIO_loop_chk
SIO_259:

mov.w #259,loop_cnt
jmp SIO_loop_chk
SIO_4:

mov.w #4,loop_cnt
jmp SIO_loop_chk
SIO_3:

mov.w #3,loop_cnt
jmp SIO_loop_chk

)

)

+ IDcheck SI/O +

SIO_rev_ID_check:
mov.w #0,r3 ; receive number (r3=0)
mov.w #0ffh,al ; ID size (dummy data = ffh)
mov.b #0,ta0ic

SIO_ID_data_store:

cmp.w alr3 ; r3=al(ID size)
jeq SIO_ID_address_check; jump ID_address_check at r3=ID size
mov.b rllultb ; data transfer
bset taOos ; ta0 start
SIO_ID_data_loop:
btst ir_taOic ; 300 usec ?
jnc ?+
bset tout_flg ; time out

?: btst tout_flg
jc SIO_ID_address_check

btst ri_ulcl ; receive complete ?

jnc SIO_ID_data_loop

mov.w ulrb,r0 ; receive data read --> r0

mov.w r3,a0 ;r3-->al

mov.b rOl,addr_I[a0] ; Store address

add.w #1,r3 ; r3 +1 increment

cmp.w #4,r3 1 13=47?

jne SIO_ID_data_store ;jump ID_data_store at r3 not= 4
mov.b data,al . ID size --> al

add.w #4,al ;al=al+4

jmp SIO_ID_data_store ;jump ID_data_store
SIO_ID_address_check:
jmp SIO_rcv_end

SIO_rev_end_1:
bset tint_flg
jmp SIO_rcv_end

SIO_loop_chk:
cmp.w loop_cnt,r2
jltu SIO_rcv_first_data_loop

186

M16C/80 Group
4.3 Sample List

SIO_rcv_end:
bclr cmd_flg
bclr rev_flg
rts

i+ SIO_send data +

SIO_send_data:
jsr set_TAO
btst send_flg
jnc SIO_send_data_end
btst tout_flg
jc SIO_send_data_end
mov.b cmd_d,rlh

cmp.b #0ffh,rlh ; Read(ffh)
jeq Read_data

cmp.b #070h,r1h ; Read SRD (70h)

jeg Read_SRD_data
cmp.b #071h,rlh ; Read LB (71h)
jeq Read_LB_data

cmp.b #0fbh,rih ; Version_output(fbh)

jeq Ver_output_data

cmp.b #0fdh,rih ; Read_check(fdh)

jeq Read_check_data

cmp.b #0fch,rih ; Boot_check(fch)

jeq Boot_data
jmp SIO_send_func

Read_check_data:

mov.w #0,r3

mov.w sum,rl
Read_check_data_loop:

mov.b rll,ultb

bset taOos ; ta0 start
Read_check data check:

btst ir_taOic

jnc ?+

bset tout_flg

btst tout_flg
jc SIO_send_data_end

btst ri_ulcl ; receive complete ?

jnc Read_check_data_check

mov.w ulrb,rO ; receive data read -->r0
mov.b rlh,ril

add.w #1,r3

cmp.w #2,r3

jltu Read_check_data_loop
Read_check data_end:

mov.w #0,sum ; reset
jmp SIO_send_data_end

Read_data:
mov.w #0,r3

Read_data_loop:

mov.b [al],rll ; Flash memory read

mov.b rll,ultb

bset taOos : ta0 start
Read_data_chk:

btst ir_taOic ; 300 usec ?

jnc ?+

bset tout_flg ; time out

187

M16C/80 Group
4.3 Sample List

?:
btst tout_flg
jc Read_data_end

btst ri_ulcl ; receive complete ?

jnc Read_data_chk

mov.w ulrb,rO ; receive data read -->r0
add.w #1,r3

add.] #1,al

cmp.w #256,r3 113 =256 7

jne Read_data_loop
Read_data_end:
jmp SIO_send_data_end

Ver_output_data:

mov.w #0,a0 ; Version address offset (a0=0)
Ver_output_data_loop:

mov.b ver[a0],ultb ;send_data set

bset taOos ; ta0 start
Ver_output_data_check:

btst ir_taOic ; 300 usec ?

jnc ?+

bset tout_flg ; time out

?:
btst tout_flg
jc Ver_output_data_end

btst ri_ulcl ; receive complete ?

jnc Ver_output_data_check

mov.w ulrb,r0 : receive data read --> r0
add.w #1,a0

cmp.w #8,a0 ;a0=87?

jne Ver_output_data_loop
Ver_output_data_end:
jmp SIO_send_data_end

Read_SRD_data:
mov.w #0,r3
Read_SRD_data_loop:

mov.b rll,ultb ; data transfer

bset taOos ; ta0 start ; test

bclr tout_flg ; clear time out

mov.b #0,ta0ic ; clear time out
Read_SRD_data_check:

btst ir_taOic ; 300 usec ?

jnc ?+

bset tout_flg ; time out

?: btst tout_flg
jc Read_SRD_data_end

btst ri_ulcl ; receive complete ?

jnc Read_SRD_data_check

mov.w ulrb,r0 ; receive data read --> r0
mov.b SRD1,rll : SRD1 data --> r1l
add.w #1,r3

cmp.w #2,r3 r3=27?

jltu Read_SRD_data_loop ;jump Read_SRD_loop at r3<2
Read SRD data end:
jmp SIO_send_data_end

Read_LB_data:
Read_LB_data_loop:

mov.b rll,ultb ; data transfer

bset taOos ; ta0 start
Read LB_data_check:

btst ir_taOic ; 300 usec ?

jnc 2+

bset tout_flg ; time out

188

M16C/80 Group
4.3 Sample List

?:
btst tout_flg
jc Read_LB_data_end

btst ri_ulcl ; receive complete ?
jnc Read_LB_data_check
mov.w ulrb,rO ; receive data read -->r0

Read_LB_data_end:
jmp SIO_send_data_end

Boot_data:
bclr fmr05
mov.w addr_l,a0
mov.b addr_h,al
mov.w #0,r3
sha.l #16,al
add.l a0,al
Boot_data_loop:
mov.b [al],rll ; Boot data read
mov.b rll,ultb
bset taOos : ta0 start
Boot_data_chk:
btst ir_taOic ; 300 usec ?
jnc ?+
bset tout_flg ; time out

btst tout_flg
jc Boot_data_end

btst ri_ulcl ; receive complete ?

jnc Boot_data_chk

mov.w ulrb,rO ; receive data read -->r0
add.w #1,r3

add.l #1,al

cmp.w #256,r3 13 =256 7

jne Boot_data_loop
Boot_data_end:

bset fmr05

jmp SIO_send_data_end

SIO_send_func:
mov.w start_cnt,r3

SIO_send_data_loop:
mov.w r3,a0
mov.b data[a0],r1l

mov.b rll,ultb ; data transfer

bset taOos : ta0 start
SIO_send_chk:

btst ir_taOic ; 300 usec ?

jnc ?+

bset tout_flg ; time out

?: btst tout_flg
jc SIO_send_data_end

btst ri_ulcl ; receive complete ?

jnc SIO_send_chk

mov.w ulrb,rO ; receive data read -->r0
add.w #1,r3

cmp.w send_cnt,r3 ;r3=send_cnt?

jne SIO_send_data_loop
mov.w r3,r0
SIO_send_data_end:

bclr send_flg

rts

)

S a

;+ Subroutine : Time_over_flg +

I e e I T L e o S e T

189

M16C/80 Group
4.3 Sample List

Time_over_flg:

bset
rts

tout_flg

o a a aat o
;+ jump table for Flash_func +
L L e I it ot

jmp_tbl:
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word

Read - cmd_jmp
Program - cmd_jmp
Erase - cmd_jmp
All_erase - cmd_jmp
Clear_SRD - cmd_jmp
Read_LB - cmd_jmp
Program_LB - cmd_jmp
LB_enable - cmd_jmp
LB_disable - cmd_jmp
Download - cmd_jmp
Boot_output - cmd_jmp
Read_check - cmd_jmp

o o

7+ jump table for SIO_rcv_first_data +
T o o
jmp_tbl_2:

.word SIO_3-SIO_cmd_jmp_2_1 ; Read

.word SIO_259 - SIO_cmd_jmp_2_1 ; Program

.word SIO_4-SIO_cmd_jmp_2_1 ; erase

.word SIO_2-SIO_cmd_jmp_2_1 ; All erase

.word SIO_rcv_end - SIO_cmd_jmp_2_1 ; Clear SRD

.word SIO_3-SIO_cmd_jmp_2_1 ; Read LB

.word SIO_4-SIO_cmd_jmp_2_1 ; LB Program

.word
.word
.word
.word
.word
.word
.word
.word

)

SIO_rcv_end - SIO_cmd_jmp_2_1 ; LB enable
SIO_rcv_end - SIO_cmd_jmp_2_1 ; LB disable
SIO_rcv_end - SIO_cmd_jmp_2_1 ; Download
SIO_3-SI0O_cmd_jmp_2_1 ; Boot output
SIO_rcv_end - SIO_cmd_jmp_2_1 ; Read check
SIO_rcv_end - SIO_cmd_jmp_2_1 ; Read SRD
SIO_rcv_ID_check - SIO_cmd_jmp_2_1; ID check
SIO_rcv_end - SIO_cmd_jmp_2_1 ; Version out

I L o i o o 0
;+ serch table for Flash_func,SIO_rcv_first_data +

o T T I B I B o o
Index_tbl:

.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte
.byte

)

0Offh ; Read(ffh)

041h ; Program(41h)
020h ; Erase(20h)

Oa7h ; All_erase(a7h)
050h ; Clear SRD(50h)
071h ; Read LBS(71h)
077h ; LB program(77h)
07ah ; LB enable (7ah)
075h ; LB disable(75h)
Ofah ; Download (fah)
Ofch ; Boot output(fch)
ofdh ; Read check(fdh)
070h ; Read SRD(70h)
0f5h ; ID check(f5h)
Ofbh ; Version output(fbh)

o S

;+ Subroutine : Initialize_2 +
Mo o o 0
Initialize_2:

190

M16C/80 Group
4.3 Sample List

1

+ Flash mode set +
Flash_mode:

bset fmr05 ; User ROM select

bclr fmrO1 ; Flash entry bit clear

bset fmrO1 ; Flash entry bit set (E/W mode)
:+ Blank check +

mov.w Offfffch,r0 ; Reset vector read
mov.w Offfffeh,rl ; Reset vector read
and.w rl1,r0 r0&rl

cmp.w #Offffh,r0 ; rO=ffffh ?

jne blank_end

1

bset sr10 ; check complete at rO=ffffh
bset sril
bset blank ; blank flag set
blank_end:
i+ UART1 +
Initialize_21.:
bclr pd6_2 ; RxD-input

- Function select register BO
mov.b #00000000b,pslO
- Function select register AO
mov.b #10010000b,ps0
- UART1 transmit/receive mode register

mov.b #0,ulcl ; transmit/receive disable
mov.b #0,ulmr ;ulmr reset
mov.b #00001001b,ulmr

; [[]][+++------- clock synchronous SI/O

; ||| +---------- external clock

- UART1 transmit/receive control register O

mov.b #00000100b,ulc0
: I [+4+------ fl select
:]| +-------- RTS select
: []]4+---------- CTS/RTS enabled
: [— CMOS output(TxD)
[— falling edge select
: S LSB first

jm=—-- UART transmit/receive control register 2

mov.b #00000000b,ucon
; I[++------ Transmit buffer empty

: [[|++-------- Continuous receive mode disabled
: [|++---mmm CLK/CLKS normal

: [—— CTS/RTS shared

: B — fixed

191

M16C/80 Group
4.3 Sample List

jm—-- UART1 transmit/receive control register 1

mov.b #00000101b,ulcl

; | +------ Transmission enabled
; [l +-------- Reception enabled
; ottt toaeeeen fixed

+ Timer AO +

set_TAO:
j----- Timer AO mode register

mov.b #00000010b,taOmr

; (] [++------- One-shot mode

;]| +-=------ Pulse not output

; [[[+----mmm- One-shot start flag
; [[+---mmmmmmmee fixed

; Fhomomooeee- f1 select

mov.w #6000-1,ta0 ; set 300 usec at 20 MHz

bset taOs
mov.b #0,ta0ic ; clear TAO interrupt flag
rts
:+ FLASH function main +
Flash_func:

btst tout_flg
jc Flash_func_end

bclr taOs

mov.b cmd_d,r0l ; receive data --> rOl

mov.b #0ch,rOh ; #00001100b sr10,11 mask data
and.b SRD1,rOh ; sr10,11 pick up

cmp.b #0ch,rOh ; ID check OK?

jne Command_check_2 ;jump Command_check_2 at ID unchecked
mov.w #12,a0

Command_check:
mov.b Index_tbl-Trans_TOP1+Ram_progTOP-1[a0],rOh
cmp.b rOh,rOl
jeq cmd_jmp_1
sbjnz.w #1,a0,Command_check
jmp Command_check_2

cmd_jmp_1:

shl.w #1,a0

mov.w jmp_tbl-Trans_TOP1+Ram_progTOP-2[a0],r0
cmd_jmp:

jmpi.w r0

Command_check_2:

?. cmp.b #070h,r0l ; Read SRD (70h)
jne ?+
jmp Read_SRD

?: cmp.b #0f5h,r0l ; ID check (f5h)
jne 7?2+
jmp ID_check

?: cmp.b #0fbh,r0l ; Version out (fbh)
jne Flash_func_end

192

M16C/80 Group
4.3 Sample List

jmp Ver_output

Flash_func_end:
rts

1

1

+ Read +

Read:
mov.w #0,r3 : receive number
mov.b #0,addr_| ;addr_1=0
Read_loop:
add.w #1,r3 : r3 +1 increment
mov.w r3,a0 :r3-->al
mov.w data[a0],r0
mov.b rOl,addr_I[a0] ; Store address

cmp.w #2,r3 r3=27?
jltu Read_loop ; jump Read_loop at r3<2
mov.w #00ffh,r2 ; Read array command

jsr Command_write ; command_write

bset send_flg

mov.w #3,start_cnt

mov.w #258,send_cnt

jmp Flash_func_end ;jump Flash_func_end

L L L T o
+ Subroutine : Command write +

)

o o T L o o o T I o o A o I o
Command_write:

btst fmr00 ; RY/BY status check
jz Command_write
mov.w addr_l,a0 ;addr_I,m -->a0
mov.b addr_h,al ;addr_h -->al
sha.l #16,al
add.l a0,al
mov.w r2,[al] ; command write
rts
i+ Program +
Program:
mov.w #0,r3 : receive number
mov.b #0,addr_| ;addr 1=0
mov.w sum,crcd ; for Read check command
Program_loop_1:
add.w #1,r3 : r3 +1 increment
mov.w r3,a0 ;r3-->al

mov.b data[a0],r0l

mov.b rOl,addr_I[a0] ; Store address

cmp.w #259,r3 ;13 =2597?

jltu Program_loop_1 ; jump Program_loop_1 at r3<258

mov.w #00ffh,r2 ; Read array command
jsr Command_write ; command_write
mov.w #0070h,r2 ; Read SRD command
jsr Command_write ; Command_write

mov.w [al],rl ; SRD read

mov.w #00ffh,r2 ; Read array command
jsr Command_write ; command_write
cmp.b #80h,ril ; error check

jne Program_end

193

M16C/80 Group
4.3 Sample List

mov.w #0041h,r2 ; Page program command
jsr Command_write ; command_write
mov.w #0,r3 ; writing number (r3=0)

Program_loop_2:
mov.b addr_h,al ;addr_h -->al

sha.l #16,al

mov.w r3,a0 ;13 --> a0

mov.w data[a0],r1 ;data -->rl

mov.w addr_l,a0 ;addr_I,m --> a0

add.l] a0,al

mov.w rl,[al] ; data write

mov.b rll,crcin ; for Read check command
mov.b rlh,crcin ; for Read check command
add.w #2,addr_| ; address +2 increment
add.w #2,r3 ; writing number +2 increment
cmp.w #255,r3 ;13 =2557?

jltu Program_loop_2 ; jump Program_loop_2 at r3<255
Program_end:

mov.w crcd,sum

bclr send_flg

mov.w #0,send_cnt

mov.w #0,start_cnt

jmp Flash_func_end ;jump Flash_func_end

1

;+ Block erase +
Erase:

mov.w #1,r3 ; receive number (r3=1)

mov.b #Ofeh,addr | ;addr_| =feh
Erase_loop:

mov.w r3,a0 ;r3-->al

mov.b data[a0],r0l

mov.b rOl,addr_I[a0] ; Store address

add.w #1,r3 ;13 +1 increment

cmp.w #4,r3 1 1r3=47?

jltu Erase_loop ;jump Erase_loop at r3<4
cmp.b #0dOh,data ; Confirm command check

jne Erase_end ; jump Erase_end at Confirm command error
mov.w #0020h,r2 : Erase command
jsr Command_write ; command write
mov.w #00dO0h,r2 ; Confirm command
mov.w r2,[al] ; command write
Erase_end:
mov.w #00ffh,r2 ; Read array command
jsr Command_write ; command_write
bclr send_flg

mov.w #0,send_cnt
mov.w #0,start_cnt
jmp Flash_func_end ; jump Flash_func_end

)

’

;+ All erase ((unlock block) +

’

All_erase:

mov.w #1,a0

mov.b data[a0],r0l ;receive data read -->r0

cmp.b #0dOh,rO0l ; Confirm command check

jne All_erase_end ;jump All_erase_end at Confirm command
error

mov.w #0000h,addr_| ; 0fe0000h --> addr

194

M16C/80 Group
4.3 Sample List

mov.b #00feh,addr_h

mov.w #00a7h,r2 ; All erase command
jsr Command_write ; command write
mov.w #00dOh,r2 ; Confirm command
mov.w r2,[al] ; command write
All_erase_end:
mov.w #00ffh,r2 ; Read array command
jsr Command_write ; command_write
bclr send_flg

mov.w #0,send_cnt
mov.w #0,start_cnt

jmp Flash_func_end ; jump Flash_func_end
+ Read SRD +
Read_SRD:

mov.w #0,r3 ; receive number (r3=0)

mov.w #0000h,addr_| ; 0fe0000h --> addr
mov.b #00feh,addr_h ;

mov.w #00ffh,r2 ; Read array command
jsr Command_write ; command_write
mov.w #0070h,r2 ; Read SRD command
jsr Command_write ; command write
mov.w [al],rl ; SRD read

mov.w #00ffh,r2 ; Read array command
jsr Command_write ; command_write
mov.w #1,start_cnt

mov.w #3,send_cnt

bset send_flg

jmp Flash_func_end ; jump Flash_func_end

)

)

;+ Clear SRD +

Clear_SRD:
mov.w #0000h,addr_| ; 0fe0000h --> addr
mov.b #00feh,addr_h ;
mov.w #00ffh,r2 ; Read array command
jsr Command_write ; command write
mov.w #0050h,r2 ; Clear SRD command
jsr Command_write ; command write
mov.w #00ffh,r2 ; Read array command
jsr Command_write ; command write
and.b #10011100b,SRD1 ; SRD1 clear
mov.w #0,start_cnt
mov.w #0,send_cnt
bclr send_flg
jmp Flash_func_end ; jump Flash_func_end

)

)

i+ Read Lock Bit +
Read_LB:

mov.w #1,r3 ; receive number (r3=1)

mov.b #O0feh,addr | ;addr_|=feh
Read_LB_loop:

mov.w r3,a0 ;r3-->al

mov.b data[a0],r0l

mov.b rOl,addr_I[a0] ; Store address
add.w #1,r3 : r3 +1 increment
cmp.w #3,r3 1 1r3=37?

jltu Read_LB_loop ;jump Read_LB_loop at r3<3

mov.w #0071h,r2 : Read LB command

195

M16C/80 Group
4.3 Sample List

jsr Command_write ; command write

mov.w [al],rl ;read LB

mov.w #00ffh,r2 ; Read array command

jsr Command_write ; command write
Read_LB_end:

mov.w #1,start_cnt
mov.w #1,send_cnt
bset send_flg

jmp Flash_func_end ;jump Flash_func_end
;+ Program Lock Bit +
Program_LB:

mov.w #1,r3 ; receive number (r3=1)

mov.b #Ofeh,addr_| ; addr_| =feh
Program_LB_loop:
mov.w r3,a0 ;13 -->a0
mov.b data[a0],r0l
mov.b rOl,addr_I[a0] ; Store address
add.w #1,r3 ; r3 +1 increment
cmp.w #4,r3 1 1r3=4 7
jltu Program_LB_loop ; jump Program_LB_loop at r3<4
cmp.b #0dOh,data ; Confirm command check
jne Program_LB_end ; jump Program_LB_end at Confirm command

error
mov.w #0077h,r2 ; Program LB command
jsr Command_write ; command write
mov.w #00d0Oh,r2 ; Confirm command
mov.w r2,[al] ; command write
mov.w #00ffh,r2 ; Read array command

jsr Command_write ; command write
Program_LB_end:

mov.w #0,start_cnt

mov.w #0,send_cnt

bclr send_flg

jmp Flash_func_end ;jump Flash_func_end
;+ Lock Bit enable +
LB_enable:

bclr fmr02 : Lock disable bit =0

mov.w #0,start_cnt
mov.w #0,send_cnt

bclr send_flg

jmp Flash_func_end ;jump Flash_func_end
+ Lock Bit disable +
LB_disable:

bclr fmr02 ; Lock disable bit=0

bset fmr02 : Lock disable Bit = 1

mov.w #0,start_cnt

mov.w #0,send_cnt

bclr send_flg

jmp Flash_func_end ;jump Flash_func_end

)

)

:+ ID check +

1

ID_check:

196

M16C/80 Group
4.3 Sample List

btst blank ; blank flag check
jc ID_check_end ;jump ID_check_end at blank
cmp.w #0ffdfh,addr_| ; lower ID address check

jne ID_error ; jump ID_error at ID address error

cmp.w #007ffh,addr_h ; higher ID address check

jne ID_error ; jump ID_error at ID address error
ID_data_check:

mov.w #0ffdfh,rl : ID lower address -->rl

mov.w #1,r3 ; check loop number (r3=1)
ID_check_loop:

mov.w rl,a0 ;rl-->al

mov.w #000ffh,al ; ID higher address --> al
sha.l #16,al

add.l a0,al

mov.b [al],rOl ; ID data read from Flash memory

mov.w r3,a0 :r3-->al

cmp.b rOl,data[a0] ; compare ID data

jne ID_error ; jump ID_error at ID error

add.w #4,r1 ; 11 +4 increment (next ID address)

cmp.w #0ffe7h,rl : r1=0ffefh ?

jne 2+ ; jump ? at not equal

mov.w #0ffebh,rl ; r1=0ffeb at equal
s

add.w #1,r3 ; 13 +1 increment

cmp.w #8,r3 ;13=8 7

jltu ID_check_loop ;jump ID_check_loop at r3<8
ID_OK:

bset sr10

bset sril ; ID check OK (sr11=1,sr10=1)

jmp ID_check_end ;jump ID_check_end
ID_error:

bset sr10

beclr sril ; ID error (sr11=0,sr10=1)
ID_check_end:

)

mov.w #0,start_cnt

mov.w #0,send_cnt

bclr send_flg

jmp Flash_func_end ; jump Flash_func_end

1

+

1

Boot output +

Boot_output:

bclr fmr05 ; Boot ROM select

mov.w #0,r3 ; receive number (r3=1)

mov.w #0,addr_| ;addr_1=0
Boot_loop:

add.w #1,r3 : r3 +1 increment

mov.w r3,a0 ;r3-->al

1

mov.w data[a0],r0

mov.b rOl,addr_I[a0] ; Store address

cmp.w #2,r3 ;13=37

jltu Boot_loop; jump Boot_output_loop at r3<3
bset send_flg

mov.w #3,start_cnt

mov.w #258,send_cnt

jmp Flash_func_end ;jump Flash_func_end

1

+

1

Read check +

Read_check:

mov.w #O0,start_cnt
mov.w #2,send_cnt
bset send_flg

197

M16C/80 Group
4.3 Sample List

jmp Flash_func_end ;jump Flash_func_end
:+ Download +

Download:

bclr fmr05 ; Boot ROM select

jmp.a Download_program ; jump Download_program

1

1

;+ Version output +

Ver_output:
mov.w #0,start_cnt
mov.w #8,send_cnt
bset send_flg
jmp Flash_func_end ;jump Flash_func_end

)

)

L

;+ Subroutine : a synchronized signal I/O receive data+
T e o B S S

SIO_rcv_data:
jsr set_TAO
SIO_rcv_data_1:
btst ir_taOic ; time out error ?
jnc ?+
jsr Time_over_flg ; jump Time_over at time out
™
btst ri_ulcl ; receive complete ?
jnc SIO_rcv_data_1
mov.w ulrb,rcv_d : receive data read --> r0
rts

)

I L o I o B
;+ Subroutine : a synchronized signal I/O receive data+

T I T e T o o
SIO_rcv_data_rom:

jsr set_TAO
SIO_rcv_data_rom_1:
btst ir_taOic ; time out error ?
bmc fmr05 ; time out, User ROM select
jnc ?+
jsr Time_over_flg ; jump Time_over at time out
™
btst ri_ulcl ; receive complete ?
jnc SIO_rcv_data_rom_1
mov.w ulrb,rcv_d ; receive data read --> r0
rts

1

B o T T o o o o
;+ Subroutine : a synchronized signal 1/0 send +
Mo o o 0
SIO_send:

jsr set_TAO

jsr SIO_send_data

jsr SIO_rcv_data

rts

Mo o o 0
;+ Subroutine : a synchronized signal 1/0 send +
i o B s o
SIO_send_rom:

jsr set_TAO

198

M16C/80 Group
4.3 Sample List

jsr SIO_send_data
jsr SIO_rcv_data_rom

rts
;+ Transfer Program -- UART mode +
i+ (1) Main flow +
+ (2) Flash control program +
+ Read,Program,All_erase,Read_SRD,Clear_ SRD +
+ (3) Other program +
+ ID_check +

.org Trans_TOP2
L e T T
:+ Main flow - UART mode - +
B e e aat L
U_Main:

jmp U_SIO_init_first
U_Loop_main:

mov.b SRD1,SRD1_bak ; SRD1 back up

mov.b SRD1,SRD1_bak+2

jsr U_SIO_recv
mov.w rcv_d,r0
mov.b rOl,cmd_d
mov.w #0,r2
mov.w r2,a0
mov.b rOl,data[a0]
bclr cmd_flg

imp U_SIO_freq

U_Flash_init:
jsr U_time_init

jmp U_SIO_rcv_first_data

U_Flash_set:

imp U_Flash_func
U_Flash_send:

jmp U_SIO_send_data
U_Flash_int:

btst tint_flg

jnc U_Main_end

jsr Initialize_31 ; command error,UART mode Initialize
U_Main_end:

jmp U_Loop_main ; jump U_Loop_main
;+ initialize SIO +
U_time_init:

bset rcv_flg

bclr tint_flg

rts

+ SI/O recieve data +

U_SIO rcv_first_data:
btst rcv_flg

199

M16C/80 Group
4.3 Sample List

jnc U_SIO_rcv_end
jc U_SIO_rcv_first_data_set

U_SIO_rcv_first_data_loop:

jsr U_SIO_rcv_only

mov.w rcv_d,r0 ; receive data --> r0
U_SIO_rcv_first_data_set:

mov.w r2,a0

mov.b rOl,data[a0]

add.w #1,r2

btst cmd_flg

jc U_SIO_loop_chk

bset cmd_flg

mov.b rOl,cmd_d

mov.w #20,a0
U_SIO_rcv_command_chk:

mov.b U_Index_thl-Trans_TOP2+Ram_progTOP-1[a0],rOh
cmp.b rOh,rOl

jeqg U_SIO_cmd_jmp_2

sbjnz.w #1,a0,U_SIO_rcv_command_chk
jmp U_SIO_rcv_end

U_SIO_cmd_jmp_2:

shl.w #1,a0

mov.w U_jmp_tbl_2-Trans_TOP2+Ram_progTOP-2[a0],r0
U_SIO_cmd_jmp_2_1:

jmpi.w 10

U_SIO_2:

mov.w #2,loop_cnt
jmp U_SIO_loop_chk
U_SIO_259:

mov.w #259,loop_cnt
jmp U_SIO_loop_chk
U_SIO_4:

mov.w #4 loop_cnt
jmp U_SIO_loop_chk
U_SIO_3:

mov.w #3,loop_cnt
jmp U_SIO_loop_chk

1

1

+ IDcheck SI/O +
U_SIO_rcv_ID_check:
mov.w #0,r3 ; receive number (r3=0)
mov.w #0ffh,al ; ID size (dummy data = ffh)

mov.b #0,ta0ic
U_SIO_ID data_store:
cmp.w al,r3 ; r13=al(ID size)
jeq U_SIO_ID_address_check; jump ID_address_check at r3=ID size
jsr U_SIO_rcv_only
mov.w rcv_d,r0

mov.w r3,a0 1 r3-->al

mov.b rOl,addr_lI[a0] ; Store address

add.w #1,r3 : r3 +1 increment

cmp.w #4,r3 1 r3=47?

jne U_SIO_ID_data_store ; jump ID_data_store at r3 not= 4
mov.b data,al . ID size --> al

add.w #4,al ;al=al+4

jmp U_SIO_ID_data_store ; jump ID_data_store
U_SIO_ID_address_check:

200

M16C/80 Group
4.3 Sample List

jmp U_SIO_rcv_end

U_SIO rcv_end 1.
bset tint_flg
jmp U_SIO_rcv_end

U_SIO_loop_chk:
cmp.w loop_cnt,r2

jltu U_SIO_rcv_first_data_loop

U_SIO rcv_end:
bclr cmd_flg
belr rev_flg
jmp U_Flash_set

)

)

i+ SIO_send data

U_SIO_send_data:
btst send_flg

jnc U_SIO_send_data_end

mov.b cmd_d,rlh

cmp.b #0ffh,rlh
jeq U_Read_data
cmp.b #070h,rlh

; Read(ffh)

; Read SRD (70h)

jeq U_Read_SRD_data

cmp.b #071h,rlh

jeg U_Read_LB_data

cmp.b #0fbh,rlh

; Read LB (71h)

; Version_output(fbh)

jeq U_Ver_output_data

cmp.b #0fdh,rih

; Read_check(fdh)

jeq U_Read_check_data

cmp.b #0fch,rih
jeq U_Boot_data
cmp.b #0bOh,rlh
jeqg U_BPS_BO_data
cmp.b #0blh,rlh
jeqg U_BPS_B1 data
cmp.b #0b2h,rlh
jeqg U_BPS_B2 data
cmp.b #0b3h,rlh
jeqg U_BPS_B3 data
cmp.b #0b4h,rlh
jeqg U_BPS_B4 data

; Boot_check(fch)

: BPS SET(boh)
: BPS SET(b1h)
: BPS SET(b2h)
: BPS SET(b3h)

: BPS SET(b4h)

jmp U_SIO_send_func

U_Read_check_data:
mov.w #0,r3
mov.w sum,rl

U_Read_check_data_loop:

mov.b rll,send_d
jsr U_SIO_send
mov.b rlh,ril
add.w #1,r3
cmp.w #2,r3

jltu U_Read_check_data_loop

U_Read_check data_end:

mov.w #0,sum
jsr U_SIO_exit

; reset

jmp U_SIO_send_data_end

U_Read_data:
mov.w #0,r3
U_Read_data_loop:

mov.b [al],rll ; Flash memory read

M16C/80 Group

4.3 Sample List

mov.b rll,send_d
jsr U_SIO_send

add.w #1,r3
add.l #1,al
cmp.w #256,r3

;13 =256 7

jne U_Read_data_loop

U_Read_data_end:
jsr U_SIO_exit

jmp U_SIO_send_data_end

U_Ver_output_data:
mov.w #0,a0

; Version address offset (a0=0)

U_Ver_output_data_loop:
mov.b ver[a0],send_d ; send_data set

jsr U_SIO_send

add.w #1,a0
cmp.w #8,a0

;a0=87

jne U_Ver_output_data_loop
U_Ver_output_data_end:

jsr U_SIO_exit

jmp U_SIO_send_data_end

U_Read_SRD_data:
mov.w #0,r3

U_Read_SRD_data_loop:

mov.b rll,send_d
jsr U_SIO_send

mov.b SRD1,rll
add.w #1,r3
cmp.w #2,r3

jltu U_Read_SRD_data_loop; jump Read_SRD_loop at r3<2

; data transfer

: SRD1 data --> r1l

;r3=27

U_Read_SRD_data_end:

jsr U_SIO_exit

jmp U_SIO_send_data_end

U_Read_LB_data:

mov.b rll,send_d
jsr U_SIO_send
U Read LB data_end:

jsr U_SIO_exit

; data transfer

jmp U_SIO_send_data_end

U_Boot_data:
bclr fmr05

mov.w addr_l,a0
mov.b addr_h,al

mov.w #0,r3
sha.l #16,al
add.l] a0,al
U_Boot_data_loop:
mov.b [al],rll

mov.b rll,send_d
jsr U_SIO_send

add.w #1,r3
add.w #1,al
cmp.w #256,r3

; Flash memory read

113 =256 7

jne U_Boot_data_loop

U_Boot_data_end:
bset fmr05
jsr U_SIO_exit

jmp U_SIO_send_data_end

U BPS B0 _data:

mov.b baud,data_BPS

jmp U_BPS_SET_data

; Baud rate 9600bps

M16C/80 Group
4.3 Sample List

U_BPS _B1_data:

mov.b baud+1,data BPS

jmp U_BPS_SET_data
U _BPS B2 data:

mov.b baud+2,data_BPS

jmp U_BPS_SET_data
U_BPS_B3_data:

mov.b baud+3,data BPS

jmp U_BPS_SET_data
U _BPS B4 data:

mov.b baud+4,data_BPS
U_BPS_SET data:

mov.b rOl,send_d

jsr U_SIO_send

jsr U_SIO_exit

jsr U_blank_end ; UART mode Initialize

jmp U_SIO_send_data_end

; Baud rate 19200bps
; Baud rate 38400bps
; Baud rate 57600bps

; Baud rate 115200bps

U_SIO_send_func:

mov.w start_cnt,r3
U_SIO_send_data_loop:

mov.w r3,a0

mov.b data[a0],r1l

mov.b rll,send_d

jsr U_SIO_send

add.w #1,r3

cmp.w send_cnt,r3 ;r3=send_cnt?

jne U_SIO_send_data_loop

mov.w r3,r0
U_SIO_send_data_end:

bclr send_flg

jmp U_Flash_int

I B B T L e L At st o S S B B I

i+ jump table for Flash_func +
B I B e i o O
U_jmp_tbl:

.word U_Read - U_cmd_jmp

.word U_Program - U_cmd_jmp
.word U_Erase - U_cmd_jmp

.word U_AIl_erase - U_cmd_jmp
.word U_Clear_SRD - U_cmd_jmp
.word U_Read LB -U_cmd_jmp
.word U_Program_LB - U_cmd_jmp
.word U_LB_enable - U_cmd_jmp
.word U_LB_disable - U_cmd_jmp
.word U_Download - U_cmd_jmp
.word U_Boot_output - U_cmd_jmp
.word U_Read_check - U_cmd_jmp

I B B T e aam S S

i+ jump table for SIO_rcv_first_data +

e e at

U_jmp_tbl_2:
.word U_SIO_3-U_SIO_cmd_jmp_2_1 ; Read
.word U_SIO_259-U_SIO_cmd_jmp_2_1 ; Program
.word U_SIO_4-U_SIO_cmd_jmp_2_1 ; erase
.word U_SIO_2-U_SIO_cmd_jmp_2_1 ; All erase
.word U_SIO_rcv_end -U_SIO_cmd_jmp_2 1 ; Clear SRD
.word U_SIO_3-U_SIO_cmd_jmp_2_1 ; Read LB
.word U_SIO_4-U_SIO_cmd_jmp_2_1 ; LB Program
.word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ;LB enable
.word U_SIO_rcv_end-U_SIO_cmd_jmp_2 1 ;LB disable
.word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; Download
.word U_SIO_3-U_SIO_cmd_jmp_2_1 ; Boot output

203

M16C/80 Group

4.3 Sample List

.word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; Read check

.word U_SIO_rcv_end - U_SIO_cmd_jmp_2 1 ; Read SRD

.word U_SIO_rcv_ID_check - U_SIO_cmd_jmp_2_1; ID check

.word U_SIO_rcv_end - U_SIO_cmd_jmp_2_1 ; Version out

.word U_SIO_rcv_end-U_SIO_cmd_jmp_2 1 ; U_BPS_BO

.word U_SIO_rcv_end-U_SIO _cmd_jmp_2 1 ; U_BPS_B1

.word U_SIO_rcv_end-U_SIO_cmd_jmp_2 1 ; U_BPS_B2

.word U_SIO_rcv_end - U_SIO_cmd_jmp_2 1 ; U_BPS_B3

.word U_SIO_rcv_end -U_SIO _cmd_jmp_2 1 ; U_BPS_B4
L L e I it ot
;+ serch table for Flash_func,SIO_rcv_first_data +
T o o
U_Index_tbl:

.byte 0Offh ; Read(ffh)

.byte 041h ; Program(41h)

.byte 020h ; Erase(20h)

.byte 0a7h ; All_erase(a7h)

.byte 050h ; Clear SRD(50h)

.byte 071h ; Read LBS(71h)

.byte 077h ; LB program(77h)

.byte 07ah ; LB enable (7ah)

.byte 075h ; LB disable(75h)

.byte Ofah ; Download (fah)

.byte Ofch ; Boot output(fch)

.byte 0Ofdh ; Read check(fdh)

.byte 070h ; Read SRD(70h)

.byte 0f5h ; ID check(f5h)

.byte 0fbh ; Version output(fbh)
.byte 0bOh ; BPS_SET 9600 (bOh)
.byte 0Oblh ; BPS_SET 19200 (b1h)
.byte 0Ob2h ; BPS_SET 38400(b2h)
.byte 0b3h ; BPS_SET 57600(b3h)
.byte 0b4h : BPS_SET 115200(b4h)

)

)

B T o o o o
;+ Subroutine : Initialize_3 - UART mode +
B L o o S
Initialize_3:

)

:+ Flash mode set +

bset fmr05 : User ROM select

belr fmr01 ; Flash entry bit clear

bset fmrO1 ; Flash entry bit set (E/W mode)
:+ Blank check +

)

mov.w Offfffch,rO ; Reset vector read
mov.w Offfffeh,rl ; Reset vector read
and.w r1,r0 r0&rl

cmp.w #Offffh,r0 ; rO=fffth ?

jne U_blank_end

bset sr10 ; check complete at rO=ffffh
bset sril
bset blank ; blank flag set
U_blank_end:
+ UART1 +

)

204

M16C/80 Group
4.3 Sample List

- UART init rate generator 1

mov.w data_BPS,ulbrg

Initialize_31:

bclr pd6_2

; RxD input

e Function select register AO

mov.b #10010000b,ps0

- Function select register BO

mov.b #00000000b,psIO

- UART1 transmit/receive mode register

mov.b #0,ulcl
mov.b #O,ulmr

; transmit/receive disable
;ulmr reset

mov.b #00000101b,ulmr

; [II11++
; [II11+
; [III+

1

transfer data 8 bit long
Internal clock
one stop bit

-- parity disabled

sleep mode deselected

jmmme- UART1 transmit/receive control register O

mov.b #00000100b,ulcO

; [II[f1++

f1 select

- RTS select

CRT/RTS enabled
CMOS output(TxD)

-- Must always be "0"

e UART transmit/receive control register 2

mov.b #00000000b,ucon

; [III1++

1

Transmit buffer empty

-- Invalid

- UART1 transmit/received control register 1

mov.b #00000000b,ulcl

; 11T E— Transmission disabled
; [[[]+---=------- Transmission enabled
; 1] Reception disabled
; [|[|+---------- Reception enabled
; Foht oo fixed

rts

:+ FLASH function main +

U_Flash_func:

mov.b cmd_d,rOl

mov.b #0ch,rOh
and.b SRD1,r0h

: receive data --> rOl

; #00001100b sr10,11 mask data
; sr10,11 pick up

205

M16C/80 Group
4.3 Sample List

cmp.b #0ch,rOh ; ID check OK?
jne U_Command_check_2 ;jump Command_check_2 at ID unchecked
mov.w #12,a0

U_Command_check:
mov.b U_Index_tbhl-Trans_TOP2+Ram_progTOP-1[a0],rOh
cmp.b rOh,r0l
jeqg U_cmd_jmp_1
sbjnz.w #1,a0,U_Command_check
jmp U_Command_check_2

U_cmd_jmp_1:

shl.w #1,a0

mov.w U_jmp_tbl-Trans_TOP2+Ram_progTOP-2[a0],r0
U_cmd_jmp:

jmpi.w r0

U_Command_check_2:
?: cmp.b #070h,r0l ; Read SRD (70h)
jne ?+
jmp U_Read_SRD
cmp.b #0f5h,r0l ; ID check (f5h)
jne ?+
jmp U_ID_check
cmp.b #0bOh,r0l ; BPS_SET 9600 (bOh)
jne 7?2+
jmp U_BPS_BO
cmp.b #0b1h,r0l ; BPS_SET 19200 (b1h)
jne ?+
jmp U_BPS_B1
cmp.b #0b2h,r0l ; BPS_SET 38400 (b2h)
jne 7?2+
jmp U_BPS_B2
cmp.b #0b3h,r0l ; BPS_SET 57600 (b3h)
jne ?+
jmp U_BPS_B3
cmp.b #0b4h,r0l ; BPS_SET 115200 (b4h)
jne 7?2+
jmp U_BPS_B4
cmp.b #0fbh,r0l ; Version out (fbh)
jne U_Flash_func_end
jmp U_Ver_output

N

N

N

N

N

N

N

U_Flash_func_end:
jmp U_Flash_send

:+ Read - UART mode - +

U_Read:
mov.w #0,r3 ; receive number
mov.b #0,addr_| ;addr_1=0
U_Read_loop:
add.w #1,r3 ;13 +1 increment
mov.w r3,a0 r3-->al

mov.w data[a0],r0
mov.b rOl,addr_I[a0] ; Store address

cmp.w #2,r3 r3=27
jltu U_Read_loop ;jump Read_loop at r3<2
mov.w #00ffh,r2 ; Read array command

jsr U_Command_write ; command_write
bset send_flg

mov.w #3,start_cnt

mov.w #258,send_cnt

206

M16C/80 Group
4.3 Sample List

jmp U_Flash_func_end ;jump Flash_func_end

)

)

i+ Program - UART mode - +
U_Program:

mov.w #0,r3 ; receive number

mov.b #0,addr_| ;addr 1=0

mov.w sum,crcd ; for Read check command
U_Program_loop_1:

add.w #1,r3 : r3 +1 increment

mov.w r3,a0 ;r3-->al

mov.b data[a0],r0l

mov.b rOl,addr_I[a0] ; Store address

cmp.w #259,r3 ;13 =2587

jltu U_Program_loop_1 ;jump U_Program_loop at r3<258
mov.w #00ffh,r2 ; Read array command

jsr U_Command_write ; command_write

mov.w #0070h,r2 ; Read SRD command

jsr U_Command_write ; command_write

mov.w [al],rl : SRD read

mov.w #00ffh,r2 ; Read array command
jsr U_Command_write ; command_write
cmp.b #80h,r1l ; error check

jne U_Program_end

)

mov.w #0041h,r2 ; Page program command
jsr U_Command_write ; command_write
mov.w #0,r3 ; writing number (r3=0)

U_Program_loop_2:
mov.b addr_h,al ;addr h -->al

sha.l #16,al

mov.w r3,a0 13 --> a0

mov.w data[a0O],r1 ;data -->rl

mov.w addr_l,a0 ;addr_I,m --> a0

add.l a0,al

mov.w rl,[al] : data write

mov.b rll,crcin ; for Read check command

mov.b rlh,crcin

add.w #2,addr_| ; address +2 increment
add.w #2,r3 ; writing number +2 increment
cmp.w #255,r3 :r13=2557

jltu U_Program_loop_2 ; jump U_Program_loop_2 at r3<255

U_Program_end:
mov.w crcd,sum ; for Read check command
bclr send_flg
mov.w #0,send_cnt
mov.w #0,start_cnt
jmp U_Flash_func_end ;jump Flash_func_end

)

+ Block erase - UART mode - +
U_Erase:
mov.w #1,r3 ; receive number (r3=1)

mov.b #0feh,addr_| ;addr_| =feh
U_Erase_loop:

mov.w r3,a0 ;r3-->al

mov.b data[a0],r0l

mov.b rOl,addr_I[a0] ; Store address

add.w #1,r3 ; 13 +1 increment

207

M16C/80 Group
4.3 Sample List

cmp.w #4,r3 1 1r3=4 7

jltu U_Erase_loop ;jump atr3<4

cmp.b #0dOh,data ; Confirm command check

jne U_Erase_end ;jump Erase_end at Confirm command error

mov.w #0020h,r2 ; Erase command

jsr U_Command_write ; command write

mov.w #00d0h,r2 ; Confirm command

mov.w r2,[al] ; command write
U_Erase_end:

mov.w #00ffh,r2 ; Read array command

jsr U_Command_write ; U_command_write

bclr send_flg

mov.w #0,send_cnt
mov.w #0,start_cnt
jmp U_Flash_func_end ;jump Flash_func_end

1

)

;+ All erase (unlock block) - UART mode - +

U_All_erase:
mov.w #1,a0
mov.b data[a0],r0l ;receive data read -->rQ
cmp.b #0dOh,rOl ; Confirm command check
jne U_AIl_erase_end ; jump U_AIl_erase_end at Confirm command error
mov.w #0000h,addr_| ; 0fe0000h --> addr
mov.b #00feh,addr_h

mov.w #00a7h,r2 ; All erase command
jsr U_Command_write ; command write
mov.w #00d0h,r2 ; Confirm command
mov.w r2,[al] ; command write
U_All_erase_end:
mov.w #00ffh,r2 ; Read array command
jsr U_Command_write ; command_write
bclr send_flg

mov.w #0,send_cnt
mov.w #0,start_cnt
jmp U_Flash_func_end ;jump Flash_func_end

’

’

:+ Read SRD - UART mode +
U_Read_SRD:
mov.w #0,r3 ; receive number (r3=0)

mov.w #0000h,addr_| ; 0fe0000h --> addr
mov.b #00feh,addr_h

mov.w #00ffh,r2 ; Read array command
jsr U_Command_write ; command_write
mov.w #0070h,r2 ; Read SRD command
jsr U_Command_write ; command write
mov.w [al],rl : SRD read

mov.w #00ffh,r2 ; Read array command
jsr U_Command_write ; command_write
mov.w #1,start_cnt

mov.w #3,send_cnt

bset send_flg

jmp U_Flash_func_end ;jump Flash_func_end

)

)

:+ Clear SRD - UART mode +

U_Clear_SRD:
mov.w #0000h,addr_| ; 0fe0000h --> addr
mov.b #00feh,addr_h
mov.w #00ffh,r2 ; Read array command
jsr U_Command_write ; command write

208

M16C/80 Group
4.3 Sample List

mov.w #0050h,r2 ; Clear SRD command

jsr U_Command_write ; command write

mov.w #00ffh,r2 ; Read array command

jsr U_Command_write ; command write

and.b #10011100b,SRD1 ; SRD1 clear

mov.w #0,start_cnt

mov.w #0,send_cnt

bclr send_flg

jmp U_Flash_func_end ;jump Flash_func_end

)

1

:+ Read Lock Bit - UART mode - +
U_Read LB:
mov.w #1,r3 ; receive number (r3=1)

mov.b #Ofeh,addr | ;addr_|=feh
U_Read_LB_loop:

mov.w r3,a0 ;r3-->al

mov.b data[a0],r0l

mov.b rOl,addr_I[a0] ; Store address

add.w #1,r3 : r3 +1 increment
cmp.w #3,r3 1 1r3=37?

jltu U_Read_LB_loop ;jump at r3<3
bclr re_ulcl ; Reception disabled

mov.w #0071h,r2 ; Read LB command

jsr U_Command_write ; command write

mov.w [al],rl ;read LB

mov.w #00ffh,r2 ; Read array command

jsr U_Command_write ; U_command write
U_Read_LB_end:

mov.w #1,start_cnt

mov.w #1,send_cnt

bset send_flg

jmp U_Flash_func_end ;jump Flash_func_end

1

1

i+ Program Lock Bit - UART mode - +

U_Program_LB:
mov.w #1,r3 ; receive number (r3=1)
mov.b #O0feh,addr_| ;addr_| =feh
U_Program_LB_loop:
mov.w r3,a0 ;r3-->al
mov.b data[a0],r0l
mov.b rOl,addr_I[a0] ; Store address
add.w #1,r3 ; 13 +1 increment
cmp.w #4,r3 1 r3=47?
jltu U_Program_LB_loop ;jump at r3<4
cmp.b #0dOh,data ; Confirm command check
jne U_Program_LB_end ; jump U_Program_LB_end at Confirm command

error
mov.w #0077h,r2 ; Program LB command
jsr U_Command_write ; command write
mov.w #00dOh,r2 ; Confirm command
mov.w r2,[al] ; command write
mov.w #00ffh,r2 ; Read array command

jsr U_Command_write ; command write
U_Program_LB_end:

mov.w #0,start_cnt

mov.w #0,send_cnt

bclr send_flg

jmp U_Flash_func_end ;jump Flash_func_end

209

M16C/80 Group

4.3 Sample List

:+ Lock Bit enable - UART mode - +
U _LB_enable:
bclr fmr02 ; Lock disable bit =0

mov.w #0,start_cnt

mov.w #0,send_cnt

bclr send_flg

jmp U_Flash_func_end ;jump Flash_func_end

1

)

:+ Lock Bit disable - UART mode - +
U_LB_disable:

bclr fmr02 ; Lock disable bit =0

bset fmr02 : Lock disable Bit = 1

mov.w #0,start_cnt

mov.w #0,send_cnt

bclr send_flg

jmp U_Flash_func_end ;jump Flash_func_end

1

1

:+ ID check - UART mode +
U_ID_check:
btst blank ; blank flag check

jc U_ID_check_end ; jump U_ID_check_end at blank
cmp.w #Offdfh,addr_| ; lower U_ID address check

jne U_ID_error ;jump U_ID_error at ID address error
cmp.w #007ffh,addr_h ; higher ID address check

jne U_ID_error ;jump U_ID_error at ID address error
U_ID_data_check:

mov.w #Offdfh,rl 1D lower address -->rl

mov.w #1,r3 ; check loop number (r3=1)
U_ID_check_loop:

mov.w #00ffh,al ; ID higher address --> al

sha.l #16,al

mov.w rl,a0 irl-->al

add.l] a0,al

mov.b [al],rOl ; ID data read from Flash memory

mov.w r3,a0 ;13 -->a0

cmp.b rOl,data[a0] ; compare ID data
jne U_ID_error ;jump U_ID_error at ID error

add.w #4,r1 ; r'l +4 increment (next ID address)
cmp.w #0ffe7h,rl ; r1=0ffefh ?
jne 7+ ; jump ? at not equal
mov.w #Offebh,rl ; r1=0ffeb at equal
™
add.w #1,r3 ;13 +1 increment
cmp.w #8,r3 :r3=87?

jltu U_ID_check_loop ; jump U_ID_check_loop at r3<8
U_ID_OK:

bset sr10

bset sril ; ID check OK (sr11=1,sr10=1)

jmp U_ID_check_end ;jump U_ID_check_end
U_ID_error:

bset srl0

bclr sr1l ; ID error (sr11=0,sr10=1)
U_ID_check_end:

mov.w #0,start_cnt

mov.w #0,send_cnt

bclr send_flg

jmp U_Flash_func_end ;jump Flash_func_end

210

M16C/80 Group
4.3 Sample List

i+ Boot output - UART mode - +

U_Boot_output:

bclr fmr05 ; Boot ROM select

mov.w #0,r3 ; receive number (r3=1)

mov.w #0,addr_| ;addr_1=0
U_Boot_loop:

add.w #1,r3 : r3 +1 increment

mov.w r3,a0 ;r3-->al

mov.w data[a0],r0

mov.b rOl,addr_I[a0] ; Store address

cmp.w #2,r3 ;13=37

jltu U_Boot_loop ;jump atr3<3

bset send_flg

mov.w #3,start_cnt

mov.w #258,send_cnt

jmp U_Flash_func_end ;jump Flash_func_end

1

1

;+ Read check +

U_Read_check:
mov.w #0,start_cnt
mov.w #2,send_cnt
bset send_flg
jmp U_Flash_func_end ;jump Flash_func_end

)

)

:+ Download - UART mode - +
U_Download:
bclr fmr05 ; Boot ROM select

jmp.a U_Download_program ;jump U_Download_program

1

1

;+ Version output - UART mode - +

U_Ver_output:

mov.w #O0,start_cnt

mov.w #8,send_cnt

bset send_flg

jmp U_Flash_func_end ;jump Flash_func_end
L e T T
+ Subroutine : Command write - UART mode +

o o e I o o o S o o o I o o 0 o 8 o
U_Command_write:

btst fmr00 ; RY/BY status check
jz U_Command_write

mov.w addr_l,a0 ;addr_I,m -->a0
mov.b addr_h,al ;addr_ h -->al
sha.l #16,al

add.l a0,al

mov.w r2,[al] ; command write

rts

L L o T T T
+ Main init first - UART mode - +
B e I I L L
U_SIO_init_first:

bclr freq_setl ; freq set flag clear

bclr freq_set2

mov.b #01111111b,data BPS ; Initialize Baud rate
;. mov.b #129,data_BPS ; Initialize Baud rate 9600bps for 20MHz

211

M16C/80 Group
4.3 Sample List

jsr Initialize_3 ; UART mode Initialize
mov.b #01000000b,rll ; counbterl,?2 reset
mov.b #10000000b,r1h

jsr U_SIO_rev
mov.w rcv_d,r0

btst freq_set2

jz U_Freqg_check
jmp U_Loop_main

; receive data -->r0

)

e B

:+ SlOinit - UART mode - +
B T o o o o S
U_SIO_freq:

btst freq_set2
jz U_Freqg_check
jmp U_Flash_init

B T o o S
;+ Freqg check - UART mode - +
B T o o S
U_Freqg_check:

bclr re_ulcl ; Reception disabled

btst 0,rih ; counter = 8 times

jc U_Freqg_check_4

btst freq_setl

jc U_Freqg_check_1

btst 5,r0Oh ; fer_ulrb

jz U_Freqg_check_3

jmp U_Freq_check_2
U_Freqg_check_1:

cmp.b #00h,r0l ; "00h"?

jeq U_Freq_check_3
U_Freq_check_2:

or.b rilh,ril
U_Freqg_check_3:

xor.b data BPS,rll

: rll = counterl or counter2

; Baud = Baud xor r1l

mov.b rll,data_BPS ; data set
mov.b rlh,ril

rot.b #-1,rll

rot.b #-1,rlh ; counter sift

rot.b #-1,rll
jmp U_Freq_check_6

U_Freqg_check_4:

btst freq_setl ; Baud get ?

jc U_Freg_set_1 ; Yes, finished

bset freq_setl

btst 5,r0l ; fer_ulrb

jz U_Freq_check 5

xor.b data_BPS,rlh

mov.b rlh,data_BPS
U_Freqg_check_5:

mov.b data BPS,data BPS+1 ; Min Baud --> data+1

mov.b #01000000b,r1l ; counter reset

mov.b #10000000b,r1h

mov.b #10000000b,data_BPS ; Reset
U_Freqg_check_6:

jsr U_blank_end ; UART mode Initialize
™

btst p6_6

iz 7

212

M16C/80 Group
4.3 Sample List

imp U_Loop_main

U_Freq_set_1:
cmp.b #00h,r0l ; "00h"?
jeq U_Freq_set 2
xor.b data_BPS,rlh
mov.b rlh,data_BPS
U_Freq_set_2:
bset freq_set2
mov.b data BPS,rll
sub.b data_ BPS+1,rll
shl.b #-1,r1l
add.b data_BPS+1,rll

; Max Baud --> data

mov.b rll,baud ; 9600bps
shl.b #-1,r1l ; 19200bps

mov.b rll,baud+1

shl.b #-1,r1l ; 38400bps

mov.b rll,baud+2

mov.b baud,rOl ; 57600bps
mov.b #0,rOh

divu.b #6

mov.b rOl,baud+3

mov.b baud+3,r0l ; 115200bps

shl.b #-1,r0l

mov.b rOl,baud+4

mov.b baud,data_ BPS

mov.b #0bOh,rOl : "BOh" set

jsr U_blank_end ; UART mode Initialize
jmp U_BPS_SET_data

1

)

;+ Baud rate change - UART mode +

U_BPS_BO:
U_BPS _B1:
U _BPS B2:
U_BPS B3:
U _BPS B4:

mov.w #0,start_cnt

mov.w #1,send_cnt

bset send_flg

jmp U_Flash_func_end ;jump Flash_func_end
L e T T
;+ Subroutine : serial I/O send - UART mode +
B st o o o
U_SIO_send:

bclr re_ulcl

bset te ulcl

mov.b send_d,ultb ; transmit buffer register

?:
btst ti_ulcl ; transmit buffer empty?
jnc ?-
rts

;

B T e B e i o O
i+ Subroutine : serial I/O send - UART mode +

B e I I L L
U_SIO_send_only:

mov.b send_d,ultb ; transmit buffer register

?:
btst ti_ulcl
jnc ?-
rts

; transmit buffer empty?

213

M16C/80 Group
4.3 Sample List

o a a aat o
+ Subroutine : serial I/0O receive - UART mode +
B T o o o o S
U_SIO recv:

bclr te_ulcl

bset re_ulcl

s
btst ri_ulcl ; receive complete?
jnc ?-
mov.w ulrb,rcv_d
rts

)

T o o
+ Subroutine : serial I/0 receive - UART mode +
B T o o o o S
U_SIO_rcv_only:

s
btst ri_ulcl ; receive complete?
jnc ?-
mov.w ulrb,rcv_d
rts

1

L e et ot o o0
;+ Subroutine : serial /0 receive - UART mode +
B a0 0 o
U_SIO_exit:

btst txept_ulcO

jnc U_SIO_exit

rts

1

:+ Vector Table +

)

.section inter,romdata
.org Vector

lword Reset : UNO

lword Reset INTO
lword Reset : BRK
Iword Reset ; address matchnig

lword Reset ;
lword Reset WDT
lword Reset ;
lword Reset : NMI
lword Reset ; Reset

.end

214

4

M16C/80 Group
4.3 Sample List

Header

k% *kkkkkkkkkkhhkkhhkkhrkkk *%
)

* file name : definition of M1

*kkkkkkkhkkhhkkkhrk

6C/80 Flash *

* * * *

* * *

BUSY output

busy .btequ 4,03COh ;
busy d .btequ 4,03C2h

p6_4
; pd6_4

Serial I/0O select bit

s_mode .btequ 5,03COh
s_mode_d .btequ 5,03C2h

; p6_5
; pd6_5

define of symbols

Ram_TOP .equ 000400h
Ram_END .equ 000bffh
Istack .equ 000c00h

Version .equ Offe000h
Boot_ TOP .equ 0ffe020h
Trans_TOP1 .equ 0ffe200h
Trans_END1 .equ Offe700h
Trans_TOP2 .equ 0ffe800h
Trans_END2 .equ 0ffed80h
Vector .equ Offffdch

Download_program .equ O
U_Download_program .equ

SB_base .equ 000400h
Ram_progTOP .equ 000600

ffe0fOh
0ffel70h

h

Ram_progEND .equ 000B80h

)

.section memory,data
.org Ram_TOP

SRD: .blkb 1
SRD1: .blkb 1
ver: .blkb 10
SF: .blkb 1
unuse: .blkb 4
addr_I: .blkb 1
addr m: .blkb 1
addr_h: .blkb 1
data: .blkb 300
buff: .blkb 20
ID_err: .blkb 1
sum: .blkb 2
baud: .blkb 5
sr0 .btequ 0,SRD
srl .btequ 1,SRD
sr2 .btequ 2,SRD
sr3 .btequ 3,SRD
sr4 .btequ 4,SRD
sr5 .btequ 5,SRD
sr6 .btequ 6,SRD
sr7 .btequ 7,SRD

215

M16C/80 Group
4.3 Sample List

sr8

sr9

srl0
srll
srl2
srl3
srl4
srl5

.btequ 0,SRD1
.btequ 1,SRD1

.btequ
.btequ
.btequ
.btequ
.btequ
.btequ

2,SRD1
3,SRD1
4,SRD1
5,SRD1
6,SRD1
7,SRD1

ram_check .btequ 0,SF
.btequ 1,SF

blank
old_mode

.btequ 2,SF

freq_setl .btequ 3,SF
freq_set2 .btequ 4,SF

216

M16C/80 Group
4 4.4 Precautions

4.4 Precautions

This section describes precautions to be observed when controlling the M16C/80's internal flash memory.

When Powering On/Off

When powering on/off, pay attention to the following:

(1) Be careful that noise will not get into the control pins (WE, CE, OE). If a noise pulse is applied to the
control pins when turning the power on or off, a program/erase error will occur, which in the worst case
may destroy the memory data.

(2) A finite wait time is required before you can start read or program/erase operation after power-on.
Specifically, a wait time of 2 us is required before read or program/erase operation can be started after
Vcce reached Veemin (3.0 V).

217

M16C/80 Group
4.4 Precautions

218

Chapter 5

Internal Flash Memory Rewrite Inhibit Function

5.1 ID Code
5.2 ROM Code Protect Function

5 Internal Flash Memory Rewrite Inhibit Function

5.1 ID Code

5.1 ID Code

To prevent illegal leakage of a program, the M16C flash memory allows ID data to be set (called the "ID
code”). This section describes how to inhibit the internal flash memory against rewriting by using ID data.

What Is The ID Code?

The ID code is the ID data that is written into the internal flash memory beforehand in order to inhibit the
flash memory against rewriting.

When exercising control, enter the ID from the programmer newly again and only when it matches the ID
data stored in the flash memory, you can control program or read operation.

The ID code for the M16C/20 and 62's flash memory is fixed to 7 bytes in length. The areas in which to
store the ID code are address FFFDF16, address FFFE316, address FFFEB16, address FFFEF16, address
FFFF316, address FFFF716, and address FFFFB16.

The ID code for the M16C/80's flash memory is fixed to 7 bytes in length. The areas in which to store the
ID code are address FFFFDF16, address FFFFE316, address FFFFEB16, address FFFFEF16, address
FFFFF316, address FFFFF716, and address FFFFFB16.

FFFDF16 | ID1 B

FFFE316 | D2 |

FFFEB16 | ID3 |

EEEEF16 | D4 | Fixed to 7 bytes in length
FFFF316 | ID5 |

FFFF716 | ID6 |

FFFFBus6 | ID7 i_

Figure 5.1.1 ID Codes of The M16C/20 and 62

220

Internal Flash Memory Rewrite Inhibit Function

5.1 ID Code

Processing Flow

Figure 5.1.2 shows a flow of the main program using ID code.

(START

D)

——

Determined by flag, etc.

{Checked?

Yes

Command
processing

No

ID check

Figure 5.1.2 Flow of The Main Program Using ID Code

How to Set ID Code

Error handling

The addresses at which ID code is set overlaps the fixed vector area. Therefore, set the logical sum of
each interrupt's jump address and the ID code as fixed vector. A description example is shown in Figure

5.1.3.

.org
uDl:

lword
OVER_FLOW:

lword
BRKI:

lword
ADDRESS_ MATCH:

lword
SINGLE_STEP:

lword
WDT:

lword
DBC:

lword
NMI:

lword
RESET:

lword

OFFFDCH
dummy_int | 02000000H
dummy_int | 23000000H
dummy_int
dummy_int | 45000000H
dummy_int | 67000000H

dummy_int | 89000000H

dummy_int | OABOOOOOOH

dummy_int | 0CDO00000OH

start

Interrupt jump address

ID code

;ID1

; ID2

; ID3
; 1D4
; ID5
;1ID6

; ID7

L/

Figure 5.1.3 Description Example for ID Code Setting (M16C/20, 62)

221

5 Internal Flash Memory Rewrite Inhibit Function

5.1 ID Code

Setting ID Code by Imc30, Imc308

The load module converters (Imc30, Imc308) included with the assemblers for Mitsubishi M16C (AS30,
AS308) allow any ID code to be set in a load module when generating the load module.

The following shows an example of command settings necessary to set ID code when generating load
modules. For details about the load module converters (Imc30, Imc308), refer to the AS30 User's Manual
or AS308 User's Manual.

Example 1: Imc30 -ID Code Nol sample ("CodeNol" specified using ASCII code)
ID code : 436F64654E6F31

Table 5.1.1 ID Code Setting Example

ID1 D2 ID3 D4 ID5 ID6 ID7
Address | FFFDF16 FFFE316 | FFFEB16 | FFFEF16 FFFF316 FFFF716 FFFFB16
Data 4316 6F16 6416 6516 4E16 6F16 3116

Example 2: Imc30 -ID Code sample ("Code" specified using ASCII code)
ID code : 436F6465000000

Example 3: Imc30 -1D1234567 sample ("1234567" specified using ASCII code)
ID code : 31323334353637

Example 4: Imc30 -ID#49562137856132 sample ("49562137856132" specified using HEX code)
ID code : 49562137856132

Example 5: Imc30 -1ID1234567 sample ("1234567" specified using HEX code)
ID code : 12345670000000

Example 6: Imc30 -ID sample
ID code : FFFFFFFFFFFFFF

222

Internal Flash Memory Rewrite Inhibit Function

5 5.2 ROM Code Protect Function

5.2 ROM Code Protect Function

To prevent illegal leakage of a program, the M16C flash memory allows you to limit rewriting of ROM code
(called the "ROM code protect”). This section describes how to limit rewriting of the internal flash memory by
using the ROM code protect function.

What is The ROM Code Protect Function?

The ROM code protect function reading out or modifying the contents of the flash memory version by using
the ROM code protect control address (OFFFFF16) during parallel I/O mode. Figure 5.2.1 shows the ROM
code protect control address (OFFFFF16). (This address exists in the user ROM area.)

If one of the pair of ROM code protect bits is set to 0, ROM code protect is turned on, so that the contents
of the flash memory version are protected against readout and modification. ROM code protect is
implemented in two levels. If level 2 is selected, the flash memory is protected even against readout by a
shipment inspection LSI tester, etc. When an attempt is made to select both level 1 and level 2, level 2 is
selected by default.

If both of the two ROM code protect reset bits are set to “00,” ROM code protect is turned off, so that the
contents of the flash memory version can be read out or modified. Once ROM code protect is turned on,
the contents of the ROM code protect reset bits cannot be modified in parallel /O mode. Use the serial I/O
or some other mode to rewrite the contents of the ROM code protect reset bits.

ROM code protect control address

b7 b6 b5 b4 b3 b2 bl bo Symbol Address When reset
| | | | | | | | | ROMCP OFFFFF16 (M16C/20, 60) FFie
A1 1 FFFFFF16 (M16C/80)
i+ 1 1| Bitsymbol Bit name Function
¢+ __t] Reserved bit Always set this bit to 1.

ROM code protect level b3 b2
2 set bit (Note 1, 2) 00: Protect enabled

01: Protect enabled
10: Protect enabled
11: Protect disabled

R ROMCP?2

e

b5 b4

00: Protect removed

01: Protect set bit effective
10: Protect set bit effective
11: Protect set bit effective

______________ ROMCR |ROM code protect reset
bit (Note 3)

ROM code protect level b7 b6
"""""""""""" ROMCP1 1 set bit (Nc?te 1) 00: Protect enabled

01: Protect enabled
10: Protect enabled
11: Protect disabled

Note 1: When ROM code protect is turned on, the on-chip flash memory is protected against
readout or modification in parallel input/output mode.

Note 2: When ROM code protect level 2 is turned on, ROM code readout by a shipment
inspection LSI tester, etc. also is inhibited.

Note 3: The ROM code protect reset bits can be used to turn off ROM code protect level 1 and
ROM code protect level 2. However, since these bits cannot be changed in parallel input/
output mode, they need to be rewritten in serial input/output or some other mode.

Note 4: This bit is defined as the reserved bit in M16C/20 group. Must set "1" to it.

Figure 5.2.1 ROM Code Protect Control Address

223

Internal Flash Memory Rewrite Inhibit Function

5.2 ROM Code Protect Function

How to Set ROM Code Protect Control Addresses

The addresses at which ROM code protect is set overlaps the fixed vector area. Therefore, set the logical
sum of the reset jump address and the set value of ROM code protect bit as fixed vector. A description
example is shown in Figure 5.2.2.

.org OFFFDCH
uDl:

Iword dummy_int | 02000000H ; ID1
OVER_FLOW:

.Ilword dummy_int | 23000000H ; ID2
BRKI:

Iword dummy_int
ADDRESS_MATCH:

.Ilword dummy_int | 45000000H ; ID3
SINGLE_STEP:

.Ilword dummy_int | 67000000H ; ID4
WDT:

Iword dummy_int | 89000000H ; ID5
DBC:

.Ilword dummy_int | OABOOOOOOH ; ID6
NMI:

Iword dummy_int | 0CDO0O000OH ; ID7
RESET:

Iword start | 03FO00000H ; ROMCP

|
\ N\
Reset jump address ROM code protect control
address

Figure 5.2.2 Description Example for ROM Code Protect Control Address (M16C/20,62)

224

Internal Flash Memory Rewrite Inhibit Function
5 5.2 ROM Code Protect Function

Setting ROM Code Protect by Imc30, Imc308

The load module converters (Imc30, Imc308) included with the assemblers for Mitsubishi M16C (AS30,
AS308) allow any ROM code protect function to be set in a load module when generating the load module.
The following shows an example of command settings necessary to set ROM code protect function when
generating load modules. For details about the load module converters (Imc30, Imc308), refer to the AS30
User's Manual or AS308 User's Manual.

Example 1: Imc30 -protect 1 sample (Set ROM code protect function level 1)
Protect code : 3F16

Example 2: Imc30 -protect 2 sample (Set ROM code protect function level 2)
Protect code : F316

Example 3: Imc30 sample (Without ROM code protect function setting)
Protect code : Data described in source program

225

Version History

Revision History

. Revision
Version Contents for change date
REV.B |+ Page 96 Figure 3.2.24 Flowchart 27 Mar. '00

« Source of 3.3 Sample List

» Page 10-11 M30201F4 --> M30201F6

* Page 11 Figure 2.1.1 DFBFF16 --> DFDFF16

* Page 61 (1) 14V --> 13V

« Page 77 Figure 3.2.3 b6 of CM0 '1 --> 0', b6 of CM1 '1 --> 0', divided-by 2 mode --> no
division mode

* Page 78, 156 Initial setting 2 the flash entry bit --> the CPU rewite mode select bit

flash control register 0/1 --> flash memory control register 0/1

e Page 142 M30802FC --> M30803FC

* Page 174 Figure 4.2.24 Flowchart

» Source of 4.3 Sample List

M16C/60, M16C/20, M16C/80 Series

Revision hIStOI’y Application Note <Flash Memory>

226

MITSUBISHI SINGLE-CHIP MICROCOMPUTERS
M16C/60, M16C/20, M16C/80 Series rev.B
Application Note <Flash Memory>

April First Edition 2000

Editioned by

Committee of editing of Mitsubishi Semiconductor
Published by

Mitsubishi Electric Corp., Kitaitami Works

This book, or parts thereof, may not be reproduced in any form without
permission of Mitsubishi Electric Corporation.
02000 MITSUBISHI ELECTRIC CORPORATION

	Chapter 1
	1.1 What Is Flash Memory?
	1.2 M16C Family and Flash Memory
	1.3 Controlling Flash Memory On-Board

	Chapter 2 M16C/20 Group
	2.1 Outline of Hardware
	2.2 Developing The Boot Program
	2.3 Sample List
	2.4 Precautions

	Chapter 3 M16C/62 Group
	3.1 Outline of Hardware
	3.2 Developing The Boot Program
	3.3 Sample List
	3.4 Precautions

	Chapter 4 M16C/80 Group
	4.1 Outline of Hardware
	4.2 Developing The Boot Program
	4.3 Sample List
	4.4 Precautions

	Chapter 5 Internal Flash Memory Rewrite Inhibit Function
	5.1 ID Code
	5.2 ROM Code Protect Function

	Revision History

