
Mitsubishi single-chip microcomputers

M16C/80 Series

Software Manual

Mitsubishi Electric Corporation, Kitaitami Works

Mitsubishi Electric Semiconductor Systems Corporation

REV. D

A table of symbols, a glossary, and an index are appended at the end of this manual.

Using This Manual

This manual is written for the M16C/80 series software. This manual can be used for all

types of microcomputers having the M16C/80 series CPU core.

The reader of this manual is expected to have the basic knowledge of electric and logic

circuits and microcomputers.

This manual consists of five chapters. The following lists the chapters and sections to be

referred to when you want to know details on some specific subject.

• To understand the outline of the M16C/80 series and its features Chapter 1, “Overview”

• To understand the operation of each addressing modeChapter 2, “Addressing Modes”

• To understand instruction functions

(Syntax, operation, function, selectable src/dest (label), flag changes, description example,

related instructions).. Chapter 3, “Functions”

• To understand instruction code and cycles Chapter 4, “Instruction Code/Number of Cycles”

This manual also contains quick references immediately after the Table of Contents. These

quick references will help you quickly find the pages for the functions or instruction code/

number of cycles you want to know.

• To find pages from mnemonic Quick Reference in Alphabetic Order

• To find pages from function and mnemonic Quick Reference by Function

• To find pages from mnemonic and addressingQuick Reference by Addressing

M16C Family-related document list

Usages

(Microcomputer development flow)

Outline design
of system

Selection of
microcomputer

Detail design
of system

Hard-
ware
devel-
opment

System
evaluation

Soft-
ware
devel-
opment

Contents

Hardware specifications (pin assignment,
memory map, specifications of peripheral func-
tions, electrical characteristics, timing charts)

Detailed description about hardware specifica-
tions, operation, and application examples
(connection with peripherals, relationship with
software)

Method for creating programs using assembly
and C languages

Detailed description about operation of each
instruction (assembly language)

H
ar

dw
ar

e

 Type of document

Data sheet and
data book

User’s manual
S

of
tw

ar
e

M16C Family M16C/80 Series M16C/80 Group

M16C/60 Series M16C/60 Group

M16C/61 Group

M16C/62 Group

M16C/20 Series M16C/20 Group

M16C/21 Group

M16C Family Line-up

Programming
manual

Software manual

Table of Contents

Chapter 1 Overview ___

1.1 Features of M16C/80 series ...2

1.2 Address Space ...3

1.3 Register Configuration ..4

1.4 Flag Register(FLG) ...7

1.5 Register Bank ...9

1.6 Internal State after Reset is Cleared ...10

1.7 Data Types ...11

1.8 Data Arrangement ..16

1.9 Instruction Format ...18

1.10 Vector Table ...19

Chapter 2 Addressing Modes ___

2.1 Addressing Modes ..22

2.2 Guide to This Chapter ...23

2.3 General Instruction Addressing ..24

2.4 Specific Instruction Addressing ...27

2.5 Bit Instruction Addressing ...30

2.6 Bit Instruction Addressing ...32

2.7 Read and write operations with 24-bit registers ...35

Chapter 3 Functions___

3.1 Guide to This Chapter ..38

3.2 Functions ..43

3.3 Index Instruction ...158

Chapter 4 Instruction Code/Number of Cycles ______________________________

4.1 Guide to This Chapter ...172

4.2 Instruction Code/Number of Cycles ..174

Chapter 5 Interrupt __

5.1 Outline of Interrupt ..302

5.2 Interrupt Control ..305

5.3 Interrupt Sequence ...307

5.4 Return from Interrupt Routine ...311

5.5 Interrupt Priority ..311

5.6 Multiple Interrupts ...312

5.7 Precautions for Interrupts ...314

5.8 Exit from Stop Mode and Wait Mode ..314

Chapter 6 Calculation Number of Cycles ___________________________________

6.1 Instruction queue buffer ..316

Quick Reference-1

CMPX

DADC

DADD

DEC

DIV

DIVU

DIVX

DSBB

DSUB

ENTER

EXITD

EXTS

EXTZ

FCLR

FREIT

FSET

INC

INDEXB

INDEXBD

INDEXBS

INDEXL

INDEXLD

INDEXLS

INDEXW

INDEXWD

INDEXWS

INT

INTO

JCnd

JEQ/Z

JGE

JGEU/C

JGT

JGTU

JLE

JLEU

JLT

JLTU/NC

JN

JNE/NZ

ABS

ADC

ADCF

ADD

ADDX

ADJNZ

AND

BAND

BCLR

BITINDEX

BMCnd

BMEQ/Z

BMGE

BMGEU/C

BMGT

BMGTU

BMLE

BMLEU

BMLT

BMLTU/NC

BMN

BMNE/NZ

BMNO

BMO

BMPZ

BNAND

BNOR

BNOT

BNTST

BNXOR

BOR

BRK

BRK2

BSET

BTST

BTSTC

BTSTS

BXOR

CLIP

CMP

See page for

function

Mnemonic See page for

instruction code/

number of cycles

See page for

function

MnemonicSee page for

instruction code/

number of cycles

43

44

45

46

48

49

50

52

53

54

55

55

55

55

55

55

55

55

55

55

55

55

55

55

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

174

174

176

176

183

185

186

188

188

189

190

190

190

190

190

190

190

190

190

190

190

190

190

190

190

192

192

193

193

194

194

195

195

196

196

197

198

198

199

200

Quick Reference in Alphabetic Order

206

206

208

210

210

211

212

213

215

217

217

218

220

221

221

222

223

223

224

224

225

225

226

226

227

227

228

228

229

229

229

229

229

229

229

229

229

229

229

229

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

89

89

89

89

89

89

89

89

90

91

92

92

92

92

92

92

92

92

92

92

92

92

Quick Reference-2

JNO

JPZ

JMP

JMPI

JMPS

JSR

JSRI

JSRS

LDC

LDCTX

LDIPL

MAX

MIN

MOV

MOVA

MOVDir

MOVHH

MOVHL

MOVLH

MOVLL

MOVX

MUL

MULEX

MULU

NEG

NOP

NOT

OR

POP

POPC

POPM

PUSH

PUSHA

PUSHC

PUSHM

REIT

RMPA

ROLC

RORC

ROT

RTS

SBB

SBJNZ

SCcnd

SCEQ/Z

SCGE

SCGEU/C

SCGT

SCGTU

SCLE

SCLEU

SCLT

SCLTU/NC

SCN

SCNE/NZ

SCNO

SCPZ

SCMPU

SHA

SHL

SIN

SMOVB

SMOVF

SMOVU

SOUT

SSTR

STC

STCTX

STNZ

STZ

STZX

SUB

SUBX

TST

UND

WAIT

XCHG

XOR

229

229

229

231

232

233

234

235

235

238

239

239

241

243

252

253

253

253

253

253

255

255

257

257

259

259

260

260

263

263

264

265

267

267

268

269

269

270

270

 92

 92

 93

 94

 95

 96

 97

 98

 99

100

101

102

103

104

106

107

107

107

107

107

108

109

110

111

112

113

114

115

117

118

119

120

121

122

123

124

125

126

127

271

272

273

275

276

276

276

276

276

276

276

276

276

276

276

276

276

276

277

278

281

283

284

284

285

285

286

286

288

288

289

289

290

294

296

298

298

299

299

128

129

130

131

132

132

132

132

132

132

132

132

132

132

132

132

132

132

133

134

136

138

139

140

141

142

143

144

145

146

147

148

149

151

152

154

155

156

157

See page for

function

Mnemonic See page for

instruction code/

number of cycles

See page for

function

Mnemonic

Quick Reference in Alphabetic Order

See page for

instruction code/

number of cycles

Quick Reference-3

MOV Transfer

MOVA Transfer effective address

MOVDir Transfer 4-bit data

MOVX Transfer extend sign

POP Restore register/memory

POPM Restore multiple registers

PUSH Save register/memory/immediate data

PUSHA Save effective address

PUSHM Save multiple registers

STNZ Conditional transfer

STZ Conditional transfer

STZX Conditional transfer

XCHG Exchange

BAND Logically AND bits

BCLR Clear bit

BITINDEX Bit index

BMCnd Conditional bit transfer

BNAND Logically AND inverted bits

BNOR Logically OR inverted bits

BNOT Invert bit

BNTST Test inverted bit

BNXOR Exclusive OR inverted bits

BOR Logically OR bits

BSET Set bit

BTST Test bit

BTSTC Test bit & clear

BTSTS Test bit & set

BXOR Exclusive OR bits

ROLC Rotate left with carry

RORC Rotate right with carry

ROT Rotate

SHA Shift arithmetic

SHL Shift logical

ABS Absolute value

ADC Add with carry

ADCF Add carry flag

ADD Add without carry

ADDX Add extend sigh without carry

CLIP Clip

CMP Compare

104

106

107

108

117

119

120

121

123

146

147

148

156

 52

 53

 54

 55

 56

 57

 58

 59

 60

 61

 64

 65

 66

 67

 68

126

127

128

134

136

 43

 44

 45

 46

 48

 69

 70

Transfer

Bit

manupulation

Shift

Arithmetic

ContentFunction

243

252

253

255

263

264

265

267

268

288

289

289

299

188

188

189

190

192

192

193

193

194

194

196

196

197

198

198

270

270

271

278

281

174

174

176

176

183

199

200

Mnemonic See page for

instruction code/

number of cycles

See page for

function

Quick Reference by Function

Quick Reference-4

CPMX Compare extended sigh

DADC Decimal add with carry

DADD Decimal add without carry

DEC Decrement

DIV Signed divide

DIVU Unsigned divide

DIVX Singed divide

DSBB Decimal subtract with borrow

DSUB Decimal subtract without borrow

EXTS Extend sign

EXTZ Extend zero

INC Increment

MAX Select maximum value

MIN Select minimum value

MUL Signed multiply

MULEX Multiple extend sign

MULU Unsigned multiply

NEG Two’s complement

RMPA Calculate sum-of-products

SBB Subtract with borrow

SUB Subtract without borrow

SUBX Subtract extend without borrow

AND Logical AND

NOT Invert all bits

OR Logical OR

TST Test

XOR Exclusive OR

ADJNZ Add & conditional jump

SBJNZ Subtract & conditional jump

JCnd Jump on condition

JMP Unconditional jump

JMPI Jump indirect

JMPS Jump to special page

JSR Subroutine call

JSRI Indirect subroutine call

JSRS Special page subroutine call

RTS Return from subroutine

SCMPU String compare unequal

SIN String input

SMOVB Transfer string backward

SMOVF Transfer string forward

Arithmetic

Logical

Jump

String

 72

 73

 74

 75

 76

 77

 78

 79

 80

 83

 84

 88

102

103

109

110

111

112

125

130

149

151

 50

114

115

152

157

 49

131

 92

 93

 94

 95

 96

 97

 98

129

133

138

139

140

206

206

208

210

210

211

212

213

215

218

220

223

239

241

255

257

257

259

269

273

290

294

186

260

260

296

299

185

275

229

229

231

232

233

234

235

272

277

283

284

284

ContentFunction Mnemonic See page for

instruction code/

number of cycles

See page for

function

Quick Reference by Function

Quick Reference-5

SMOVU Transfer string

SOUT String output

SSTR Store string

BRK Debug interrupt

BRK2 Debug interrupt 2

ENTER Build stack frame

EXITD Deallocate stack frame

FCLR Clear flag register bit

FREIT Fast return from interrupt

FSET Set flag register bit

INDEX Type Index

INT Interrupt by INT instruction

INTO Interrupt on overflow

LDC Transfer to control register

LDCTX Restore context

LDIPL Set interrupt enable level

NOP No operation

POPC Restore control register

PUSHC Save control register

REIT Return from interrupt

STC Transfer from control register

STCTX Save context

SCcnd Store on condition

UND Interrupt for undefined instruction

WAIT Wait

String

Other

141

142

143

 62

 63

 81

 82

 85

 86

 87

 89

 90

 91

 99

100

101

113

118

122

124

144

145

132

154

155

285

285

286

195

195

217

217

221

221

222

223

228

228

235

238

239

259

263

267

269

286

288

276

298

298

ContentFunction Mnemonic See page for

instruction code/

number of cycles

See page for

function

Quick Reference by Function

Quick reference-6

ABS √*2 √ √*3 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

ADC √*2 √ √*3 √ √ √ √ √ √ √ √ √ √ √ √

ADCF √*2 √ √*3 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

ADD*1 √ √ √*3 √

ADDX √*2 √*4 √*3 √*5 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

ADJNZ*1 √*2 √ √*3 √ √ √ √ √ √ √ √ √ √ √

AND √*2 √ √*3 √

BITINDEX √*2 √ √*3 √ √ √ √ √ √ √ √ √ √

CLIP √*2 √ √*3 √ √ √ √ √ √ √ √ √ √ √ √

CMP √

CMPX √*6 √ √*7 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

DADC √*2 √ √*3 √ √ √ √ √ √ √ √ √ √ √ √

DADD √*2 √ √*3 √ √ √ √ √ √ √ √ √ √ √ √

DEC √

DIV √*2 √ √*3 √

DIVU √*2 √ √*3 √

DIVX √*2 √ √*3 √

DSBB √*2 √ √*3 √

DSUB √*2 √ √*3 √

ENTER √

EXTS √*2 √ √*3 √ √ √ √ √ √ √ √ √ √

EXTZ √*2 √ √*3 √ √ √ √ √ √ √ √ √ √

INC √*2 √ √*3 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

INDEXType √*2 √ √*3 √ √ √ √ √ √ √ √ √ √

R
0L

/R
0/

R
2R

0

R
0H

/R
2/

-

R
1L

/R
1/

R
3R

1

R
1H

/R
3/

-

A
n

[A
n]

ds
p:

8[
A

n]

ds
p:

8[
S

B
/F

B
]

ds
p:

16
[A

n]

ds
p:

16
[S

B
/F

B
]

ds
p:

24
[A

n]

ab
s1

6

ab
s2

4

#I
M

M
8

#I
M

M
16

#I
M

M
24

#I
M

M
32

#I
M

M

[[A
n]

]

[d
sp

:8
[A

n]
]

[d
sp

:8
[S

B
/F

B
]]

[d
sp

:1
6[

A
n]

]

[d
sp

:1
6[

S
B

/F
B

]]

[d
sp

:2
4[

A
n]

]

[a
bs

16
]

[a
bs

24
]

AddressingMnemonic

Quick Reference by Addressing (general instruction addressing)

*1 Has special instruction addressing.

*2 Only R0L/R0 can be selected.

*3 Only R1L/R1 can be selected.

*4 Only R0L can be selected.

*5 Only R0H can be selected.

*6 Only R1L can be selected.

*7 Only R1H can be selected.

43

44

45

46

48

49

50

54

69

70

72

73

74

75

76

77

78

79

80

81

83

84

88

89

174

174

176

176

183

185

186

189

199

200

206

206

208

210

210

211

212

213

215

217

218

220

223

223

See

page

for

function

See page

for

instruction

code

/number

of cycles

Quick reference-7

INT √

JMP*1 √

JMPI*1 √*2 √*3 √*4 √*5 √ √ √ √ √ √ √ √ √

JMPS √

JSRI √*2 √*3 √*4 √*5 √ √ √ √ √ √ √ √ √

JSRS √

LDC*1 √*2 √*3 √*4 √*5 √ √ √ √ √ √ √ √ √ √ √

LDIPL √

MAX √*6 √ √*7 √ √ √ √ √ √ √ √ √ √ √ √

MIN √*6 √ √*7 √ √ √ √ √ √ √ √ √ √ √ √

MOV*1 √

MOVA √*8 √*9 √ √ √ √ √ √ √ √

MOVDir √*10 √*11 √*12 √*13 √ √ √ √ √ √ √ √

MOVX √*8 √*9 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

MUL √*6 √ √*7 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

MULEX √*5 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

MULU √*6 √ √*7 √

NEG √*6 √ √*7 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

NOT √*6 √ √*7 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

OR √*6 √ √*7 √

POP √*6 √ √*7 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

POPM*1 √ √ √ √

PUSH √

PUSHA √ √ √ √ √ √ √

 90

 93

 94

 95

 97

 98

 99

101

102

103

104

106

107

108

109

110

111

112

114

115

117

119

120

121

228

229

231

232

234

235

235

239

239

241

243

252

253

255

255

257

257

259

260

260

263

264

265

267

Quick Reference by Addressing (general instruction addressing)

*1 Has special instruction addressing.

*2 Only R0/R2R0 can be selected.

*3 Only R2 can be selected.

*4 Only R1/R3R1 can be selected.

*5 Only R3 can be selected.

*6 Only R0L/R0 can be selected.

*7 Only R1L/R1 can be selected.

*8 Only R2R0 can be selected.

R
0L

/R
0/

R
2R

0

R
0H

/R
2/

-

R
1L

/R
1/

R
3R

1

R
1H

/R
3/

-

A
n

[A
n]

ds
p:

8[
A

n]

ds
p:

8[
S

B
/F

B
]

ds
p:

16
[A

n]

ds
p:

16
[S

B
/F

B
]

ds
p:

24
[A

n]

ab
s1

6

ab
s2

4

#I
M

M
8

#I
M

M
16

#I
M

M
24

#I
M

M
32

#I
M

M

[[A
n]

]

[d
sp

:8
[A

n]
]

[d
sp

:8
[S

B
/F

B
]]

[d
sp

:1
6[

A
n]

]

[d
sp

:1
6[

S
B

/F
B

]]

[d
sp

:2
4[

A
n]

]

[a
bs

16
]

[a
bs

24
]

*9 Only R3R1 can be selected.

*10 Only R0L can be selected.

*11 Only R0H can be selected.

*12 Only R1L can be selected.

*13 Only R1H can be selected.

AddressingMnemonic See

page

for

function

See page

for

instruction

code

/number

of cycles

Quick reference-8

R
0L

/R
0/

R
2R

0

R
0H

/R
2/

-

R
1L

/R
1/

R
3R

1

R
1H

/R
3/

-

A
n

[A
n]

ds
p:

8[
A

n]

ds
p:

8[
S

B
/F

B
]

ds
p:

16
[A

n]

ds
p:

16
[S

B
/F

B
]

ds
p:

24
[A

n]

ab
s1

6

ab
s2

4

#I
M

M
8

#I
M

M
16

#I
M

M
24

#I
M

M
32

#I
M

M

[[A
n]

]

[d
sp

:8
[A

n]
]

[d
sp

:8
[S

B
/F

B
]]

[d
sp

:1
6[

A
n]

]

[d
sp

:1
6[

S
B

/F
B

]]

[d
sp

:2
4[

A
n]

]

[a
bs

16
]

[a
bs

24
]

PUSHM*1 √ √ √ √

ROLC √*2 √ √ √*3 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

RORC √*2 √ √ √*3 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

ROT √*2 √ √ √*3 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

SBB √*2 √ √ √*3 √ √ √ √ √ √ √ √ √ √ √

SBJNZ*1 √*2 √ √ √*3 √ √ √ √ √ √ √ √ √ √

SCCnd √*4 √*5 √*6 √*7 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

SHA √

SHL √

STC*1 √*4 √*5 √*6 √*7 √ √ √ √ √ √ √ √ √

STCTX*1 √ √ √ √

STNZ √*2 √ √ √*3 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

STZ √*2 √ √ √*3 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

STZX √*2 √ √ √*3 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

SUB √

SUBX √*8 √*9 √*10 √*11 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

TST √*2 √ √ √*3 √ √ √ √ √ √ √ √ √ √ √

XCHG √*2 √ √ √*3 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

XOR √*2 √ √ √*3 √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

123

126

127

128

130

131

132

134

136

144

145

146

147

148

149

151

152

156

157

268

270

270

271

273

275

276

278

281

286

288

288

289

289

290

294

296

299

299

AddressingMnemonic

Quick Reference by Addressing (general instruction addressing)

See

page

for

function

See page

for

instruction

code

/number

of cycles

*1 Has special instruction addressing.

*2 Only R0L/R0 can be selected.

*3 Only R1L/R1 can be selected.

*4 Only R0 can be selected.

*5 Only R2 can be selected.

*6 Only R1 can be selected.

*7 Only R3 can be selected.

*8 Only R0L/R2R0 can be selected.

*9 Only R0H can be selected.

*10 Only R1L/R3R1 can be selected.

*11 Only R1H can be selected.

Quick reference-9

*1 Has general instruction addressing.

la
be

l

S
B

/F
B

IS
P

/U
S

P

F
LG

IN
T

B

S
V

P
/V

C
T

S
V

F

D
M

D
0/

D
M

D
1

D
C

T
0/

D
C

T
1

D
R

C
0/

D
R

C
1

D
M

A
0/

D
M

A
1

D
R

A
0/

D
R

A
1

D
S

A
0/

D
S

A
1

ADD*1 √

ADJNZ*1 √

JCnd √

JMP*1 √

JSR*1 √

LDC*1 √ √ √ √ √ √ √ √ √ √ √ √

POPC √ √ √ √ √ √ √ √

POPM*1 √

PUSHC √ √ √ √ √ √ √ √

PUSHM*1 √

SBJNZ*1 √

STC*1 √ √ √ √ √ √ √ √ √ √ √ √

AddressingMnemonic

Quick Reference by Addressing (special instruction addressing)

46

49

92

93

96

99

118

119

122

123

131

144

176

185

229

229

233

235

263

264

267

268

275

286

See page

for function
See page

for

instruction

code

/number of

cycles

Quick reference-10

bi
t,R

0L
/R

0H

bi
t,R

1L
/R

1H

bi
t,A

n

bi
t,[

A
n]

bi
t,b

as
e:

11
[A

n]

bi
t,b

as
e:

11
[S

B
/F

B
]

bi
t,b

as
e:

19
[A

n]

bi
t,b

as
e:

19
[S

B
/F

B
]

bi
t,b

as
e:

27
[A

n]

bi
t,b

as
e:

27

bi
t,b

as
e:

19

U
/I/

O
/B

/S
/Z

/D
/C

BAND √ √ √ √ √ √ √ √ √ √ √

BCLR √ √ √ √ √ √ √ √ √ √ √

BMCnd √ √ √ √ √ √ √ √ √ √ √ √

BNAND √ √ √ √ √ √ √ √ √ √ √

BNOR √ √ √ √ √ √ √ √ √ √ √

BNOT √ √ √ √ √ √ √ √ √ √ √

BNTST √ √ √ √ √ √ √ √ √ √ √

BNXOR √ √ √ √ √ √ √ √ √ √ √

BOR √ √ √ √ √ √ √ √ √ √ √

BSET √ √ √ √ √ √ √ √ √ √ √

BTST √ √ √ √ √ √ √ √ √ √ √

BTSTC √ √ √ √ √ √ √ √ √ √ √

BTSTS √ √ √ √ √ √ √ √ √ √ √

BXOR √ √ √ √ √ √ √ √ √ √ √

FCLR √

FSET √

52

53

55

56

57

58

59

60

61

64

65

66

67

68

85

87

188

188

190

192

192

193

193

194

194

196

196

197

198

198

221

222

AddressingMnemonic

Quick Reference by Addressing (bit instruction addressing)

See page

for function
See page

for

instruction

code

/number of

cycles

Quick reference-11

Chapter 1

Overview

1.1 Features of M16C/80 series

1.2 Address Space

1.3 Register Configuration

1.4 Flag Register (FLG)

1.5 Register Bank

1.6 Internal State after Reset is Cleared

1.7 Data Types

1.8 Data Arrangement

1.9 Instruction Format

1.10 Vector Table

2

Chapter 1 Overview
1.1 Features of M16C/80 series

1.1 Features of M16C/80 series
The M16C/80 series is a single-chip microcomputer developed for built-in applications where the micro-

computer is built into applications equipment.

The M16C/80 series supports instructions suitable for the C language with frequently used instructions

arranged in one- byte op-code. Therefore, it allows you for efficient program development with few memory

capacity regardless of whether you are using the assembly language or C language. Furthermore, some

instructions can be executed in one clock cycle, making fast arithmetic processing possible.

Its instruction set consists of 106 discrete instructions matched to the M16C's abundant addressing modes.

This powerful instruction set allows to perform register-register, register-memory, and memory-memory

operations, as well as arithmetic/logic operations on bits and 4-bit data.

M16C/80 series models incorporate a multiplier, allowing for high-speed computation.

 Features of M16C/80 series
• Register configuration

Data registers : Four 16-bit registers (of which two registers can be used as 8-bit registers, or two

 registers are combined and can be used as 32-bit registers)

Address registers : Two 24-bit registers

Base registers : Two 24-bit registers

• Versatile instruction set

C language-suited instructions (stack frame manipulation) : ENTER, EXITD, etc.

Register and memory-indiscriminated instructions : MOV, ADD, SUB, etc.

Powerful bit manipulate instructions : BNOT, BTST, BSET, etc.

4-bit transfer instructions : MOVLL, MOVHL, etc.

Frequently used 1-byte instructions : MOV, ADD, SUB, JMP, etc.

High-speed 1-cycle instructions : MOV, ADD, SUB, etc.

• 16M-byte linear address area

Relative jump instructions matched to distance of jump

• Fast instruction execution time

Shortest 1-cycle instructions : 106 instructions include 39 1-cycle instructions.

 Speed performance (types incorporating a multiplier, operating at 20 MHz)
Register-register transfer : 50 ns

Register-memory transfer : 100 ns

Register-register addition/subtraction : 50 ns

8 bits x 8 bits register-register operation : 150 ns

16 bits x 16 bits register-register operation : 150 ns

16 bits / 8 bits register-register operation : 0.9 µs

32 bits / 16 bits register-register operation : 1.2 µs

3

Chapter 1 Overview

The SFR area in each

model extends toward

lower-address locations

as much as available.

The RAM area in each

model extends toward

higher-address loca-

tions as much as

available.

1.2 Address Space

1.2 Address Space
Fig. 1.2.1 shows an address space.

Addresses 00000016 through 0003FF16 make up an SFR (special function register) area. In individual

models of the M16C series, the SFR area extends from 0003FF16 toward lower addresses.

Addresses from 00040016 on make up a memory area. In individual models of the M16C series, a RAM

area extends from address 00040016 toward higher addresses, and a R0M area extends from FFFFFF16

toward lower addresses. Addresses FFFE0016 through FFFFFF16 make up a fixed vector area.

Figure 1.2.1 Address area

00000016

00040016

FFFE0016

FFFFFF16

SFR area

Internal RAM area

External memory area

Internal ROM area

Fixed vector area

The ROM area in each

model extends toward

lower-address locations

as much as available.

4

Chapter 1 Overview
1.3 Register Configuration

1.3 Register Configuration
The central processing unit (CPU) contains the 28 registers shown in Figure 1.3.1. Of these registers, R0,

R1, R2, R3, A0, A1, FB, and SB each consist of two sets of registers configuring two register banks.

Figure 1.3.1 CPU register configuration

b23

b7 b0

Flag register

Address register

Static base register

Frame base register

User stack pointer

Interrupt stack pointer

Interrupt table register

Save flag register

Save PC register

Vector register

DMA mode register

DMA transfer count register

DMA transfer count reload register

DMA memory address register

DMA SFR address register

DMA memory address reload register

b15 b0

b15 b0

b23

b15

b23

Data register

FLG

R0H

R1H

R2

R3

A0

A1

SB

FB

USP

ISP

INTB

PC

SVF

VCT

DMD0

DMD1

DCT0

DCT1

DRC0

DRC1

DMA0

DMA1

DSA0

DSA1

DRA0

DRA1

SVP

DMAC related register

Program counter

R2

R3

High-speed interrupt register

General register

b31

R0L

R1L

5

Chapter 1 Overview

(1) Data registers (R0, R0H, R0L, R1, R1H, R1L, R2, R3, R2R0, and R3R1)
These registers consist of 16 bits, and are used primarily for transfers and arithmetic/logic operations.

Registers R0 and R1 can be halved into separate high-order (R0H, R1H) and low-order (R0L, R1L) parts

for use as 8-bit data registers. Moreover, you can combine R2 and R0 or R3 and R1 to configure a 32-

bit data register (R2R0 or R3R1).

(2) Address registers (A0 and A1)

These registers consist of 24 bits, and have the similar functions as the data registers. These registers

are used for address register-based indirect addressing and address register-based relative address-

ing.

(3) Static base register (SB)
This register consists of 24 bits, and is used for SB-based relative addressing.

(4) Frame base register (FB)
This register consists of 24 bits, and is used for FB-based relative addressing.

(5) Program counter (PC)
This counter consists of 24 bits, indicating the address of an instruction to be executed next.

(6) Interrupt table register (INTB)
This register consists of 24 bits, indicating the initial address of an interrupt vector table.

(7) User stack pointer (USP) and interrupt stack pointer (ISP)
There are two types of stack pointers: user stack pointer (USP) and interrupt stack pointer (ISP), each

consisting of 24 bits.

The stack pointer (USP/ISP) you want can be switched by a stack pointer select flag (U flag).

The stack pointer select flag (U flag) is bit 7 of the flag register (FLG).

Set an even number to USP and ISP. When an even number is set, execution becomes efficient.

(8) Flag register (FLG)
This register consists of 11 bits, and is used as a flag, one bit for one flag. For details about the function

of each flag, see Section 1.4, "Flag Register (FLG)."

(9) Save flag register (SVF)

This register consists of 16 bits and is used to save the flag register when a high-speed interrupt is

generated.

(10) Save PC register (SVP)

This register consists of 16 bits and is used to save the program counter when a high-speed interrupt is

generated.

1.3 Register Configuration

6

Chapter 1 Overview

(11) Vector register (VCT)
This register consists of 24 bits and is used to indicate the jump address when a high-speed interrupt is

generated.

(12) DMA mode registers (DMD0/DMD1)

These registers consist of 8 bits and are used to set the transfer mode, etc. for DMA.

(13) DMA transfer count registers (DCT0/DCT1)
 These registers consist of 16 bits and are used to set the number of DMA transfers performed.

(14) DMA transfer count reload registers (DRC0/DRC1)
These registers consist of 16 bits and are used to reload the DMA transfer count registers.

(15) DMA memory address registers (DMA0/DMA1)
These registers consist of 24 bits and are used to set a memory address at the source or destination of

DMA transfer.

(16) DMA SFR address registers (DSA0/DSA1)

These registers consist of 24 bits and are used to set a fixed address at the source or destination of

DMA transfer.

(17) DMA memory address reload registers (DRA0/DRA1)

These registers consist of 24 bits and are used to reload the DMA memory address registers.

1.3 Register Configuration

7

Chapter 1 Overview
1.4 Flag Register (FLG)

1.4 Flag Register (FLG)
Figure 1.4.1 shows a configuration of the flag register (FLG). The function of each flag is detailed below.

(1) Bit 0: Carry flag (C flag)
This flag holds a carry, borrow, or shifted-out bit that has occurred in the arithmetic/logic unit.

(2) Bit 1: Debug flag (D flag)
This flag enables a single-step interrupt.

When this flag is set (= 1), a single-step interrupt is generated after an instruction is executed. When

an interrupt is acknowledged, this flag is cleared to 0.

(3) Bit 2: Zero flag (Z flag)
This flag is set when an arithmetic operation resulted in 0; otherwise, this flag is 0.

(4) Bit 3: Sign flag (S flag)
This flag is set when an arithmetic operation resulted in a negative value; otherwise, this flag is 0.

(5) Bit 4: Register bank select flag (B flag)
This flag selects a register bank. If this flag is 0, register bank 0 is selected; when the flag is 1,

register bank 1 is selected.

(6) Bit 5: Overflow flag (O flag)
This flag is set when an arithmetic operation resulted in overflow.

(7) Bit 6: Interrupt enable flag (I flag)
This flag enables a maskable interrupt.

When this flag is 0, the interrupt is disabled; when the flag is 1, the interrupt is enabled. When the

interrupt is acknowledged, this flag is cleared to 0.

(8) Bit 7: Stack pointer select flag (U flag)
When this flag is 0, the interrupt stack pointer (ISP) is selected; when the flag is 1, the user stack

pointer (USP) is selected.

This flag is cleared to 0 when a hardware interrupt is acknowledged or an INT instruction of software

interrupt numbers 0 to 31 is executed.

(9) Bits 8-11: Reserved area

8

Chapter 1 Overview
1.4 Flag Register (FLG)

Figure 1.4.1 Configuration of flag register (FLG)

IPL U I O B S Z D C

b15 b0

Carry flag

Debug flag

Zero flag

Sign flag

Register bank select flag

Overflow flag

Interrupt enable flag

Stack pointer select flag

Reserved area

Processor interrupt priority level

Reserved area

Flag register (FLG)

(10) Bits 12-14: Processor interrupt priority level (IPL)
The processor interrupt priority level (IPL) consists of three bits, allowing you to specify eight processor

interrupt priority levels from level 0 to level 7. If a requested interrupt's priority level is higher than the

processor interrupt priority level (IPL), this interrupt is enabled.

(11) Bit 15: Reserved area

9

Chapter 1 Overview
1.5 Register Bank

Figure 1.5.1 Configuration of register banks

1.5 Register Bank
The M16C has two register banks, each configured with data registers (R0, R1, R2, and R3), address

registers (A0 and A1), frame base register (FB), and static base register (SB). These two register banks

are switched over by the register bank select flag (B flag) of the flag register (FLG).

Figure 1.5.1 shows a configuration of register banks.

Note: Register bank 1 is used for high-speed interrupts when using a high-speed interrupt. Also, when

using three or more DMAC channels, it is extended for use as a DMAC register.

Register bank 1 (B flag = 1)Register bank 0 (B flag = 0)

b8b7 b0b15
R0

R1

R2

R3

A0

A1

FB

SB

b23

LH

LH

b8b7 b0b15
R0

R1

R2

R3

A0

A1

FB

SB

b23

LH

LH

10

Chapter 1 Overview
1.6 Internal State after Reset is Cleared

1.6 Internal State after Reset is Cleared
The following lists the content of each register after a reset is cleared.

• Data registers (R0, R1, R2, and R3) : 000016

• Address registers (A0 and A1) : 00000016

• Static base register (SB) : 00000016

• Frame base register (FB) : 00000016

• Interrupt table register (INTB) : 00000016

• User stack pointer (USP) : 00000016

• Interrupt stack pointer (ISP) : 00000016

• Flag register (FLG) : 000016

• DMA mode register (DMD0/DMD1) : 0016

• DMA transfer count register (DCT0/DCT1) : indeterminate

• DMA transfer count reload register (DRC0/DRC1) : indeterminate

• DMA memory address register (DMA0/DMA1) : indeterminate

• DMA SFR address register (DSA0/DSA1) : indeterminate

• DMA memory address reload register (DRA0/DRA1) : indeterminate

• Save flag register (SVF) : indeterminate

• Save PC register (SVP) : indeterminate

• Vector register (VCT) : indeterminate

11

Chapter 1 Overview
1.7 Data Types

b7 b0

b7 b0

 S

b15 b0

 S

Signed byte (8 bit) integer

Unsigned byte (8 bit) integer

Signed word (16 bit) integer

Unsigned word (16 bit) integer

Signed long word (32 bit) integer

Unsigned long word (32 bit) integer

S: Sign bit

 S

b31 b0

b31 b0

b15 b0

Figure 1.7.1 Integer data

1.7 Data Types
There are four data types: integer, decimal, bit, and string.

1.7.1 Integer
An integer can be a signed or an unsigned integer. A negative value of a signed integer is represented

by two's complement.

1.7.2 Decimal
This type of data can be used in DADC, DADD, DSBB, and DSUB.

Pack format

(2 digits)

Pack format

(4 digits)

Figure 1.7.2 Decimal data

b15 b0

b7 b0

12

Chapter 1 Overview
1.7 Data Types

1.7.3 Bits

(1) Register bits
Figure 1.7.3 shows register bit specification.

Register bits can be specified by register direct (bit,RnH/RnL or bit,An). Use bit,RnH/RnL to specify

a bit in data register (RnH/RnL); use bit,An to specify a bit in address register (An).

For bit in bit,RnH/RnL and bit,An , you can specify a bit number in the range of 0 to 7.

Figure 1.7.3 Register bit specification

(2) Memory bits
Figure 1.7.4 shows addressing modes used for memory bit specification. Table 1.7.1 lists the address

range in which you can specify bits in each addressing mode. Be sure to observe the address range in

Table 1.7.1 when specifying memory bits.

Figure 1.7.4 Addressing modes used for memory bit specification

Addressing

Specification range
 The access range

 Lower limit (address) Upper limit (address)

bit,base:19 00000016 00FFFF16

bit,base:27 00000016 FFFFFF16

bit,base:11[SB] [SB] [SB]+000FF16 00000016 to FFFFFF16.

bit,base:19[SB] [SB] [SB]+0FFFF16 00000016 to FFFFFF16.

bit,base:11[FB] [FB]-00008016 [FB]+00007F16 00000016 to FFFFFF16.

bit,base:19[FB] [FB]-00800016 [FB]+007FFF16 00000016 to FFFFFF16.

bit,[An] 00000016 FFFFFF16

bit,base:11[An] [An] [An]+0000FF16 00000016 to FFFFFF16.

bit,base:19[An] [An] [An]+00FFFF16 00000016 to FFFFFF16.

bit,base:27[An] [An] [An]+FFFFFF16 00000016 to FFFFFF16.

Table 1.7.1 Bit-Specifying Address Range

b7 b0
bit,RnH/RnL

(bit:0 to 7, n:0,1)

RnH/RnL
b7 b0

bit,An

(bit:0 to 7, n:0,1)

An

Absolute addressing bit,base:19

SB-based relative addressing bit,base:11[SB]
bit,base:19[SB]

FB-based relative addressing bit,base:11[FB]

Address register-based indirect
addressing

bit,[An]

Address register-based relative
addressing

bit,base:11[An]
bit,base:19[An]

Addressing mode
bit,base:27

bit,base:19[FB]

bit,base:27[An]

13

Chapter 1 Overview
1.7 Data Types

Figure 1.7.6 Examples of how to specify bit 2 of address 0000A16

(1) Bit specification by bit, base
Figure 1.7.5 shows the relationship between memory map and bit map.

Memory bits can be handled as an array of consecutive bits. Bits can be specified by a given combina-

tion of bit and base . Using bit 0 of the address that is set to base as the reference (= 0), set the desired

bit position to bit . Figure 1.7.6 shows examples of how to specify bit 2 of address 0000A16.

Figure 1.7.5 Relationship between memory map and bit map

0

n-1

n
n+1

n+1 n n-1 0
b7 b0b7 b0b7 b0 b7 b0

b7 b0
Address

Memory map Bit

BSET 2,AH ;

b7 b2 b0

Address 0000A16

b15 b10 b8b7 b0
Address 0000916

b87 b82 b80b79 b72 b7 b0
Address 0000016

b23 b18 b16b15 b8b7 b0
Address 0000816

BSET 10,9H ;

BSET 18,8H ;

BSET 82,0H ;

These specification
examples all specify
bit 2 of address
0000A16

14

Chapter 1 Overview
1.7 Data Types

(2) SB/FB relative bit specification
For SB/FB-based relative addressing, use bit 0 of the address that is the sum of the address set to

static base register (SB) or frame base register (FB) plus the address set to base as the reference (=

0), and set the desired bit position to bit .

(3) Address register indirect/relative bit specification
For address register indirect addressing, use bit 0 of the address that is set to address register(An)

as the reference (= 0), and set the desired bit position to bit .

For address register indirect addressing, specified bit range is 0 to 7.

For address register relative addressing, use bit 0 of the address that is the sum of the address set to

address register (An) plus the address set to base as the reference (= 0), and set the desired bit

position to bit .

15

Chapter 1 Overview
1.7 Data Types

1.7.4 String
String is a type of data that consists of a given length of consecutive byte (8-bit) or word (16-bit) data.

This data type can be used in seven types of string instructions: character string backward transfer

(SMOVB instruction), character string forward transfer (SMOVF instruction), specified area initialize

(SSTR instruction), character string transfer compare(SCMPU instruction), character string transfer

(SMOVU instruction), character string input(SIN instruction) and character string output(SOUT instruc-

tion).

b15 b0

b7 b0

b7 b0

b7 b0

b15 b0

b15 b0

Figure 1.7.7 String data

Byte (8-bit) data Word (16-bit) data

16

Chapter 1 Overview
1.8 Data Arrangement

1.8 Data Arrangement
1.8.1 Data Arrangement in Register

Figure 1.8.1 shows the relationship between a register's data size and bit numbers.

b15 b0

b3 b0

b7 b0

MSB LSB

b31 b0

Nibble (4-bit) data

Byte (8-bit) data

Word (16-bit) data

Long word (32-bit) data

Figure 1.8.1 Data arrangement in register

17

Chapter 1 Overview

b7 b0

N DATA(L)

N+1 DATA(H)

N+2

N+3

b7 b0

N DATA

N+1

N+2

N+3

MOV.B N,R0H

MOV.W N,R0

R0
H L

b15 b0

R0
H L

b15 b0

DATA

DATA(H) DATA(L)

Word (16-bit) data

Byte (8-bit) data

1.8 Data Arrangement

Figure 1.8.2 Data arrangement in memory

Does not change.

1.8.2 Data Arrangement in Memory
Figure 1.8.2 shows data arrangement in memory. Figure 1.8.3 shows some examples of operation.

b7 b0

N DATA

N+1

N+2

N+3

b7 b0

N DATA(L)

N+1 DATA(H)

N+2

N+3

b7 b0

N DATA(L)

N+1 DATA(M)

N+2 DATA(H)

N+3

b7 b0

N DATA(LL)

N+1 DATA(LH)

N+2 DATA(HL)

N+3 DATA(HH)

Word (16-bit) dataByte (8-bit) data

Long Word (32-bit) data24-bit (Address) data

Figure 1.8.3 Examples of operation

18

Chapter 1 Overview
1.9 Instruction Format

1.9 Instruction Format
The instruction format can be classified into four types: generic, quick, short, and zero. The number of

instruction bytes that can be chosen by a given format is least for the zero format, and increases succes-

sively for the short, quick, and generic formats in that order.

The following describes the features of each format.

(1) Generic format (:G)
Op-code in this format consists of 2 bytes. This op-code contains information on operation and src*1 and

dest*2 addressing modes.

Instruction code here is comprised of op-code (2-3 bytes), src code (0-4 bytes), and dest code (0-3

bytes).

(2) Quick format (:Q)
Op-code in this format consists of two bytes. This op-code contains information on operation and imme-

diate data and dest addressing modes. Note however that the immediate data in this op-code is a

numeric value that can be expressed by -7 to +8 or -8 to +7 (varying with instruction).

Instruction code here is comprised of op-code (2 bytes) containing immediate data and dest code (0-3

bytes).

(3) Short format (:S)
Op-code in this format consists of one byte. This op-code contains information on operation and src and

dest addressing modes.Note however that the usable addressing modes are limited.

Instruction code here is comprised of op-code (1 byte), src code (0-2 bytes), and dest code (0-2 bytes).

(4) Zero format (:Z)
Op-code in this format consists of one byte. This op-code contains information on operation (plus

immediate data) and dest addressing modes. Note however that the immediate data is fixed to 0, and

that the usable addressing modes are limited.

Instruction code here is comprised of op-code (1 byte) and dest code (0-2 bytes).

*1 src is the abbreviation of "source."

*2 dest is the abbreviation of "destination."

19

Chapter 1 Overview

255

254

18

1.10 Vector Table

1.10 Vector Table
The vector table comes in two types: a special page vector table and an interrupt vector table. The special

page vector table is a fixed vector table. The interrupt vector table can be a fixed or a variable vector table.

1.10.1 Fixed Vector Table
The fixed vector table is an address-fixed vector table. The special page vector table is allocated to

addresses FFFE0016 through FFFFDB16, and part of the interrupt vector table is allocated to addresses

FFFFDC16 through FFFFFF16. Figure 1.10.1 shows a fixed vector table.

The special page vector table is comprised of two bytes per table. Each vector table must contain the 16

low-order bits of the subroutine's entry address. Each vector table has special page numbers (18 to 255)

which are used in JSRS and JMPS instructions.

The interrupt vector table is comprised of four bytes per table. Each vector table must contain the

interrupt handler routine's entry address.

FFFFDC16

FFFFE016

FFFFE416

FFFFE816

FFFFEC16

FFFFF016

FFFFF416

FFFFF816

FFFFFC16

○

○

○

○

○

FFFE0016

FFFE0216

FFFFDB16

FFFFDC16

FFFFFF16











Special page number

Special page

vector table

Interrupt

vector table

Figure 1.10.1 Fixed vector table

Undefined instruction
Overflow

BRK instruction

Address match

Watchdog timer

NMI

Reset

20

Chapter 1 Overview
1.10 Vector Table

1.10.2 Variable Vector Table
The variable vector table is an address-variable vector table. Specifically, this vector table is a 256-byte

interrupt vector table that uses the value indicated by the interrupt table register (INTB) as the entry

address (IntBase). Figure 1.10.2 shows a variable vector table.

The variable vector table is comprised of four bytes per table. Each vector table must contain the

interrupt handler routine's entry address.

Each vector table has software interrupt numbers (0 to 63). The INT instruction uses these software

interrupt numbers.

The built-in peripheral I/O interrupts are assigned to variable vector table by MCU type expansion.

Interrupts from the internal peripheral functions are assigned from software interrupt numbers 0. The

number of interrupts is different depending on MCU type. To accommodate future increases due to the

expansion of product line, Mitsubishi recommend using software interrupt numbers beginning with 63

when you use INT instruction interrupts.

The stack pointer (SP) used for INT instruction interrupts varies with each software interrupt number.

For software interrupt numbers 0 through 31, the stack pointer specifying flag (U flag) is saved when an

interrupt request is accepted and the interrupt sequence is executed after clearing the U flag to 0 and

selecting the interrupt stack pointer (ISP). The U flag that was saved before accepting the interrupt

request is restored upon returning from the interrupt handler routine.

For software interrupt numbers 32 through 63, the stack pointer is not switched over.

For peripheral I/O interrupts, the interrupt stack pointer (ISP) is selected irrespective of software inter-

rupt numbers when accepting an interrupt request as for software interrupt numbers 0 through 31.

b23 b0

0

1

63

INTB IntBase

IntBase+4

IntBase+8

IntBase+252





















Vectors assign

peripheral I/O

interrupts

Software interrupt

numbers

Figure 1.10.2 Variable vector table

Chapter 2

Addressing Modes

2.1 Addressing Modes

2.2 Guide to This Chapter

2.3 General Instruction Addressing

2.4 Indirect Instruction Addressing

2.5 Special Instruction Addressing

2.6 Bit Instruction Addressing

2.7 Read and write operations with 24-bit reg-

isters

Chapter 2 Addressing Modes

22

2.1 Addressing Modes
This section describes addressing mode-representing symbols and operations for each addressing mode.

The M16C has four addressing modes outlined below.

(1) General instruction addressing
This addressing accesses an area from address 00000016 through address FFFFFF16.

The following lists the name of each general instruction addressing:

• Immediate

• Register direct

• Absolute

• Address register indirect

• Address register relative

• SB relative

• FB relative

• Stack pointer relative

(2) Indirect instruction addressing
This addressing accesses an area from address 00000016 through address FFFFFF16.

The following lists the name of each indirect instruction addressing:

• Absolute indirect

• Two-stage address register indirect

• Address register relative indirect

• SB relative indirect

• FB relative indirect

(3) Special instruction addressing
This addressing accesses an area from address 00000016 through address FFFFFF16 and control reg-

isters.

The following lists the name of each specific instruction addressing:

• Control register direct

• Program counter relative

(4) Bit instruction addressing
This addressing accesses an area from address 00000016 through address FFFFFF16.

The following lists the name of each bit instruction addressing:

• Register direct

• Absolute

• Address register indirect

• Address register relative

• SB relative

• FB relative

• FLG direct

Chapter 2 Addressing Modes

23

2.2 Guide to This Chapter
The following shows how to read this chapter using an actual example.

(1) Name
Indicates the name of addressing.

(2) Symbol
Represents the addressing mode.

(3) Explanation
Describes the addressing operation and the effective address range.

(4) Operation diagram
Diagrammatically explains the addressing operation.

(2)

(1)

(3)

(4)

Address register relative

dsp:8[A0]

dsp:8[A1]

dsp:16[A0]

dsp:16[A1]

dsp:24[A0]

dsp:24[A1]

The value indicated by displacement
(dsp) plus the content of address
register (A0/A1) added not including
the sign bits constitutes the effective
address to be operated on.

However, if the addition resulted in
exceeding 0FFFFFF16, the bits above
bit 25 are ignored, and the address
returns to 000000016.

Memory

addressA0 / A1

dsp
Register

Chapter 2 Addressing Modes

24

#IMM

#IMM8

#IMM16

#IMM32

Immediate

The immediate data indicated by #IMM
is the object to be operated on.

Register direct

R0L

R0H

R1L

R1H

R0

R1

R2

R3

A0

A1

R2R0

R3R1

The specified register is the object to
be operated on.

abs16 /

abs24

Absolute

abs16

abs24

[A0]

[A1]

Address register indirect

A0 / A1 address

 Memory

2.3 General Instruction Addressing

Register Memory

The value indicated by abs constitutes the
effective address to be operated on.

The effective address range is 000000016 to
000FFFF16 at abs16, and 000000016 to
0FFFFFF16 at abs24.

The value indicated by the content of
address register (A0/A1) constitutes
the effective address to be operated
on.

The effective address range is
000000016 to 0FFFFFF16.

#IMM8

#IMM16

#IMM32

b7 b0

b8b7 b0b16b15b24b23b31

b8b7 b0b15

b8b7 b0b15

b8b7 b0b16b15b24b23b31

b8b7 b0b16b15b23

b7 b0

b8b15

R0L / R1L

R0H / R1H

R0 / R1 /

R2 / R3

A0 / A1

R2R0 /

R3R1

Register

Chapter 2 Addressing Modes

25

address

address

AAA

Address register relative

dsp:8[A0]

dsp:8[A1]

dsp:16[A0]

dsp:16[A1]

dsp:24[A0]

dsp:24[A1]

dsp:8[SB]

dsp:16[SB]

SB relative

FB relative

dsp:8[FB]

dsp:16[FB]

The value indicated by displacement
(dsp) plus the content of address
register (A0/A1) added not including
the sign bits constitutes the effective
address to be operated on.

However, if the addition resulted in
exceeding 0FFFFFF16, the bits above
bit 25 are ignored, and the address
returns to 000000016.

address

dsp

dsp

FB

SB

dsp

The address indicated by the content
of frame base register (FB) plus the
value indicated by displacement
(dsp) added including the sign
bits constitutes the effective address
to be operated on.

However, if the addition resulted in
exceeding 000000016- 0FFFFFF16,
the bits above bit 25 are ignored, and
the address returns to 000000016 or
0FFFFFF16.

Memory

addressA0 / A1

When the dsp value is negative

When the dsp value is positive

dsp
Register

MemoryRegister

Memory

Register

address

The address indicated by the content
of static base register (SB) plus the
value indicated by displacement
(dsp) added not including the sign
bits constitutes the effective address
to be operated on.

However, if the addition resulted in
exceeding 0FFFFFF16, the bits above
bit 25 are ignored, and the address
returns to 000000016.

Chapter 2 Addressing Modes

26

dsp:8[SP]

Stack pointer relative

AAA
dsp

dsp

SP
Register

Memory
When the dsp value is negative

When the dsp value is positive

address

The address indicated by the content
of stack pointer (SP) plus the value
indicated by displacement (dsp)
added including the sign bits consti-
tutes the effective address to be
operated on. The stack pointer (SP)
here is the one indicated by the U flag.

However, if the addition resulted in
exceeding 000000016- 0FFFFFF16, the
bits above bit 25 are ignored, and the
address returns to 000000016 or
0FFFFFF16.

This addressing can be used in MOV
instruction.

address

Chapter 2 Addressing Modes

27

Absolute indirect

 Two-stage address register indirect

The 4-byte value indicated by address
register (A0/A1) indirect constitutes the
effective address to be operated on.

The effective address range is
000000016 to 0FFFFFF16.

The 4-byte value indicated by absolute
addressing constitutes the effective
address to be operated on.

The effective address range is
000000016 to 0FFFFFF16.

2.4 Indirect Instruction Addressing

[abs16]

[abs24]

[[A0]]

[[A1]]

(The upper 8-bit is ignored.)

Memory

abs16 / abs24

address

b0b31
00

MemoryRegister

A0 / A1

address

b0b31
00

address
AAA
AAA
AAA
AAA
AAA
AAA

address LL
address LH
address HL
address HH

(The upper 8-bit is ignored.)

AAA
AAA
AAA
AAA
AAA
AAA

address LL
address LH
address HL
address HH

Chapter 2 Addressing Modes

28

 SB relative indirect

[dsp:8[A0]]

[dsp:8[A1]]

[dsp:16[A0]]

[dsp:16[A1]]

[dsp:24[A0]]

[dsp:24[A1]]

dsp

[dsp:8[SB]]

[dsp:16[SB]]

SB address

A0 / A1

address

AAA
AAA
AAA
AAA
AAA
AAA

address LL
address LH
address HL
address HH

b0b31

address

dsp

address

address

b0b31

00

00

AAA
AAA
AAA
AAA
AAA
AAA

address LL
address LH
address HL
address HH

AAA

The 4-byte value indicated by SB
relative constitutes the effective
address to be operated on.

The effective address range is
000000016 to 0FFFFFF16.

The 4-byte value indicated by
address register relative constitutes
the effective address to be operated
on.

The effective address range is
000000016 to 0FFFFFF16.

Register

Memory
Register

Memory

 Address register relative indirect

(The upper 8-bit is ignored.)

(The upper 8-bit is ignored.)

Chapter 2 Addressing Modes

29

[dsp:8[FB]]

[dsp:16[FB]]

FB address

dsp

address

address

b0b31
00

dsp

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

address LL
address LH
address HL
address HH

AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

address LL
address LH
address HL
address HH

(The upper 8-bit is ignored.)

 FB relative indirect

The 4-byte value indicated by FB
relative constitutes the effective
address to be operated on.

The effective address range is
000000016 to 0FFFFFF16.

Register

Memory

address

b0b31
00

Chapter 2 Addressing Modes

30

Control register direct

The specified control register is the
object to be operated on.

This addressing can be used in LDC
and STC instructions.

If you specify SP, the stack pointer
indicated by the U flag is the object to
be operated on.

Register
INTB

ISP

USP

SB

FB

FLG

SVP

VCT

SVF

DMD0

DMD1

DCT0

DCT1

DRC0

DRC1

DMA0

DMA1

DSA0

DSA1

DRA0

DRA1

INTB

ISP

SP

SB

FB

FLG

SVP

VCT

SVF

DMD0

DMD1

DCT0

DCT1

DRC0

DRC1

DMA0

DMA1

DSA0

DSA1

DRA0

DRA1

2.5 Special Instruction Addressing

b0b7

b0b15

b0

b7

b7

b15

b0b15

b0b15

b0b15

b0b15

b0

b0

b0

b0

b0

b0

b0

b0

b23

b23

b23

b23

b23

b23

b23

b23

b23

b23

b23

b23

b23

b0

b0

b0

b0

b0

b0

Chapter 2 Addressing Modes

31

label

 Program counter relative

• When the jump length specifier
(.length) is (.S)...

the base address plus the value
indicated by displacement
(dsp) added not including the sign
bits constitutes the effective ad-
dress.

This addressing can be used in JMP
instruction.

• When the jump length specifier
(.length) is (.B) or (.W)...

the base address plus the value
indicated by displacement
(dsp) added including the sign bits
 constitutes the effective address.

However, if the addition resulted in
exceeding 000000016- 0FFFFFF16,
the bits above bit 25 are ignored, and
the address returns to 000000016 or
0FFFFFF16.

This addressing can be used in JMP
and JSR instructions.

2.5 Special Instruction Addressing

 +0 dsp +7

Memory

label

 Base address

 dsp

dsp

AAA
dsp

label

label

Memory

 Base address

When the dsp value is positive

 When the dsp value is negative

*1 The base address is the (start address of instruction + 2).

*2 The base address varies with each instruction.

When the specifier is (.B), -128 < dsp < +127

When the specifier is (.W), -32768 < dsp < +32767

Chapter 2 Addressing Modes

32

The specified register bit is the object
to be operated on.

For the bit position (bit) you can
specify 0 to 7.

For the address register (A0,A1), you
can specify 8 low-order bits.

Register direct

 Address register indirect

The bit that is as much away from bit
0 at address indicated by address
register (A0/A1) as the number of bits
is the object to be operated on.

Bits at addresses 000000016 through
0FFFFFF16 can be the object to be
operated on.

For the bit position (bit) you can
specify 0 to 7.

bit,[A0]

bit,[A1]

bit , R0L

Absolute

The bit that is as much away from bit
0 at the address indicated by base as
the number of bits indicated by bit is
the object to be operated on.

The address range that can be
specified by bit,base:19 and
bit,base:27 respectively are
000000016 through 000FFFF16 and
000000016 through 0FFFFFF16.

b7 b0
base

Bit position

Bit position

2.6 Bit Instruction Addressing

2.6 Bit Instruction Addressing
This addressing can be used in the following instructions:

BCLR, BSET, BNOT, BTST, BNTST, BAND, BNAND, BOR, BNOR, BXOR, BNXOR, BMCnd, BTSTS,

BTSTC

bit,R0L

bit,R0H

bit,R1L

bit,R1H

bit,A0

bit,A1

b0b7

bit,base:19

bit,base:27

R0L

Bit position

b0b7
address
Register

A0/A1

Chapter 2 Addressing Modes

33

base

address

 Address register relative

bit,base:11[A0]

bit,base:11[A1]

bit,base:19[A0]

bit,base:19[A1]

bit,base:27[A0]

bit,base:27[A1]

SB relative

bit,base:11[SB]

bit,base:19[SB]
b7 b0

Memory

address
Register

SB

Bit position

2.6 Bit Instruction Addressing

The bit that is as much away
from bit 0 at the address indi-
cated by base as the number of
bits indicated by address regis-
ter (A0/A1) is the object to be
operated on.

However, if the address of the
bit to be operated on exceeds
0FFFFFF16, the bits above bit
25 are ignored and the address
returns to 000000016.

The address range that can be
specified by bit,base:11,
bit,base:19 and bit,base:27
respectively are 256 bytes,
65,536 bytes and 16,777,216
bytes from address register (A0/
A1) value.

The bit that is as much away
from bit 0 at the address indi-
cated by static base register
(SB) plus the value indicated by
base (added not including the
sign bits) as the number of bits
indicated by bit is the object to
be operated on.

However, if the address of the
bit to be operated on exceeds
0FFFFFF16, the bits above bit
25 are ignored and the address
returns to 000000016.

The address ranges that can be
specified by bit,base: 11, and
bit,base:19 respectively are 256
bytes, and 65,536 bytes from
the static base register (SB)
value.

base

address

b7 b0
Memory

address
Register

A0/A1

Bit position

34

Chapter 2 Addressing Modes

address

 FB relative

bit,base:11[FB]

bit,base:19[FB]

FB address
Register

base

base

If the base value is negative

 If the base value is positive

 Memory

Bit position

FLG direct

U

I

O

B

S

Z

D

C

U I O B S Z D C

b0b7

FLG

Register

2.6 Bit Instruction Addressing

The specified flag is the object to
be operated on.

This addressing can be used in
FCLR and FSET instructions.

The bit that is as much away
from bit 0 at the address indi-
cated by frame base register
(FB) plus the value indicated by
base (added including the sign
bit) as the number of bits indi-
cated by bit is the object to be
operated on.

However, if the address of the
bit to be operated on exceeds
000000016-0FFFFFF16, the bits
above bit 25 are ignored and the
address returns to 000000016 or
0FFFFFF16.

The address range that can be
specified by bit,base:11 and
bit,base:19 are 128 bytes toward
lower addresses or 127 bytes
toward higher addresses from
the frame base register (FB)
value, and 32,768 bytes toward
lower addresses or 32,767 bytes
toward higher addresses, re-
spectively.

 (Bit position)

35

Chapter 2 Addressing Modes

b15 b7b8 b012345678
12345678
12345678
12345678

b16b23

b7 b012345678
12345678
12345678

Read

b15 b7b8 b012345678
12345678
12345678
12345678

Write

b15 b7b8 b012345678
12345678
12345678

b16b23

0016

Zero-expanded

00160016

1234567
1234567
1234567
1234567

Operation

b15 b7b8 b012345678
12345678
12345678

1234567
1234567
1234567

b16b23

0016

0016

Write

b15 b7b8 b012345678
12345678
12345678
12345678

12345678
12345678
12345678
12345678

b16b23
0016

Ignored

• Read

The 8 low-order bits are read. The flags change

states depending on the result of 8-bit operation.

• Write

[Transfer instruction]

src is zero-expanded to 16 bits and saved to the

low-order 16-bit. In this case, the 8 high-order bits

become 0. The flags change states depending on

the result of 16-bit transfer data.

[Operating instructions]

src is zero-expanded to perform operation in 16-bit.

In this case, the 8 high-order bits become 0. The

flags change states depending on the result of 16-

bit operation.

When (.B) is specified for the size specifier (.size)

2.7 Read and write operations with 24-bit registers
This section describes operation when 24 bits register(A0, A1) is src or dest for each size specifier (.size/.B

.W .L).

Zero-expanded

b15 b7b8 b0

2.7 Read and write operations with 24-bit registers

A0/A1

A0/A1

A0/A1

A0/A1

36

Chapter 2 Addressing Modes

Read

Write

Zero-expanded

12345678
12345678
12345678
12345678

1234567
1234567
1234567

1234567
1234567
1234567

1234567
1234567
1234567
1234567

1234567
1234567
1234567

12345678
12345678
12345678
12345678

12345678
12345678
12345678
12345678

12345678
12345678
12345678

12345678
12345678
12345678

12345678
12345678
12345678

12345678
12345678
12345678

b31

12345678
12345678
12345678
12345678

12345678
12345678
12345678
12345678

12345678
12345678
12345678
12345678

12345678
12345678
12345678
12345678

12345678
12345678
12345678
12345678

12345678
12345678
12345678
12345678

1234567
1234567
1234567
1234567

12345678
12345678
12345678

12345678
12345678
12345678

1234567
1234567
1234567

0016

0016

b24

• Read

The low order 16-bit are read. The flags change

states depending on the result of 16-bit operation.

• Write

Write to the low order 16-bit. In this case, the 8

high-order bits become 0. The flags change states

depending on the result of 16-bit transfer data.

When (.W) is specified for the size specifier (.size)

• Read

32 bits are read out after being zero-extended.

The flag varies depending on the result of a 32-bit

operation.

• Write

The low-order 24-bit is written, with the 8 high-

order bit ignored. The flag varies depending on

the result of a 32-bit operation (not the value of the

24-bit register).

Example: MOV.L#80000000h,A0

Flag status after execution

S flag = 1 (The MSB is bit 31.)

Z flag = 0 (Set to 1 when all of 32

 bits are 0s.)

The value of A0 after executing the above instruc-

tion becomes 00000016. However, since operation

is performed on 32-bit data, the S flag is set to 1

and the Z flag is cleared to 0.

When (.L) is specified for the size specifier (.size)

Read

Write

b15 b7b8 b0b16b23

b15 b7b8 b0

b15 b7b8 b0

b15 b7b8 b0b16b23

b15 b7b8 b0b16b23

b15 b7b8 b0b16b23

b31 b24 b15 b7b8 b0b16b23

b31 b24 b15 b7b8 b0b16b23

A0/A1

A0/A1

A0/A1

A0/A1

2.7 Read and write operations with 24-bit registers

Chapter 3

Functions

3.1 Guide to This Chapter

3.2 Functions

3.3 Index Instructions

38

3.1 Guide to This Chapter
Chapter 3 Functions

115

OR

[Function]

[Description Example]

 [Selectable src/dest]

[Syntax]
OR.size (:format) src,dest

3.1 Guide to This Chapter

This chapter describes the functionality of each instruction by showing syntax, operation, function, select-

able src/dest, flag changes, and description examples.

The following shows how to read this chapter by using an actual page as an example.

U I O B S Z D C

OR

G , S (Can be specified)

B , W

 [Flag Change]

(2)

(6)

(7)

(5)

(4)

(3)

(1)

(8)

[Instruction Code/Number of Cycles]

Page=260

3.2 Functions
Chapter 3 Functions

(See the next page for src/dest classified by format.)

Conditions

S : The flag is set when the transfer resulted in MSB of dest = 1; otherwise cleared.

Z : The flag is set when the transfer resulted in 0; otherwise cleared.

 Flag

Change

OR

Logically OR

• This instruction logically ORs dest and src together and stores the result in dest.
• When (.W) is specified for the size specifier (.size) and dest is the address register (A0, A1), the 8

high-order bits become 0. Also, when src is the address register, the 16 low-order bits of the address
register are the data to be operated on.

[Operation]

dest src dest [dest] src [dest]

dest [src] dest [dest] [src] [dest]

src dest
R0L/R0/R2R0 R0H/R2/-
R1L/R1/R3R1 R1H/R3/-
A0/A0/A0 A1/A1/A1 [A0] [A1]
dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[A1] abs24 abs16
#IMM8/#IMM16

R0L/R0/R2R0 R0H/R2/-
R1L/R1/R3R1 R1H/R3/-
A0/A0/A0 A1/A1/A1 [A0] [A1]
dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

*1 Indirect addressing [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, and #IMM.

OR.B Ram:8[SB],R0L
OR.B:G A0,R0L ; A0's 8 low-order bits and R0L are ORed.
OR.B:G R0L,A0 ; R0L is zero-expanded and ORed with A0.
OR.B:S #3,R0L
OR.W:G [R1],[[A0]]

39

3.1 Guide to This ChapterChapter 3 Functions

(1) Mnemonic
Indicates the mnemonic explained in this page.

(2) Instruction code/number of cycles
Indicates the page in which instruction code/number of cycles is listed.

Refer to this page for instruction code and number of cycles.

(3) Syntax
Indicates the syntax of the instruction using symbols. If (:format) is omitted, the assembler chooses the

optimum specifier.

OR.size (: format) src , dest
G , S (f)

B , W (e)

 (a) (b) (c) (d)

(a) Mnemonic OR

Describes the mnemonic.

(b) Size specifier size

Describes the data size in which data is handled. The following lists the data sizes that can be speci

fied:

.B Byte (8 bits)

.W Word (16 bits)

.L Long word (32 bits)

Some instructions do not have a size specifier.

(c) Instruction format specifier (: format)

Describes the instruction format. If (.format) is omitted, the assembler chooses the optimum speci-

fier. If (.format) is entered, its content is given priority. The following lists the instruction formats that

can be specified:

:G Generic format

:Q Quick format

:S Short format

:Z Zero format

Some instructions do not have an instruction format specifier.

(d) Operand src, dest

Describes the operand.

(e) Indicates the data size you can specify in (b).

(f) Indicates the instruction format you can specify in (c).

40

3.1 Guide to This Chapter
Chapter 3 Functions

[Operation]

dest src dest [dest] src [dest]

dest [src] dest [dest] [src] [dest]

115

OR

[Function]

[Syntax]
OR.size (:format) src,dest

OR

G , S (Can be specified)

W , B

(2)

(5)

(4)

(3)

(1)
[Instruction Code/Number of Cycles]

Page=260

3.2 Functions
Chapter 3 Functions

OR

Logically OR

• This instruction logically ORs dest and src together and stores the result in dest.
• When (.W) is specified for the size specifier (.size) and dest is the address register (A0, A1), the 8

high-order bits become 0. Also, when src is the address register, the 16 low-order bits of the address
register are the data to be operated on.

[Description Example](8)
OR.B Ram:8[SB],R0L
OR.B:G A0,R0L ; A0' s 8 low-order bits and R0L are ORed.
OR.B:G R0L,A0 ; R0L is zero-expanded and ORed with A0.
OR.B:S #3,R0L
OR.W:G [R1],[[A0]]

U I O B S Z D C

 [Flag Change](7)

Conditions

S : The flag is set when the transfer resulted in MSB of dest = 1; otherwise cleared.

Z : The flag is set when the transfer resulted in 0; otherwise cleared.

 Flag

Change

 [Selectable src/dest](6) (See the next page for src/dest classified by format.)

src dest
R0L/R0/R2R0 R0H/R2/-
R1L/R1/R3R1 R1H/R3/-
A0/A0/A0 A1/A1/A1 [A0] [A1]
dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[A1] abs24 abs16
#IMM8/#IMM16

R0L/R0/R2R0 R0H/R2/-
R1L/R1/R3R1 R1H/R3/-
A0/A0/A0 A1/A1/A1 [A0] [A1]
dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

*1 Indirect addressing [src]and[dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/
R1/R3R1, R1H/R3/-, SP/SP/SP, and #IMM.

41

3.1 Guide to This ChapterChapter 3 Functions

R0L/R0/R2R0 R0H/R2/-
R1L/R1/R3R1 R1H/R3/-
A0/A0/A0 A1/A1/A1 [A0] [A1]
dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[A1] abs24 abs16

src dest
R0L/R0/R2R0 R0H/R2/-
R1L/R1/R3R1 R1H/R3/-
A0/A0/A0 A1/A1/A1 [A0] [A1]
dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]
dsp:24[A0] dsp:24[A1] abs24 abs16
#IMM8/#IMM16

(4) Operation
Explains the operation of the instruction using symbols.

(5) Function
Explains the function of the instruction and precautions to be taken when using the instruction.

(6) Selectable src / dest (label)
If the instruction has an operand, this indicates the format you can choose for the operand.

(a) Items that can be selected as src (source).

(b) Items that can be selected as dest (destination).

(c) Addressing that cannot be selected.

(d) Addressing that can be selected.

(e) Shown on the left side of the slash (R0L) is the addressing when data is handled in bytes (8 bits).

 Shown on the middle side of the slash (R0) is the addressing when data is handled in words (16

bits).

 Shown on the right side of the slash (R2R0) is the addressing when data is handled in words (32

bits).

(7) Flag change
Indicates a flag change that occurs after the instruction is executed. The symbols in the table mean the

following:

" " The flag does not change.

" " The flag changes depending on condition.

(8) Description example
Shows a description example for the instruction.

(a)

(b)

(c)

(d)

(e)

42

3.1 Guide to This Chapter
Chapter 3 Functions

The following explains the syntax of each jump instruction JMP, JPMI, JSR, and JSRI by using an actual

example.

(3) Syntax
Indicates the instruction syntax using a symbol.

(a) (b) (c)

(a) Mnemonic JMP

Describes the mnemonic.

(b) Jump distance specifier .length

Describes the distance of jump. If (.length) is omitted in JMP or JSR instruction, the assembler

chooses the optimum specifier. If (.length) is entered, its content is given priority.

The following lists the jump distances that can be specified:

.S 3-bit PC forward relative (+2 to +9)

.B 8-bit PC relative

.W 16-bit PC relative

.A 24-bit absolute

(c) Operand label

Describes the operand.

(d) Shows the jump distance that can be specified in (b).

JuMP
 Unconditional jump

JMP (.length) label
S, B, W, A (d)

[Syntax]

JMP (.length) label

JMP

S, B, W, A (Can be specified)

(2)

(3)

(1)

3.2 Functions
Chapter 3 Functions

JMP
[Instruction Code/Number of Cycles]

Page=195

43

3.2 Functions
Chapter 3 Functions

Absolute value
ABSolute

[Syntax]

ABS.size dest

ABS.B R0L

ABS.W [A0]

ABS.W [[A0]]

[Selectable dest]

ABS

[Function]
• This instruction takes on an absolute value of dest and stores it in dest.

• When (.W) is specified for the size specifier (.size) and dest is the address register (A0, A1), the 8

high-oreder bits become 0.

[Description Example]

ABS

Conditions

O : The flag is set (= 1) when dest before the operation is -128 (.B) or -32768 (.W); otherwise cleared (=

0).

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is indeterminate.

[Flag Change]

[Operation]

 dest dest

 [dest] [dest]

B , W

U I O B S Z D C

174

[Instruction Code/Number of Cycles]

Page=

Flag

Change

dest* 1

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

*1 Indirect addressing [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

44

3.2 Functions
Chapter 3 Functions

[Instruction Code/Number of Cycles]

Page=

Add with carry
ADdition with Carry

[Selectable src/dest]

[Syntax]

ADC.size src,dest

ADCADC

[Function]

[Description Example]

B , W

[Operation]

dest src + dest + C

[Flag Change]

• This instruction adds dest, src and C flag together and stores the result in dest.
• When (.B) is specified for the size specifier (.size) and dest is the address register (A0, A1), src is zero-

extended to perform operation in 16 bits. In this case, the 8 high-oreder bits become 0. Also, when src
is the address register, the 8 low-order bits of the address register are used as data to be operated on.

• When (.W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order
bits become 0. Also, when src is the address register, the 16 low-order bits of the address register are
the data to be operated on.

; A0's 8 low-order bits and R0L are added.

; R0L is zero-expanded and added with A0.

U I O B S Z D C

*1 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or A1 for src and dest
simultaneously.

Conditions

O : The flag is set when a signed operation resulted in exceeding +32767 (.W) or - 32768 (.W) or

+127 (.B) or -128 (.B); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when an unsigned operation resulted in exceeding +65535 (.W) or +255 (.B);

otherwise cleared.

Change

ADC.B #2,R0L

ADC.W A0,R0

ADC.B A0,R0L

ADC.B R0L,A0

ADC.W R1,[A1]

174

Flag

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*1 A1/A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*1 A1/A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

45

3.2 Functions
Chapter 3 Functions

Add carry flag
ADdition Carry Flag

[Selectable dest]

ADCF ADCF

[Function]

[Flag Change]

Conditions

O : The flag is set when a signed operation resulted in exceeding +32767 (.W) or -32768 (.W) or

+127 (.B) or -128 (.B); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when an unsigned operation resulted in exceeding +65535 (.W) or +255 (.B);

otherwise cleared.

[Description Example]

ADCF.B R0L

ADCF.W Ram:16[A0]

B , W

[Syntax]

ADCF.size dest

[Operation]

dest dest + C

[dest] [dest] + C

U I O B S Z D C

• This instruction adds dest and C flag together and stores the result in dest.

• When (.W) is specified for the size specifier (.size) and dest is the address register (A0, A1), the 8

high-order bits become 0.

176

[Instruction Code/Number of Cycles]

Page=

Change

Flag

dest* 1

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

*1 Indirect addressing [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

46

3.2 Functions
Chapter 3 Functions

Add without carry
ADDitionADD ADD

[Syntax]

ADD.size (:format) src,dest

ADD.B [[A0]],abs16

G , Q , S (Can be specified)

B , W, L
[Operation]

dest dest + src [dest] [dest] + src

dest dest + [src] [dest] [dest] + [src]

Conditions
O : The f lag is set when a s igned operat ion resu l ted in exceeding +2147483647(.L) or

-2147483648(.L), +32767 (.W) or -32768 (.W), or +127 (.B) or -128 (.B); otherwise cleared.
S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in 0; otherwise cleared.
C : The flag is set when an unsigned operation resulted in exceeding +4294967295(.L) or +65535 (.W) or

+255 (.B); otherwise cleared.

[Description Example]

176

[Instruction Code/Number of Cycles]

Page=

[Function]
• This instruction adds dest and src together and stores the result in dest.

• When (.B) is specified for the size specifier (.size) and dest is the address register (A0, A1), src is zero-extended to
perform operation in 16 bits. In this case, the 8 high-oreder bits become 0. Also, when src is the address register, the
8 low-order bits of the address register are used as data to be operated on.

• When (.W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order bits become 0.
Also, when src is the address register, the 16 low-order bits of the address register are the data to be operated on.

• When (.L) is specified for the size specifier (.size) and dest is the address register, dest is zero-extended to perform
operation in 32 bits. The 24 low-order bits of the operation result are stored in dest. Also, when src is the address
register, src is zero-extended to perform operation in 32bit. The flags also change states depending on the result of 32-
bit operation.

• When (.L) is specified for the size specifier (.size) and dest is SP, dest is zero-extended to perform operation in 32 bits,
and src is sign-extended to perform operation in 32 bits. The 24 low-order bits of the operation result are stored in
dest. The flags also change states depending on the result of 32-bit operation.

[Selectable src/dest]* 1

*1 Indirect addressing [src] and [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or A1 for src and dest simultaneously.
*3 Operation is performed on the stack pointer indicated by the U flag.

(See the next page for src/dest classified by format.)
src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

SP/SP/SP*3

[Flag Change]

U I O B S Z D C
Change

Flag

47

3.2 Functions
Chapter 3 Functions

[src/dest Classified by Format]

G format* 1

*1 Indirect addressing [src] and [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or A1 for src and dest
simultaneously.

*3 Operation is performed on the stack pointer indicated by the U flag. You can choose only #IMM16 for
src. You can choose only (.L) for the size specifier (.size).
In this case, you cannot use the indirect addressing mode.

*8 Indirect addressing [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*9 You can choose the (.B) and (.W) for the size specifier (.size).
*10 You can choose only (.L) for the size specifier (.size). In this case, you cannot use the indirect address-

ing mode.

*4 Indirect addressing [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*5 Operation is performed on the stack pointer indicated by the U flag. You can choose only #IMM3 for src.
*6 When dest is the SP, #IMM3 can be selected. The range of values that can be taken on is +1 < #IMM3 < +8.
*7 When dest is not the SP, #IMM4 can be selected. The range of values that can be taken on is -8 < #IMM4 <

+7.

S format *8

Q format* 4

src dest

R0L/R0 dsp:8[SB] dsp:8[FB] abs16 R0L/R0 dsp:8[SB] dsp:8[FB] abs16

#IMM8/#IMM16*9

#1*10 #2*10 A0*10 A1*10

#IMM8*10 SP*10

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16/#IMM32

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

SP/SP/SP*3

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM3*6/#IMM4*7

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

SP/SP/SP*5

48

3.2 Functions
Chapter 3 Functions

Add extend sign without carry
ADDition eXtend signADDX ADDX

[Syntax]

ADDX src,dest

[Flag Change]

ADDX R0L,A0

ADDX RAM:8[SB],R2R0

ADDX [A0],A1

[Operation]

dest dest + EXTS(src) [dest] [dest] + EXTS(src)

dest dest + EXTS([src]) [dest] [dest] + EXTS([src])

Conditions

O : The flag is set when a signed operation resulted in exceeding +2147483647(.L) or

-2147483648(.L); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when an unsigned operation resulted in exceeding +4294967295(.L); otherwise

cleared.

[Description Example]

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page=

Change

Flag

[Function]
• Sign-extend the 8-bit src to 32 bits which are added to the 32-bit dest, and the result is stored in dest.

• When dest is the address register(A0, A1) , dest is zero-extended to perform operation in 32 bits. The
24 low-order bits of the operation result are stored in dest. The flags also change states depending on
the result of 32-bit operation. Also, when src is the address register, src is zero-extended to perform
operation in 8 low-order bits.

[Selectable src/dest]* 1

*1 Indirect addressing [src] and [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/
R1/R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

183

49

3.2 Functions
Chapter 3 Functions

U I O B S Z D C

Add & conditional jump
ADdition then Jump on Not Zero

ADJNZ.W #-1,R0,label

[Function]

ADJNZ ADJNZ
[Syntax]

ADJNZ.size src,dest,label

[Flag Change]

[Description Example]

B , W

[Operation]

dest dest + src

if dest 0 then jump label

[Selectable src/dest/label]

• This instruction adds dest and src together and stores the result in dest.

• When the addition resulted in any value other than 0, control jumps to label . When the addition
resulted in 0, the next instruction is executed.

• The op-code of this instruction is the same as that of SBJNZ.
• When (.W) is specified for the size specifier (.size) and dest is the address register (A0, A1), the 8

high-oreder bits become 0.

*1 The range of values that can be taken on is - 8 < #IMM4 < +7.
*2 PC indicates the start address of the instruction.

185

[Instruction Code/Number of Cycles]

Page=

Flag

Change

 src dest label

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

#IMM4*1 A0/A0/A0 A1/A1/A1 [A0] [A1] PC*2 -126 label PC*2+129

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

50

3.2 Functions
Chapter 3 Functions

AND
Logically AND

[Function]

AND AND
[Syntax]

AND.size (:format) src,dest

[Selectable src/dest] * 1

[Flag Change]

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

[Description Example]

AND.B Ram:8[SB],R0L
AND.B:G A0,R0L
AND.B:G R0L,A0
AND.B:S #3,R0L
AND.W:G [A0],[[A1]]

G , S (Can be specified)

B , W
[Operation]

dest src dest [dest] src [dest]

dest [src] dest [dest] [src] [dest]

• This instruction logically ANDs dest and src together and stores the result in dest.

• When (.B) is specified for the size specifier (.size) and dest is the address register (A0, A1), src is zero-

extended to perform operation in 16 bits. In this case, the 8 high-oreder bits become 0. Also, when src

is the address register, the 8 low-order bits of the address register are used as data to be operated on.

• When (.W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order

bits become 0. Also, when src is the address register, the 16 low-order bits of the address register are

the data to be operated on.

; A0's 8 low-order bits and R0L are ANDed.

; R0L is zero-expanded and ANDed with A0.

U I O B S Z D C

(See the next page for src/dest classified by format.)

[Instruction Code/Number of Cycles]

Page=186

Change

Flag

*1 Indirect addressing [src] and [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP] and #IMM.

*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or A1 for src and dest
simultaneously.

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R2R0 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R2R0 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

51

3.2 Functions
Chapter 3 Functions

[src/dest Classified by Format]

G format* 1

S format *3

*3 Indirect addressing [src] and [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*1 Indirect addressing [src] and [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or A1 for src and dest
simultaneously.

src dest

R0L/R0 dsp:8[SB] dsp:8[FB] abs16 R0L/R0 dsp:8[SB] dsp:8[FB] abs16

#IMM8/#IMM16

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R2R0 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R2R0 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

52

3.2 Functions
Chapter 3 Functions

• This instruction logically ANDs the C flag and src together and stores the result in the C flag.

• When src is the address register (A0, A1), you can specify the 8 low-order bits for the address register.

Bit AND carry flag
Logically AND bits

[Function]

BAND BAND
[Syntax]

BAND src

[Selectable src]

[Flag Change]

Conditions

C : The flag is set when the operation resulted in 1; otherwise cleared.

[Description Example]
BAND flag

BAND 4,Ram

BAND 16,Ram:19[SB]

BAND 5,[A0]

[Operation]

 C src C

U I O B S Z D C
Change

[Instruction Code/Number of Cycles]

Page=188

Flag

 src

bit,R0L bit,R0H bit,R1L bit,R1H

bit,A0 bit,A1 bit,[A0] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]

bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]

bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19

53

3.2 Functions
Chapter 3 Functions

Bit CLeaR
Clear bit

[Syntax]

BCLR dest

[Function]

BCLR

[Selectable dest]

[Description Example]
BCLR flag

BCLR 4,Ram

BCLR 16,Ram:19[SB]

BCLR 5,[A0]

[Operation]

dest 0

• This instruction stores 0 in dest.

• When dest is the address register (A0, A1), you can specify the 8 low-order bits for the address

register.

U I O B S Z D C

BCLR
[Instruction Code/Number of Cycles]

Page= 188

Flag

Change

[Flag Change]

 dest

bit,R0L bit,R0H bit,R1L bit,R1H

bit,A0 bit,A1 bit,[A0] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]

bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]

bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19

54

3.2 Functions
Chapter 3 Functions

• This instruction modifies addressing of the next bit instruction.

• No interrupt request is accepted immediately after this instruction.

• The operand specified in src constitutes the src or dest index value for the next bit instruction.

• For details, refer to Section 3.3, "Index Instructions."

BIT INDEX
Bit index

[Function]

BITINDEX BITINDEX
[Syntax]

BITINDEX.size src

[Selectable src]

[Flag Change]

[Description Example]
BITINDEX R0

BITINDEX [A0]

[Operation]

U I O B S Z D C
Change

[Instruction Code/Number of Cycles]

Page=

Flag

 src

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs:24 abs:16

B , W
189

55

3.2 Functions
Chapter 3 Functions

Cnd Condition Expression Cnd Condition Expression

GEU/C C=1 Equal to or greater than LTU/NC C=0 Smaller than

C flag is 1. C flag is 0.

EQ/Z Z=1 Equal to = NE/NZ Z=0 Not equal ≠
Z flag is 1. Z flag is 0.

GTU

C Z=1 Greater than LEU

C Z=0 Equal to or smaller than

PZ S=0 Positive or zero 0 N S=1 Negative 0

GE S O=0 Equal to or greater than LE (S O) Z=1 Equal to or smaller than

(signed value) (signed value)

GT (S O) Z=0 Greater than (signed value) LT S O=1 Smaller than (signed value)

O O=1 O flag is 1. NO O=0 O flag is 0.

Bit Move Condition
Conditional bit transferBMCnd BMCnd

[Syntax]

BMCnd dest

[Operation]

if true then dest 1

else dest 0

[Flag Change]

[Selectable dest]

[Description Example]
BMN 3,Ram:11[SB]

BMZ C

• This instruction transfers the true or false value of the condition indicated by Cnd to dest. When the
condition is true, 1 is transferred; when false, 0 is transferred.

• When dest is the address register (A0, A1), you can specify the 8 low-order bits for the address
register.

• There are following kinds of Cnd.

*1 The flag changes when you specified the C flag for dest.

U I O B S Z D C
*1

[Function]

[Instruction Code/Number of Cycles]

Page=190

Change

Flag

A

A A

A

 dest

bit,R0L bit,R0H bit,R1L bit,R1H

bit,A0 bit,A1 bit,[A0] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]

bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]

bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19

C

56

3.2 Functions
Chapter 3 Functions

Bit Not AND carry flag
Logically AND inverted bits

[Function]

BNAND
[Syntax]

BNAND src

• This instruction logically ANDs the C flag and inverted src together and stores the result in the C flag.

• When src is the address register (A0, A1), you can specify the 8 low-order bits for address register.

[Selectable src]

[Flag Change]

[Description Example]

BNAND flag

BNAND 4,Ram

BNAND 16,Ram:19[SB]

BNAND 5,[A0]

 [Operation]

 C src C

Condition

C : The flag is set when the operation resulted in 1; otherwise cleared.

U I O B S Z D C

BNAND
[Instruction Code/Number of Cycles]

Page=192

Change

Flag

 src

bit,R0L bit,R0H bit,R1L bit,R1H

bit,A0 bit,A1 bit,[A0] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]

bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]

bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19

57

Chapter 3 Functions
3.2 Functions

[Instruction Code/Number of Cycles]

Page=

Bit Not OR carry flag
Logically OR inverted bits

[Syntax]

BNOR src

[Description Example]

[Function]

• This instruction logically ORs the C flag and inverted src together and stores the result in the C flag.

• When src is the address register (A0, A1), you can specify the 8 low-order bits for address register.

[Selectable src]

BNOR BNOR

[Flag Change]

BNOR flag

BNOR 4,Ram

BNOR 16,Ram:19[SB]

BNOR 5,[A0]

[Operation]

C src C

U I O B S Z D C

Condition

C : The flag is set when the operation resulted in 1; otherwise cleared.

Flag

Change

 src

bit,R0L bit,R0H bit,R1L bit,R1H

bit,A0 bit,A1 bit,[A0] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]

bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]

bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19

192

58

Chapter 3 Functions
3.2 Functions

U I O B S Z D C

Bit NOT
Invert bit

 [Syntax]

BNOT dest

[Flag Change]

[Description Example]
BNOT flag

BNOT 4,Ram

BNOT 16,Ram:19[SB]

BNOT 5,[A0]

[Function]

BNOTBNOT

[Selectable dest]

Change

[Operation]

 dest dest

[Instruction Code/Number of Cycles]

Page=193

• This instruction inverts dest and stores the result in dest.

• When dest is the address register (A0, A1), you can specify the 8 low-order bits for the address regis-

ter.

Flag

 dest

bit,R0L bit,R0H bit,R1L bit,R1H

bit,A0 bit,A1 bit,[A0] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]

bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]

bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19

59

Chapter 3 Functions
3.2 Functions

Bit Not TeST
Test inverted bit

[Flag Change]

[Description Example]

[Function]

[Selectable src]

BNTST BNTST
[Syntax]

BNTST src

Conditions

Z : The flag is set when src is 0; otherwise cleared.

C : The flag is set when src is 0; otherwise cleared.

BNTST flag

BNTST 4,Ram

BNTST 16,Ram:19[SB]

BNTST 5,[A0]

[Operation]

Z src

C src

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page= 193

• This instruction transfers inverted src to the Z flag and inverted src to the C flag.

• When src is the address register (A0, A1), you can specify the 8 low-order bits for the address register.

Flag

Change

 src

bit,R0L bit,R0H bit,R1L bit,R1H

bit,A0 bit,A1 bit,[A0] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]

bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]

bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19

60

Chapter 3 Functions
3.2 Functions

Bit Not eXclusive OR carry flag
Exclusive OR inverted bits

[Flag Change]

[Description Example]

[Function]

[Selectable src]

BNXOR
[Syntax]

BNXOR src

BNXOR flag

BNXOR 4,Ram

BNXOR 16,Ram:19[SB]

BNXOR 5,[A0]

[Operation]

 C src C

• This instruction exclusive ORs the C flag and inverted src and stores the result in the C flag.

• When src is the address register (A0, A1), you can specify the 8 low-order bits for the address register.

U I O B S Z D C

Conditions

C : The flag is set when the operation resulted in 1; otherwise cleared.

BNXOR
[Instruction Code/Number of Cycles]

Page= 194

Flag

Change

A

 src

bit,R0L bit,R0H bit,R1L bit,R1H

bit,A0 bit,A1 bit,[A0] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]

bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]

bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19

61

Chapter 3 Functions
3.2 Functions

Bit OR carry flag
Logically OR bits

[Syntax]

BOR src

[Description Example]

[Function]

[Selectable src]

BOR BOR

[Flag Change]

BOR flag

BOR 4,Ram

BOR 16,Ram:19[SB]

BOR 5,[A0]

[Operation]

C src C

U I O B S Z D C

Conditions

C : The flag is set when the operation resulted in 1; otherwise cleared.

• This instruction logically ORs the C flag and src together and stores the result in the C flag.

• When src is the address register (A0, A1), you can specify the 8 low-order bits for the address register.

[Instruction Code/Number of Cycles]

Page= 194

Flag

Change

 src

bit,R0L bit,R0H bit,R1L bit,R1H

bit,A0 bit,A1 bit,[A0] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]

bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]

bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19

62

Chapter 3 Functions
3.2 Functions

BReaK
Debug interrupt

BRK
[Description Example]

[Function]

BRK BRK

[Flag Change] *1

*1 The flags are saved to the stack area before the BRK in-

struction is executed. After the interrupt, the flags

change state as shown on the left.Conditions

U : The flag is cleared.

I : The flag is cleared.

D : The flag is cleared.

[Syntax]

BRK

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page= 195

• This instruction generates a BRK interrupt.

• The BRK interrupt is a nonmaskable interrupt.

Flag

Change

[Operation]

• When anything other than FF16 exists in ad-

dresses from FFFFE416 to FFFFE716

SP SP - 2

M(SP) FLG

SP SP - 2

M(SP)*1 (PC + 1)H

SP SP - 2

M(SP) (PC + 1)ML

PC M(FFFFE416)

*1 The 8 high-order bits become indeterminate.

• When FF16 exists in all addresses from

FFFFE416 to FFFFE716

SP SP - 2

M(SP) FLG

SP SP - 2

M(SP)*2 (PC + 1)H

SP SP - 2

M(SP) (PC + 1)ML

PC M(IntBase)

*2 The 8 high-order bits become indeterminate.

63

Chapter 3 Functions
3.2 Functions

BReaK2
Debug interrupt2

BRK2
[Description Example]

[Function]

BRK2 BRK2

[Flag Change] *1

*1 The flags are saved to the stack area before the BRK2

instruction is executed. After the interrupt, the flags

change state as shown on the left.Conditions

U : The flag is cleared.

I : The flag is cleared.

D : The flag is cleared.

[Syntax]

BRK

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page=

• This instruction is provided for exclusive use in debuggers. Do not use it in user programs.

• A BRK2 interrupt is generated.

• The BRK2 interrupt is a nonmaskable interrupt.

Flag

Change

[Operation]

SP SP - 2

M(SP) FLG

SP SP - 2

M(SP)*1 (PC + 1)H

SP SP - 2

M(SP) (PC + 1)ML

PC M(002016)

*1 The 8 high-order bits become indeterminate.

195

64

Chapter 3 Functions
3.2 Functions

Bit SET
Set bit

 [Flag Change]

[Function]

[Selectable dest]

BSET BSET
[Syntax]

BSET dest

[Description Example]
BSET flag

BSET 4,Ram

BSET 16,Ram:19[SB]

BSET 5,[A0]

• This instruction stores 1 in dest.

• When dest is the address register (A0, A1), you can specify the 8 low-order bits for the address regis-

ter.

U I O B S Z D C
Change

196

[Instruction Code/Number of Cycles]

Page=

Flag

[Operation]

 dest 1

 dest

bit,R0L bit,R0H bit,R1L bit,R1H

bit,A0 bit,A1 bit,[A0] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]

bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]

bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19

65

Chapter 3 Functions
3.2 Functions

Bit TeST
Test bit

[Flag Change]

[Function]

[Selectable src]

BTST BTST
[Syntax]

BTST (:format) src

[Description Example]

BTST flag

BTST 4,Ram

BTST 16,Ram:19[SB]

BTST 5,[A0]

G , S (Can be specified)

[Operation]

Z src

C src

U I O B S Z D C

Conditions

Z : The flag is set when src is 0; otherwise cleared.

C : The flag is set when src is 1; otherwise cleared.

• This instruction transfers inverted src to the Z flag and non-inverted src to the C flag.

• When src is the address register (A0, A1), you can specify the 8 low-order bits for the address register.

Change

[Instruction Code/Number of Cycles]

Page=196

Flag

 src

bit,R0L bit,R0H bit,R1L bit,R1H

bit,A0 bit,A1 bit,[A0] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]

bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]

bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19

 src

bit,base:19

G format* 1

S format

66

Chapter 3 Functions
3.2 Functions

Bit TeST & Clear
Test bit & clear

[Flag Change]

[Description Example]

BTSTC BTSTC
[Syntax]

BTSTC dest

[Selectable dest]

BTSTC flag

BTSTC 4,Ram

BTSTC 16,Ram:19[SB]

BTSTC 5,[A0]

[Operation]

Z

 dest

C dest

dest 0

[Function]

U I O B S Z D C

Conditions

Z : The flag is set when dest is 0; otherwise cleared.

C : The flag is set when dest is 1; otherwise cleared.

• This instruction transfers inverted dest to the Z flag and non-inverted dest to the C flag. Then it stores

0 in dest.

• When dest is the address register (A0, A1), you can specify the 8 low-order bits for the address regis-

ter.

• Do not use this instruction for dest in SFR area.

[Instruction Code/Number of Cycles]

Page= 197

Flag

Change

 dest

bit,R0L bit,R0H bit,R1L bit,R1H

bit,A0 bit,A1 bit,[A0] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]

bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]

bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19

67

Chapter 3 Functions
3.2 Functions

Bit TeST & Set
Test bit & set

[Flag Change]

[Description Example]

[Selectable dest]

BTSTS BTSTS

[Function]

• This instruction transfers inverted dest to the Z flag and non-inverted dest to the C flag. Then it stores

1 in dest.

• When dest is the address register (A0, A1), you can specify the 8 low-order bits for the address regis-

ter.

• Do not use this instruction for dest in SFR area.

Conditions

Z : The flag is set when dest is 0; otherwise cleared.

C : The flag is set when dest is 1; otherwise cleared.

BTSTS flag

BTSTS 4,Ram

BTSTS 16,Ram:19[SB]

BTSTS 5,[A0]

[Syntax]

BTSTS dest

[Operation]

Z

dest

C dest

dest 1

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page= 198

Flag

Change

 dest

bit,R0L bit,R0H bit,R1L bit,R1H

bit,A0 bit,A1 bit,[A0] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]

bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]

bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19

68

3.2 Functions
Chapter 3 Functions

Bit eXclusive OR carry flag
Exclusive OR bits

[Flag Change]

[Description Example]

[Function]

[Selectable src]

BXOR
[Syntax]

BXOR src

BXOR

• This instruction exclusive ORs the C flag and src together and stores the result in the C flag.

• When src is the address register (A0, A1), you can specify the 8 low-order bits for the address register.

BXOR flag

BXOR 4,Ram

BXOR 16,Ram:19[SB]

BXOR 5,[A0]

[Operation]

C src C

U I O B S Z D C

Conditions

C : The flag is set when the operation resulted in 1; otherwise cleared.

[Instruction Code/Number of Cycles]

Page=

Flag

Change

A

 src

bit,R0L bit,R0H bit,R1L bit,R1H

bit,A0 bit,A1 bit,[A0] bit,[A1]

bit,base:11[A0] bit,base:11[A1] bit,base:11[SB] bit,base:11[FB]

bit,base:19[A0] bit,base:19[A1] bit,base:19[SB] bit,base:19[FB]

bit,base:27[A0] bit,base:27[A1] bit,base:27 bit,base:19

198

69

3.2 Functions
Chapter 3 Functions

U I O B S Z D C

CLIP
CLIP

CLIP.W #5,#10,R1

CLIP.W #-5,#5,[A0]

[Function]

CLIP CLIP
[Syntax]

CLIP.size src1, src2, dest

[Flag Change]

[Description Example]

B , W

[Operation]

if src1 > dest

then dest src1

if src2 < dest

then dest src2

[Selectable src/dest/label]

[Instruction Code/Number of Cycles]

Page=

Flag

Change

src1, src2 dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

• Signed compares src1 and dest and stores the content of src1 in dest if src1 is greater than dest. Next,

signed compares src2 and dest and stores the content of src2 in dest if src2 is samller than dest.

When src1 < dest < src2, dest is not changed.

• When (.W) is specified for the size specifier (.size), dest is the address register and writing to dest, the

8 high-order bits become 0.

• Src1 and src2 are set "src1<src2".

199

70

3.2 Functions
Chapter 3 Functions

[Instruction Code/Number of Cycles]

Page=

 Compare

[Syntax]

CMP.size (:format) src,dest

[Description Example]

[Selectable src/dest]* 1

[Function]

[Flag Change]

CMP CMP

(See the next page for src/dest classified by format.)

CMP.B:S #10,R0L
CMP.W:G R0,A0
CMP.W #-3,R0
CMP.B #5,Ram:8[FB]
CMP.B A0,R0L

[Operation]

dest - src [dest] - src

dest - [src] [dest] - [src]

CoMPare

• Each flag bit of the flag register varies depending on the result of subtraction of src from dest.

• When (.B) is specified for the size specifier (.size) and dest is the address register (A0, A1), src is zero-
extended to perform operation in 16 bits. Also, when src is the address register, the 8 low-order bits of
the address register are used as data to be operated on.

• When (.L) is specified for the size specifier (.size), and src or dest is the address register, address
register is zero-extended to perform operation in 32 bits. The flags also change states depending on
the result of 32-bit operation.

U I O B S Z D C

Conditions

O : The flag is set when a signed operation resulted in exceeding +2147483647(.L) or
-2147483648(.L), +32767 (.W) or -32768 (.W), or +127 (.B) or -128 (.B); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in 0; otherwise cleared.
C : The flag is set when an unsigned operation resulted in any value equal to or greater than 0;

otherwise cleared.

; A0's 8 low-order bits and R0L are compared.

G , Q , S (Can be specified)

B , W, L

200

Flag

Change

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM4/#IMM8/#IMM16/#IMM32

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

*1 Indirect addressing [src] and [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 If you specify (.B) for the size specifier (.size), you cannot choose A0 and/or A1 for src and dest simul-
taneously.

71

3.2 Functions
Chapter 3 Functions

[src/dest Classified by Format]

S format *6*7

Q format* 3*4

G format* 1

*1 Indirect addressing [src] and [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 If you specify (.B) for the size specifier (.size), you cannot choose A0 and/or A1 for src and dest simul-
taneously.

src dest

R0L/R0 dsp:8[SB] dsp:8[FB] abs16 R0L/R0 dsp:8[SB] dsp:8[FB] abs16

#IMM8/#IMM16

R0L/R0 dsp:8[SB] dsp:8[FB] abs16 R0L/R0 dsp:8[SB] dsp:8[FB] abs16

#IMM

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM4/#IMM8/#IMM16/#IMM32

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM4*5/#IMM8/#IMM16/#IMM32

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

*3 Indirect addressing [src] and [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*4 You can only specify (.B) or (.W) for the size specifier (.size).
*5 The range of values that can be taken on is -8 < #IMM4 < +7.

*6 Indirect addressing [src] and [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*7 You can only specify (.B) or (.W) for the size specifier (.size).

72

3.2 Functions
Chapter 3 Functions

[Instruction Code/Number of Cycles]

Page=

 Compare extended sign

[Syntax]

CMPX src,dest

[Description Example]

[Function]

[Flag Change]

CMPX CMPX

CMPX #10,R2R0
CMPX #5,A0

[Operation]

dest/[dest] - EXTS(src)

CoMPare eXtend sign

• Each flag of the flag register changes state according to the result derived by subtracting the sign-

extended 32-bit src from the 32-bit dest.

• When dest is the address register (A0, A1), it is zero-extended to perform operation in 32 bits and the

flags change their states depending on the result.

U I O B S Z D C

Conditions

O : The flag is set when a signed operation resulted in exceeding +2147483647(.L) or
-2147483648(.L), otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in 0; otherwise cleared.
C : The flag is set when an unsigned operation resulted in any value equal to or greater than 0;

otherwise cleared.

Flag

Change

*1 Indirect addressing [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

206

[Selectable src/dest]* 1

73

3.2 Functions
Chapter 3 Functions

Decimal ADdition with Carry
Decimal add with carry

[Syntax]

DADC.size src,dest

[Flag Change]

[Description Example]

[Function]

[Selectable src/dest]

DADC DADC

DADC.B #3,R0L

DADC.W R1,R0

DADC.W [A0],R2

B , W

[Operation]

dest src + dest + C

U I O B S Z D C

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when the operation resulted in exceeding +9999 (.W) or +99 (.B); otherwise

cleared.

• This instruction adds dest, src, and C flag together in decimal and stores the result in dest.

• When (.W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order

bits become 0. Also, when src is the address register, the 16 low-order bits of the address register

are the data to be operated on.

[Instruction Code/Number of Cycles]

Page= 206

Flag

Change

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

74

3.2 Functions
Chapter 3 Functions

Decimal ADDition
Decimal add without carry

[Flag Change]

[Description Example]
DADD.B #3,R0L

DADD.W R1,R0

DADD.W [A0],[A1]

[Function]

[Selectable src/dest]

DADD DADD

B , W

[Syntax]

DADD.size src,dest

U I O B S Z D C

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when the operation resulted in exceeding +9999 (.W) or +99 (.B); otherwise

cleared.

• This instruction adds dest and src together in decimal and stores the result in dest.

• When (.W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order

bits become 0. Also, when src is the address register, the 16 low-order bits of the address register

are the data to be operated on.

[Instruction Code/Number of Cycles]

Page= 208

Flag

Change

[Operation]

dest src + dest

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

75

3.2 Functions
Chapter 3 Functions

U I O B S Z D C

DECrement
Decrement

[Syntax]

DEC.size dest

[Flag Change]

[Function]

DEC DEC

[Description Example]
DEC.W A0

DEC.B R0L

DEC.W R0

B , W

[Selectable dest]

[Operation]

dest dest - 1 [dest] [dest] - 1

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

• This instruction decrements 1 from dest and stores the result in dest.

• When (.W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order

bits become 0.

[Instruction Code/Number of Cycles]

Page= 210

Flag

Change

dest* 1

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

*1 Indirect addressing [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

76

3.2 Functions
Chapter 3 Functions

Signed divide
DIVide

DIV.B A0 ;A0's 8 low-order bits is the divisor.
DIV.B #4
DIV.W R0
DIV.W [[A1]]

DIV DIV
[Syntax]

DIV.size src
B , W

[Operation]

• When the size specifier (.size) is (.W)

R0 (quotient), R2 (remainder) R2R0 src/[src]

• When the size specifier (.size) is (.B)

R0L (quotient), R0H (remainder) R0 src/[src]

[Flag Change]

[Function]
• This instruction divides R2R0 (R0)*1 by signed src and stores the quotient in R0 (R0L)*1 and the remain-

der in R2 (R0H)*1. The remainder has the same sign as the dividend. Shown in ()*1 are the registers
that are operated on when you selected (.B) for the size specifier (.size).

• When (.B) is specified for the size specifier (.size) and src is the address register (A0, A1), the 8 low-
order bits of the address register are used as data to be operated on. The O flag is set when the
operation resulted in the quotient exceeding 8 bits or the divisor is 0. R0L and R0H is undefined.

• When (.W) is specified for the size specifier (.size) and src is the address register, the 16 low-order bits
of the address register are the data to be operated on. The O flag is set when the operation resulted in
the quotient exceeding 16 bits or the divisor is 0. R0 and R2 is undefined.

[Description Example]

U I O B S Z D C

Conditions

O : The flag is set when the operation resulted in the quotient exceeding 16 bits (.W) or 8 bits (.B) or

the divisor is 0; otherwise cleared.

[Instruction Code/Number of Cycles]

Page= 210

[Selectable src]

Flag

Change

*2 Indirect addressing [src] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

src* 2

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16

77

3.2 Functions
Chapter 3 Functions

DIVide Unsigned
Unsigned divide

[Description Example]

DIVU DIVU
[Syntax]

DIVU.size src

DIVU.B A0 ;A0's 8 low-order bits is the divisor.
DIVU.B #4
DIVU.W R0
DIVU.W [[A0]]

B , W

[Operation]

• When the size specifier (.size) is (.W)

R0 (quotient), R2 (remainder) R2R0 src/[src]

• When the size specifier (.size) is (.B)

R0L (quotient), R0H (remainder) R0 src/[src]

[Flag Change]

• This instruction divides R2R0 (R0)*1 by unsigned src and stores the quotient in R0 (R0L)*1 and the
remainder in R2 (R0H)*1. Shown in ()*1 are the registers that are operated on when you selected (.B)
for the size specifier (.size).

• When (.B) is specified for the size specifier (.size) and src is the address register (A0, A1), the 8 low-
order bits of the address register are used as data to be operated on. The O flag is set when the
operation resulted in the quotient exceeding 8 bits or the divisor is 0. R0L and R0H is undefined.

• When (.W) is specified for the size specifier (.size) and src is the address register, the 16 low-order bits
of the address register are the data to be operated on. The O flag is set when the operation resulted in
the quotient exceeding 16 bits or the divisor is 0. R0 and R2 is undefined.

Conditions

O : The flag is set when the operation resulted in the quotient exceeding 16 bits (.W) or 8 bits (.B) or

the divisor is 0; otherwise cleared.

[Function]

[Selectable src]

[Instruction Code/Number of Cycles]

Page= 211

U I O B S Z D CFlag

Change

*2 Indirect addressing [src] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

src* 2

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16

78

3.2 Functions
Chapter 3 Functions

DIVide eXtension
Singed divide

[Syntax]

DIVX.size src

[Description Example]

DIVX DIVX

DIVX.B A0 ; A0's 8 low-order bits is the divisor.
DIVX.B #4
DIVX.W R0

B , W

[Operation]

• When the size specifier (.size) is (.W)

R0 (quotient), R2 (remainder) R2R0 src/[src]

• When the size specifier (.size) is (.B)

R0L (quotient), R0H (remainder) R0 src/[src]

[Flag Change]

U I O B S Z D CFlag

Conditions

O : The flag is set when the operation resulted in the quotient exceeding 16 bits (.W) or 8 bits (.B) or

the divisor is 0; otherwise cleared.

[Function]

• This instruction divides R2R0 (R0)*1 by signed src and stores the quotient in R0 (R0L)*1 and the remain-
der in R2 (R0H)*1. The remainder has the same sign as the divisor. Shown in ()*1 are the registers
that are operated on when you selected (.B) for the size specifier (.size).

• When (.B) is specified for the size specifier (.size) and src is the address register (A0, A1), the 8 low-
order bits of the address register are used as data to be operated on. The O flag is set when the
operation resulted in the quotient exceeding 8 bits or the divisor is 0. R0L and R0H is undefined.

• When (.W) is specified for the size specifier (.size) and src is the address register, the 16 low-order bits
of the address register are the data to be operated on. The O flag is set when the operation resulted in
the quotient exceeding 16 bits or the divisor is 0. R0 and R2 is undefined.

[Selectable src]

Change

[Instruction Code/Number of Cycles]

Page= 212

*2 Indirect addressing [src] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

src* 2

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16

79

3.2 Functions
Chapter 3 Functions

Decimal SuBtract with Borrow
Decimal subtract with borrow

[Syntax]

DSBB.size src,dest

[Flag Change]

[Description Example]

[Function]

[Selectable src/dest]

DSBB DSBB

• This instruction subtracts src and inverted C flag from dest in decimal and stores the result in dest.

• When (.W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order

bits become 0. Also, when src is the address register, the 16 low-order bits of the address register are

the data to be operated on.

DSBB.B #3,R0L

DSBB.W R1,R0

DSBB.W [A0],[A1]

B , W

[Operation]

dest dest - src - C

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when the operation resulted in any value equal to or greater than 0; otherwise

cleared.

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page= 213

Flag

Change

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

80

3.2 Functions
Chapter 3 Functions

Decimal SUBtract
Decimal subtract without borrow

 [Syntax]

DSUB.size src,dest

 [Flag Change]

 [Description Example]

 [Function]

 [Selectable src/dest]

DSUB DSUB

DSUB.B #3,R0L

DSUB.W R1,R0

DSUB.W [A0],[A1]

B , W

 [Operation]

dest dest - src

U I O B S Z D CFlag

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when the operation resulted in any value equal to or greater than 0; otherwise

cleared.

• This instruction subtracts src from dest in decimal and stores the result in dest.

• When (.W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order

bits become 0. Also, when src is the address register, the 16 low-order bits of the address register are

the data to be operated on.

Change

[Instruction Code/Number of Cycles]
Page= 215

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

81

Chapter 3 Functions 3.2 Functions

ENTER function
Build stack frame

[Description Example]
ENTER #4

ENTER ENTER

[Flag Change]

[Operation]

SP SP - 2

M(SP)*1 FBH

SP SP - 2

M(SP) FBL

FB SP

SP SP - src *1 The 8 high-order bits become indeterminate.

[Syntax]

ENTER src

src

#IMM8

[Selectable src]

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page=

Flag

Change

Return address (LL)

Return address (LH)

Return address (HL)

Return address (HH)

Argument of function

SP

FB

SP

After instruction execution

Auto variable area

Direction in
which address
increases

Number of bytes
indicated by src

FB (LL)

FB(LH)

FB(HL)

FB (HH)

Return address (LL)

Return address (LH)

Return address (HL)

Return address (HH)

Argument of function

Before instruction execution

[Function]

• This instruction generates a stack frame. src represents the size of the stack frame. Set an even

number for src. (You can set odd number, but it is more effective to set even number for operation.)

• The diagrams below show the stack area status before and after the ENTER instruction is executed at

the beginning of a called subroutine.

217

82

Chapter 3 Functions 3.2 Functions

Argument of function

[Instruction Code/Number of Cycles]

Page=217

EXIT and Deallocate stack frame

[Description Example]

[Syntax]

EXITD

EXITD EXITD

[Operation]
SP FB
FBL M(SP)
SP SP + 2
FBH M(SP)
SP SP + 2
PCL M(SP)
SP SP + 2
PCH M(SP)*1

SP SP + 2 *1 The 8 high-order bits become indeterminate.

 [Function]

EXITD

Deallocate stack frame

• This instruction deallocates the stack frame and exits from the subroutine.

• Use this instruction in combination with the ENTER instruction.

• The diagrams below show the stack area status before and after the EXITD instruction is executed

at the end of a subroutine in which an ENTER instruction was executed.

[Flag Change]

U I O B S Z D CFlag

Change

SP

Direction in which ad-
dress increases

Before instruction execution After instruction execution

SP

FB

Auto variable area

FB (LL)

FB(LH)

FB(HL)

FB (HH)

Return address (LL)

Return address (LH)

Return address (HL)

Return address (HH)

Argument of function

83

Chapter 3 Functions 3.2 Functions

EXTend Sign
Extend sign

[Description Example]

[Function]

[Flag Change]

EXTS EXTS
[Syntax]

EXTS.size dest

• This instruction sign extends dest and stores the result in dest.

• When you selected (.B) for the size specifier (.size), src or dest is sign extended to 16 bits. When dest
is the address register(A0, A1), the 8 high-order bits become 0.

• When you selected (.W) for the size specifier (.size), dest is sign extended to 32 bits. When R0 is
selected for dest, R2 is used for the upper byte; when R1 is selected, R3 is used for the upper byte.
When dest is the address register, stores the 24 low-order bits of result in dest.

EXTS.B R0L
EXTS.W R0
EXTS.W [A0]

B , W

[Operation]

dest EXTS(dest)

dest EXTS(src)

U I O B S Z D C

Conditions
S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in 0; otherwise cleared.

[Selectable src/dest]

[Instruction Code/Number of Cycles]

Page= 218

Flag

Change

EXTS.size src,dest
B

dest *1

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

src *2 dest *2

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

*1 You can only specify(.B) or (.W) for the size of specifier (.size).

*2 You can only specify(.B) for the size of specifier (.size).

84

Chapter 3 Functions 3.2 Functions

EXTend Zero
Extend zero

[Description Example]

[Function]

[Flag Change]

EXTZ EXTZ
[Syntax]

EXTZ src,dest

• This instruction zero-extends src to 16 bits and stores the result in dest. When dest is the address
register(A0, A1), the 8 high-order bits become 0.

EXTZ R0L,R2
EXTZ [A1],[A0]

[Operation]

dest EXTZ(src)

U I O B S Z D C

Conditions

S : The flag is always cleared to 0.
Z : The flag is set when the operation resulted in 0; otherwise cleared.

[Selectable src/dest]

[Instruction Code/Number of Cycles]

Page=

Flag

Change

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

220

85

Chapter 3 Functions 3.2 Functions

Flag register CLeaR
Clear flag register bit

[Flag Change]

[Description Example]

[Function]

FCLR
[Syntax]

FCLR dest

FCLR I

FCLR S

[Operation]

dest 0

*1 The selected flag is cleared to 0.
U I O B S Z D C
*1 *1 *1 *1 *1 *1 *1 *1

• This instruction stores 0 in dest.

[Selectable dest]

FCLR
[Instruction Code/Number of Cycles]

Page= 221

Flag

Change

dest

C D Z S B O I U

86

Chapter 3 Functions 3.2 Functions

Fast REturn from InTerrupt
Fast return from Interrupt

[Flag Change]

[Description Example]

[Function]

FREIT
[Syntax]

FREIT

FREIT

[Operation]

FLG SVF

PC SVP

*1 Becomes the content of SVF.
U I O B S Z D C
*1 *1 *1 *1 *1 *1 *1 *1

• Restores the contents of PC and FLG from the high-speed interrupt registers that had been saved

when accepting a high-speed interrupt request upon returning from the interrupt handler routine.

FREIT
[Instruction Code/Number of Cycles]

Page=

Flag

Change

221

87

Chapter 3 Functions 3.2 Functions

Flag register SET
Set flag register bit

[Description Example]

[Function]

[Selectable dest]
dest

C D Z S B O I U

[Syntax]

FSET dest

[Flag Change]

FSET I

FSET S

FSET FSET

[Operation]

dest 1

U I O B S Z D C
*1 *1 *1 *1 *1 *1 *1 *1 *1 The selected flag is set (= 1).

• This instruction stores 1 in dest.

[Instruction Code/Number of Cycles]

Page=222

Flag

Change

88

Chapter 3 Functions 3.2 Functions

INCrement
Increment

[Description Example]
INC.W A0

INC.B R0L

INC.B [[A1]]

[Function]

[Selectable dest]

INC INC

[Flag Change]

B , W

[Syntax]

INC.size dest

[Operation]

dest dest + 1 [dest] [dest] + 1

U I O B S Z D C

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

• This instruction adds 1 to dest and stores the result in dest.

• When (.W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order

bits become 0.

[Instruction Code/Number of Cycles]

Page= 223

Flag

Change

dest* 1

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

*1 Indirect addressing [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

89

Chapter 3 Functions 3.2 Functions

Index
INDEX Type

[Flag Change]

INDEXType INDEXType
[Syntax]

INDEXType.size src

[Description Example]
INDEXB.W R0

INDEXLS.B [A0]

[Operation]

[Selectable src]

U I O B S Z D CFlag

Change

[Instruction Code/Number of Cycles]

Page=

[Function]

• This instruction modifies addressing of the next instruction.

• No interrupts are enabled until after the modifying instruction is executed.

• Use this instruction to access arrays.

• For details, refer to Section 3.3, "Index Instructions."

• There are following types for Type:

Type Function

 B

 BD Modifies the addressing of the next instruction in units of bytes.

 BS

 W

 WD Modifies the addressing of the next instruction in units of words.

WS

 L

 LD Modifies the addressing of the next instruction in units of long words.

LS

src

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

B , W
223

90

Chapter 3 Functions 3.2 Functions

Interrupt by INT instruction
INTerrupt

[Flag Change]

INT INT
[Syntax]

INT src

[Description Example]
INT #0

[Operation]
SP SP - 2
M(SP) FLG
SP SP - 2
M(SP)*1 (PC + 2)H
SP SP - 2
M(SP) (PC + 2)L
PC M(IntBase + src 4) *1 The 8 high-order bits become indeterminate.

src

#IMM6*1*2

*1 #IMM denotes a software interrupt number.
*2 The range of values that can be taken on is 0 < #IMM6 < 63.

[Selectable src]

*3 The flags are saved to the stack area before the INT in-
struction is executed. After the interrupt, the flags
change state as shown on the left.

U I O B S Z D CFlag

Conditions

U : The flag is cleared when the software interrupt number is 31 or smaller. The flag does not change

when the software interrupt number is 32 or larger.

I : The flag is cleared.

D : The flag is cleared.

Change

[Instruction Code/Number of Cycles]

Page= 228

[Function]

• This instruction generates a software interrupt specified by src. src represents a software interrupt
number.

• When src is 31 or smaller, the U flag is cleared to 0 and the interrupt stack pointer (ISP) is used.
• When src is 32 or larger, the stack pointer indicated by the U flag is used.
• The interrupts generated by the INT instruction are nonmaskable interrupts.
• The interrupt number of src must be in the range of 0 to 63, including both ends.

91

Chapter 3 Functions 3.2 Functions

INTerrupt on Overflow
Interrupt on overflow

[Syntax]

INTO

[Flag Change]

INTO INTO

[Description Example]

INTO

[Operation]
SP SP - 2
M(SP) FLG
SP SP - 2
M(SP)*1 (PC + 1)H
SP SP - 2
M(SP) (PC + 1)L
PC M(FFFFE016) *1 The 8 high-order bits become indeterminate.

*1 The flags are saved to the stack area before the INTO
instruction is executed. After the interrupt, the flags
change state as shown on the left.

U I O B S Z D C

Conditions

U : The flag is cleared.

I : The flag is cleared.

D : The flag is cleared.

[Instruction Code/Number of Cycles]

Page= 228

Flag

Change

[Function]

• When the O flag is 1, this instruction generates an overflow interrupt. When the flag is 0, the next

instruction is executed.

• The overflow interrupt is a nonmaskable interrupt.

92

Chapter 3 Functions 3.2 Functions

Cnd Condition Expression Cnd Condition Expression

GEU/C C=1 Equal to or greater than LTU/NC C=0 Smaller than

C flag is 1. C flag is 0.

EQ/Z Z=1 Equal to = NE/NZ Z=0 Not equal

Z flag is 1. Z flag is 0.

GTU

C Z=1 Greater than LEU

C Z=0 Equal to or smaller than

PZ S=0 Positive or zero 0 N S=1 Negative 0

GE S O=0 Equal to or greater than LE (S O) Z=1 Equal to or smaller than

(signed value) (signed value)

GT (S O) Z=0 Greater than (signed value) LT S O=1 Smaller than (signed value)

O O=1 O flag is 1. NO O=0 O flag is 0.

≠

Jump on Condition
Jump on condition

[Syntax]

JCnd label

[Selectable label]

[Description Example]
JEQ label

JNE label

[Function]

[Operation]

if true then jump label

JCnd

[Flag Change]

label Cnd

PC*1-127 label PC*1+128 GEU/C, GTU, EQ/Z, N, LTU/NC, LEU, NE/NZ, PZ,

LE, O, GE, GT, NO, LT

U I O B S Z D C

*1 PC indicates the start address of the instruction.

JCnd
[Instruction Code/Number of Cycles]

Page= 229

• This instruction causes program flow to branch off after checking the execution result of the preceding
instruction against the following condition. When the condition indicated by Cnd is true, control jumps
to label . When false, the next instruction is executed.

• The following conditions can be used for Cnd:

Flag

Change

A

A A

A

93

Chapter 3 Functions 3.2 Functions

JuMP
Unconditional jump

[Syntax]

JMP(.length) label

[Description Example]

JMP JMP

[Function]

[Selectable label]

JMP label

S , B , W , A

[Operation]

PC label

.length label

.S PC*1+2 label PC*1+9

.B PC*1-127 label PC*1+128

.W PC*1-32767 label PC*1+32768

.A abs24

*1 The PC indicates the start address of the instruction.

• This instruction causes control to jump to label .

[Instruction Code/Number of Cycles]

Page=229

[Flag Change]

U I O B S Z D CFlag

Change

94

Chapter 3 Functions 3.2 Functions

[Operation]

• When jump distance specifier (.length) is (.W) • When jump distance specifier (.length) is (.A)

PC PC src PC src

JuMP Indirect
Jump indirect

[Description Example]

JMPI JMPI
[Syntax]

JMPI.length src

[Selectable src]

JMPI.A A1

JMPI.W R0

W , A

[Flag Change]

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page=

When you selected (.A) for the jump distance specifier (.length)

When you selected (.W) for the jump distance specifier (.length)

Flag

Change

[Function]

• This instruction causes control to jump to the address indicated by src. When src is memory, specify
the address at which the low-order address is stored.

• When you selected (.W) for the jump distance specifier (.length), control jumps to the start address of the instruc-
tion plus the address indicated by src (added including the sign bits). When src is memory, the required
memory capacity is 2 bytes.

• When src is memory and (.A) is selected for the jump distance specifier (.length), the required memory
capacity is 3 bytes.

src

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

src

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

231

95

Chapter 3 Functions
3.2 Functions

JuMP Special page
Jump to special page

[Syntax]

JMPS src

JMPS JMPS

[Operation]

PCH FF16

PCML M(FFFE16 - src 2)

*1 #IMM denotes a special page number.

*2 The range of values that can be taken on is 18 < #IMM8 < 255.

[Selectable src]

[Description Example]

JMPS #20

U I O B S Z D C

[Flag Change]

[Instruction Code/Number of Cycles]

Page=232

Flag

Change

[Function]

• This instruction causes control to jump to the address set in each table of the special page vector table

plus FF000016. The area across which control can jump is from address FF000016 to address

FFFFFF16.

• The special page vector table is allocated to an area from address FFFE0016 to address FFFFDB16.

• src represents a special page number. The special page number is 255 for address FFFE0016, and 18

for address FFFFDA16.

src

#IMM8*1*2

96

Chapter 3 Functions 3.2 Functions

Jump SubRoutine
Subroutine call

[Syntax]

JSR(.length) label

[Flag Change]

[Description Example]

JSR JSR

JSR.W func

JSR.A func

[Function]
• This instruction causes control to jump to a subroutine indicated by label .

[Selectable label]

.length label

.W PC*1 - 32767 label PC*1+32768

.A abs24

W , A

U I O B S Z D C

*1 The PC indicates the start address of the instruction.

[Instruction Code/Number of Cycles]

Page= 233

Flag

Change

[Operation]

SP SP - 2

M(SP)*1 (PC + n*2)H

SP SP - 2

M(SP) (PC + n*2)ML

PC label
*1 The 8 high-oreder bits become 0.
*2 n denotes the number of instruction bytes.

97

Chapter 3 Functions
3.2 Functions

U I O B S Z D C

Indirect subroutine call

W , A

Jump SubRoutine Indirect JSRI

234

[Instruction Code/Number of Cycles]

Page=

[Syntax]

JSRI.length src

JSRI

JSRI.A A1

JSRI.W R0

[Description Example]

[Selectable src]

[Flag Change]

Flag

Change

When you selected (.W) for the jump distance specifier (.length)

When you selected (.A) for the jump distance specifier (.length)

[Function]

*1 The 8 high-oreder bits become 0.
*2 n denotes the number of instruction bytes.

 This instruction causes control to jump to a subroutine at the address indicated by src. When src is
memory, specify the address at which the low-order address is stored.

• When you selected (.W) for the jump distance specifier (.length), control jumps to a subroutine at the
start address of the instruction plus the address indicated by src (added including the sign bits). When
src is memory, the required memory capacity is 2 bytes.

• When src is memory and (.A) is selected for the jump distance specifier (.length), the required memory
capacity is 3 bytes.

[Operation]
 When jump distance specifier (.length) is (.W) When jump distance specifier (.length) is (.A)

SP SP - 2 SP SP - 2
M(SP)*1 (PC + n*2)H M(SP)*1 (PC + n*2)H
SP SP - 2 SP SP - 2
M(SP) (PC + n*2)ML M(SP) (PC + n*2)H
PC PC src PC src

src

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

src

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

98

Chapter 3 Functions 3.2 Functions

Jump SubRoutine Special page
Special page subroutine callJSRS JSRS

[Syntax]

JSRS src

[Function]

 This instruction causes control to jump to a subroutine at the address set in each table of the special

page vector table plus FF000016. The area across which program flow can jump to a subroutine is from

address FF000016 to address FFFFFF16.

• The special page vector table is allocated to an area from address FFFE0016 to address FFFFDB16.

• src represents a special page number. The special page number is 255 for address FFFE0016, and 18

for address FFFFDA16.

[Operation]

SP SP - 2

M(SP)*1 (PC + 2)H

SP SP - 2

M(SP) (PC + 2)ML

PCH FF16

PCML M (FFFE16 - src 2)
*1 The 8 high-oreder bits become 0.

[Flag Change]

[Selectable src]

src

#IMM8*1*2

*1 #IMM denotes a special page number.

*2 The range of values that can be taken on is 18 < #IMM8 < 255.

[Description Example]
JSRS #18

[Instruction Code/Number of Cycles]

Page= 235

U I O B S Z D CFlag

Change

99

Chapter 3 Functions
3.2 Functions

LoaD Control register
Transfer to control register

[Selectable src/dest]

[Function]

LDC LDC
[Syntax]

LDC src,dest

• This instruction transfers src to the control register indicated by dest.

• When memory is specified for src, the following bytes of memory are required.

2 bytes : DMD0*1, DMD1*1, FLG, DCT0, DCT1, DRC0, DRC1, SVF

4 bytes*2 : FB, SB, SP*3, ISP*3, INTB*3, VCT, SVP, DMA0, DMA1, DRA0, DRA1, DSA0, DSA1

[Operation]

dest src

[Instruction Code/Number of Cycles]

Page= 235

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM16/#IMM24

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0//A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM16/#IMM24

DMD0 DMD1 DCT0 DCT1

DRC0 DRC1 FLG SVF

*1 The low-order 8 bit of src is transfered.

*2 The low-order 24 bit of src is transfered.

*3 Set even number for SP, ISP and INTB even though odd number can be set. It is more effective to set
even number for operation.

FB SB SP*4 ISP

INTB VCT SVP

DMA0 DMA1 DRA0 DRA1

DSA0 DSA1

[Flag Change]

[Description Example]

LDC A0,FB

U I O B S Z D C
*5 *5 *5 *5 *5 *5 *5 *5 *5 The flag changes only when dest is FLG.

*4 Operation is performed on the stack pointer indicated by the U flag.

Flag

Change

100

Chapter 3 Functions 3.2 Functions

Register information for the task whose task number = 0.

 (See the above diagram.)

SP correction value for the task whose task number = 0.

Register information for the task whose task number = 1.

 (See the above diagram.)

SP correction value for the task whose task number = 1.

 Register information for the task whose task number = n*1.

(See the above diagram.)

SP correction value for the task whose task number = n*1.

LoaD ConTeXt
Restore contextLDCTX LDCTX

[Syntax]

LDCTX abs16,abs24

LDCTX Ram,Rom_TBL
[Description Example]

[Flag Change]

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page=238

Flag

Change

[Function]
• This instruction restores task context from the stack area.
• Set the RAM address that contains the task number in abs16 and the start address of table data in abs24.
• The required register information is specified from table data by the task number and the data in the stack area is

transferred to each register according to the specified register information. Then the SP correction value is
added to the stack pointer (SP). For this SP correction value, set the number of bytes you want to the trans-
ferred. Calculated as 2 bytes when transferring the R0, R1, R2, or R3 registers. A0, A1, SB, and FB
are calculated as 4 bytes.

• Information on transferred registers is configured as shown below. Logic 1 indicates a register to be
transferred and logic 0 indicates a register that is not transferred.

FB SB A1 A0 R3 R2 R1 R0

LSBMSB

Transferred sequentially beginning
with R0

• The table data is comprised as shown below. The address indicated by abs24 is the base address of
the table. The data stored at an address apart from the base address as much as twice the content of
abs16 indicates register information, and the next address contains the stack pointer correction value.

abs24 Base address
of table

Direction in
which address
increases

abs16 2

*1 n=0 to 255

101

Chapter 3 Functions
3.2 Functions

LoaD Interrupt Permission Level
Set interrupt enable level

[Syntax]

LDIPL src

[Flag Change]

[Description Example]
LDIPL #2

LDIPL LDIPL

[Function]

[Selectable src]

src

#IMM3*1

• This instruction transfers src to IPL.

[Operation]

IPL src

U I O B S Z D C

*1 The range of values that can be taken on is 0 < #IMM3 < 7.

[Instruction Code/Number of Cycles]

Page= 239

Flag

Change

102

3.2 Functions
Chapter 3 Functions

MAX select
Select maximum value

[Description Example]

[Function]

MAX MAX
[Syntax]

MAX.size src,dest

MAX.B #0ABH,R0L

MAX.W #-1,R2

B , W

[Operation]

if (src > dest)

then dest src

• Singed compares src and dest and transfers src to dest when src is greater than dest. No change

occurs when src is smaller than or equal to dest.

• When (.W) is specified for the size specifier (.size), dest is the address register and writing to dest, the
8 high-order bits of the operation result are become 0. Also, when src is the address register, trans-
fers the 16 low-order bits of the address register to dest.

[Instruction Code/Number of Cycles]

Page=

[Flag Change]

U I O B S Z D CFlag

Change

[Selectable src/dest]

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

239

103

3.2 Functions
Chapter 3 Functions

MIN select
Select minimum value

[Function]

MIN MIN
[Syntax]

MIN.size src,dest
B , W

[Operation]

if (src < dest)

then dest src

• Signed compares src and dest and transfers src to dest when src is smaller than dest. No change

occurs when src is greater than or equal to dest.

• When (.W) is specified for the size specifier (.size), dest is the address register and writing to dest, the
8 high-order bits of the operation result are become 0. Also, when src is the address register, trans-
fers the 16 low-order bits of the address register to dest.

[Instruction Code/Number of Cycles]

Page=

[Description Example]

MIN.B #0ABH,R0L

MIN.W #-1,R2

[Flag Change]

U I O B S Z D CFlag

Change

[Selectable src/dest]

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

241

104

3.2 Functions
Chapter 3 Functions

MOVe
Transfer

[Description Example]

[Selectable src/dest]* 1

[Function]

MOV MOV
[Syntax]

MOV.size (:format) src,dest

(See the next page for src/dest classified by format.)

MOV.B:S #0ABH,R0L
MOV.W #-1,R2
MOV.W [A1],[[A2]]

G , Q , Z , S (Can be specified)
B , W , L

[Operation]

dest src [dest] src

dest [src] [dest] [src]

• This instruction transfers src to dest.

• When (.B) is specified for the size specifier (.size) and dest is the address register (A0, A1), src is zero-
extended to perform operation in 16 bits. In this case, the 8 high-oreder bits become 0. Also, when src
is the address register, the 8 low-order bits of the address register are used as data to be operated on.

• When (.W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order
bits become 0. Also, when src is the address register, the 16 low-order bits of the address register are
the data to be operated on.

• When (.L) is specified for the size specifier (.size) and dest is the address register, the 8 high-order bits
of src is ignored and the 24 low-order bits of src is stored to dest. Also, when src is the address
register, src is zero-extended to perform operation in 32 bits. The flags also change states depending
on the result of 32-bit operation.

[Instruction Code/Number of Cycles]

Page=

[Flag Change]

U I O B S Z D C

Conditions
S : The flag is set when the transfer resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the transfer resulted in 0; otherwise cleared.

Flag

Change

*1 Indirect addressing [src] and [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or A1 for src and dest
simultaneously.

*3 When src or dest is dsp:8[SP], you cannot choose indirect addressing [src] or [dest] neither.

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM dsp:8[SP]*3

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

dsp:8[SP]*3

243

105

3.2 Functions
Chapter 3 Functions

[src/dest Classified by Format]

G format * 1

Z format * 15

S format * 9

*9 Indirect addressing [src] and [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, dsp:8[SP], and #IMM.

*10 You cannot choose the same registers for src and dest simultaneously.
*11 You can only specify (.B) or (.W) for the size specifier (.size).
*12 When src is not #IMM8/IMM16, you can only choose R1L/R1 for dest .
*13 You can specify (.W) for the size specifier (.size). In this case, you cannot use indirect addressing mode for dest.
*14 You can specify (.L) for the size specifier (.size). In this case, you cannot use indirect addressing mode for dest.

Q format * 6*7

*6 Indirect addressing [src] and [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, dsp:8[SP], and #IMM.

*7 You can only specify (.B) or (.W) for the size specifier (.size).
*8 The range of values that can be taken on is - 8 < #IMM4 < +7.

*1 Indirect addressing [src] and [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or A1 for src and dest
simultaneously.

*3 Operation is performed on the stack pointer indicated by the U flag. You cannot choose dsp:8 [SP] for
src and dest simultaneously.

*4 When you specify (.B) or (.W) for the size specifier (.size) and src is not #IMM, you can choose dsp:8 [SP] for dest.
*5 When src or dest is dsp:8[SP], you cannot choose indirect addressing [src] or [dest] neither.

src dest

R0L R0H dsp:8[SB] dsp:8[FB] R0L/R0 dsp:8[SB] dsp:8[FB] abs16

abs16 #0 A0 A1

src dest

R0L/R0*10*11 dsp:8[SB]*11dsp:8[FB]*11 abs16*11 R0L/R0*10*11 R1L/R1*11*12 dsp:8[SB]*11dsp:8[FB]*11

#IMM8/#IMM16*11 abs16*11 A0 A1

R0L/R0 dsp:8[SB]*14dsp:8[FB]*14 abs16*14 R0L R0H dsp:8[SB] dsp:8[FB]

#IMM16*13/#IMM24*14 abs16 A0/A0*13/A0*14 A1/A1*13/A1*14

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16/#IMM32 dsp:8[SP]*3*5

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

dsp:8[SP]*3*4*5

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM4*8

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

*15 You can specify (.B) or (.W) for the size specifier (.size).

106

3.2 Functions
Chapter 3 Functions

MOVe effective Address
Transfer effective address

[Flag Change]

[Description Example]

[Function]

[Selectable src/dest]

MOVA MOVA
[Syntax]

MOVA src,dest

[Operation]

dest EVA(src)

U I O B S Z D C

• This instruction transfers the affective address of src to dest.

MOVA Ram:16[SB],A0

[Instruction Code/Number of Cycles]

Page=

Flag

Change

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

252

107

3.2 Functions
Chapter 3 Functions

MOVe nibble
Transfer 4-bit dataMOVDir MOVDir

[Operation]

[Syntax]

MOVDir src,dest

[Description Example]

Dir Operation

HH H4:dest H4:src

HL L4:dest H4:src

LH H4:dest L4:src

LL L4:dest L4:src

[Function]

Dir Function

HH Transfers src(8 bits)'s 4 high-order bits to dest(8 bits)'s 4 high-order bits.

HL Transfers src(8 bits)'s 4 high-order bits to dest(8 bits)'s 4 low-order bits.

LH Transfers src(8 bits)'s 4 low-order bits to dest(8 bits)'s 4 high-order bits.

LL Transfers src(8 bits)'s 4 low-order bits to dest(8 bits)'s 4 low-order bits.

[Selectable src/dest]

[Flag Change]

U I O B S Z D C

MOVHH R0L,[A0]
MOVHL R0L,[A0]

[Instruction Code/Number of Cycles]

Page=

• Be sure to choose R0L for either src or dest.

Flag

Change

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

253

108

3.2 Functions
Chapter 3 Functions

MOVe eXtend sign
Transfer extend sign

[Description Example]

[Function]

[Selectable src/dest]

MOVX MOVX
[Syntax]

MOVX src,dest

[Operation]

dest/[dest] EXTS(src)

• Sign-extends the 8-bit immdiate to 32 bits before transferring it to dest.

• When dest is the address register (A0, A1), the 24 low-order bits are transferred. The flags also

change state for the 32 bits transfers performed.

MOVX #10,A0
MOVX #5,[[A1]]

[Instruction Code/Number of Cycles]

Page=

src dest *1

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8*2

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB

dsp:24[A0] dsp:24[A1] abs24 abs16

[Flag Change]

U I O B S Z D C

Conditions
S : The flag is set when the transfer resulted in MSB of dest = 1; otherwise cleared.
Z : The flag is set when the transfer resulted in 0; otherwise cleared.

Flag

Change

*1 Indirect addressing [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 The range of values that can be taken on is -128 < #IMM8 < +127

255

109

3.2 Functions
Chapter 3 Functions

MULtiple
Signed multiply

[Syntax]

MUL.size src,dest

[Description Example]

[Function]

MUL MUL

B , W

[Operation]

dest dest src [dest] [dest] src

dest dest [src] [dest] [dest] [src]

• This instruction multiplies src and dest together including the sign bits and stores the result in dest.
• When you selected (.B) for the size specifier (.size), src and dest both are operated on in 8 bits and the

result is stored in 16 bits. When you specified an address register(A0, A1) for either src or dest, opera-
tion is performed on the address register's 8 low-order bits. When dest is the address register, the 8
high-order bits become 0.

• When you selected (.W) for the size specifier (.size), src and dest both are operated on in 16 bits and
the result is stored in 32 bits. When you specified R0 or R1 for dest, the result is stored in R2R0 or
R3R1 accordingly. When the address register is selected for dest, the 24 low-order bits of the 32-bit
operation result is stored. When the address register is selected for src, operation is performed using
the 16 low-order bits of the register.

MUL.B A0,R0L
MUL.W #3,R0
MUL.B R0L,R1L
MUL.W A0,Ram
MUL.W [A0],[[A1]]

[Selectable src/dest]* 1

[Flag Change]

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page=

Flag

Change

; R0L and A0's 8 low-order bits are multiplied.

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

*1 Indirect addressing [src] and [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or A1 for src and dest
simultaneously.

255

110

3.2 Functions
Chapter 3 Functions

MULtiple EXtend
Multipl extend sign

[Description Example]

[Syntax]

MULEX src

MULEX MULEX

[Operation]

R1R2R0 R2R0 src/[src]

[Function]

MULEX A0
MULEX R3
MULEX Ram
MULEX [[A0]]

U I O B S Z D C

• Multiplies src (16-bit data) and R2R0 including the sign and stores the result in R1R2R0.

[Instruction Code/Number of Cycles]

Page=

[Selectable src]

[Flag Change]
Flag

Change

*1 Indirect addressing [src] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

src *1

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

257

111

3.2 Functions
Chapter 3 Functions

MULtiple Unsigned
Unsigned multiply

[Description Example]

[Syntax]

MULU.size src,dest

MULU MULU

B , W

[Operation]

dest dest src [dest] [dest] src

dest dest [src] [dest] [dest] [src]

[Function]

MULU.B A0,R0L ; R0L and A0's 8 low-order bits are multiplied.
MULU.W #3,R0
MULU.B R0L,R1L
MULU.W A0,Ram
MULU.W [R1],[[A0]]

U I O B S Z D C

• This instruction multiplies src and dest together not including the sign bits and stores the result in dest.
• When you selected (.B) for the size specifier (.size), src and dest both are operated on in 8 bits and the

result is stored in 16 bits. When you specified an address register(A0, A1) for either src or dest,
operation is performed on the address register's 8 low-order bits. When dest is the address register, the
8 high-order bits become 0.

• When you selected (.W) for the size specifier (.size), src and dest both are operated on in 16 bits and
the result is stored in 32 bits. When you specified R0 or R1 for dest, the result is stored in R2R0 or
R3R1 accordingly. When the address register is selected for dest, the 24 low-order bits of the 32-bit
operation result is stored. When the address register is selected for src, operation is performed using
the 16 low-order bits of the register.

[Instruction Code/Number of Cycles]

Page=

[Selectable src/dest] * 1

[Flag Change]
Flag

Change

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

*1 Indirect addressing [src] and [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/
R1/R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or A1 for src and dest
simultaneously.

257

112

3.2 Functions
Chapter 3 Functions

NEGate
Two’s complement

[Syntax]

NEG.size dest

[Flag Change]

[Description Example]

[Function]

NEG NEG

B , W

[Operation]

dest 0 - dest [dest] 0 - [dest]

NEG.B R0L
NEG.W A1
NEG.W [[A0]]

U I O B S Z D C

Conditions

O : The flag is set when dest before the operation is - 128 (.B) or - 32768 (.W); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when the operation resulted in 0; otherwise cleared.

• This instruction takes the 2's complement of dest and stores the result in dest.

• When (.W) is specified for the size specifier (.size) and dest is the address register(A0, A1), the 8

high-order bits become 0.

[Instruction Code/Number of Cycles]

Page=

[Selectable dest]

Flag

Change

*1 Indirect addressing [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

dest* 1

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

259

113

3.2 Functions
Chapter 3 Functions

 No OPeration
No operation

[Flag Change]

[Description Example]
NOP

[Function]

NOP NOP
[Syntax]

NOP

• This instruction adds 1 to PC.

[Operation]

PC PC + 1

U I O B S Z D C

[Instruction Code/Number of Cycles]
Page=

Flag

Change

259

114

3.2 Functions
Chapter 3 Functions

NOT
Invert all bitsNOT NOT

[Operation]

dest dest [dest] [dest]

[Function]

• This instruction inverts dest and stores the result in dest.

• When (.W) is specified for the size specifier (.size) and dest is the address register(A0, A1), the 8 high-

order bits become 0.

[Selectable dest]

[Flag Change]

[Description Example]

NOT.B R0L

NOT.W A1

B , W

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

[Instruction Code/Number of Cycles]

Page=
[Syntax]

NOT.size dest

U I O B S Z D CFlag

Change

*1 Indirect addressing [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

dest* 1

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

260

115

Chapter 3 Functions
3.2 Functions

[Instruction Code/Number of Cycles]

Page=

OR
Logically OR

[Description Example]
OR.B Ram:8[SB],R0L

OR.B:G A0,R0L ; A0's 8 low-order bits and R0L are ORed.

OR.B:G R0L,A0 ; R0L is zero-expanded and ORed with A0.

OR.B:S #3,R0L

OR.W:G [R1],[[A0]]

[Selectable src/dest]* 1

• This instruction logically ORs dest and src together and stores the result in dest.
• When (.B) is specified for the size specifier (.size) and dest is the address register (A0, A1), src is zero-

extended to perform operation in 16 bits. In this case, the 8 high-order bits become 0. Also, when src
is the address register, the 8 low-order bits of the address register are used as data to be operated on.

• When (.W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order
bits become 0. Also, when src is the address register, the 16 low-order bits of the address register are
the data to be operated on.

[Flag Change]

OR OR
[Syntax]

OR.size (:format) src,dest

[Function]

(See the next page for src/dest classified by format.)

G , S (Can be specified)

B , W
[Operation]

dest src dest [dest] src [dest]

dest [src] dest [dest] [src] [dest]

U I O B S Z D C

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

260

Flag

Change

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

*1 Indirect addressing [src] and [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 If you specify (.B) for the size specifier (.size), you cannot choose A0 and/or A1 for src and dest simul-
taneously.

116

Chapter 3 Functions
3.2 Functions

[src/dest Classified by Format]

G format* 1

S format *2

src dest

R0L/R0 dsp:8[SB] dsp:8[FB] abs16 R0L/R0 dsp:8[SB] dsp:8[FB] abs16

#IMM8/#IMM16

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

*2 Indirect addressing [src] and [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*1 Indirect addressing [src] and [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 If you specify (.B) for the size specifier (.size), you cannot choose A0 and/or A1 for src and dest simul-
taneously.

117

Chapter 3 Functions
3.2 Functions

POP
Restore register/memory

[Flag Change]

POP.B R0L

POP.W A0

[Selectable dest]

POP POP

[Function]
• This instruction restores dest from the stack area.
• When (.W) is specified for the size specifier (.size) and dest is the address register(A0, A1), the 8 high-

order bits become 0.

[Description Example]

[Syntax]

POP.size dest

B , W
[Operation]

 dest/[dest] M(SP)

 SP SP + 2

*1 Even when (.B) is specified for the size specifier (.size), SP is increased by 2.

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page= 263

Flag

Change

*2 Indirect addressing [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

dest* 2

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

118

Chapter 3 Functions
3.2 Functions

POP Control register
Restore control register

[Flag Change]

POPC POPC
[Syntax]

POPC dest

 [Function]

• This instruction restores from the stack area to the control register indicated by dest.
• Restored stack area is indicated by the U flag.

POPC SB

[Operation]
• When dest is DCT0, DCT1, DMD0, DMD1,

DRC0, DRC1, SVF or FLG
dest*1 M(SP)
SP SP + 2

*1 The 8 low-order bytes are saved when dest is

DMD0 or DMD1.

U I O B S Z D C
*2 *2 *2 *2 *2 *2 *2 *2 *2 The flag changes only when dest is FLG.

[Selectable dest]

[Instruction Code/Number of Cycles]

Page=263

Flag

Change

dest

FB SB SP*1 ISP

INTB

DCT0 DCT1 DMD0 DMD1

DRC0 DRC1 SVF FLG
*1 Operation is performed on the stack pointer indi-

cated by the U flag.

• When dest is FB, SB, SP, ISP or INTB
dest*2 M(SP)
SP*3 SP + 4

*2 The 3 low-order byte are saved.

*3 4 is not added to SP when dest is SP, or dest

is ISP while U flag is "0".

119

Chapter 3 Functions
3.2 Functions

POP Multiple
Restore multiple registers

[Description Example]

[Selectable dest]

[Function]

FB SB A1 A0 R3 R2 R1 R0

POPM POPM
[Syntax]

POPM dest

• This instruction restores the registers selected by dest collectively from the stack area.
• Registers are restored from the stack area in the following order:

dest *3

R0 R1 R2 R3 A0 A1 SB FB

*3 You can choose multiple dest.

[Flag Change]

POPM R0,R1,A0,SB,FB

U I O B S Z D C

Restored sequentially beginning
with R0

[Instruction Code/Number of Cycles]

Page= 264

Flag

Change

[Operation]
dest*3 M(SP)
SP SP + n1*1 2
SP SP + n2*2 4
*1 n1 denotes the number of R0, R1, R2 and R3 registers to be restored.
*2 n2 denotes the number of A0, A1, SB and FB registers to be restored.
*3 The 3 low-order bytes are saved when dest is A0, A1, SB and FB.

120

Chapter 3 Functions
3.2 Functions

PUSH
Save register/memory/immediate data

[Flag Change]

[Description Example]

[Selectable src]

PUSH PUSH
[Syntax]

PUSH.size src

[Function]
• This instruction saves src to the stack area.
• When (.W) is specified for the size specifier (.size) and src is the address register, the 16 low-order bits

of the address register are the data to be operated on.

PUSH.B #5

PUSH.W #100H

PUSH.L R2R0

B , W , L

[Operation]

• When the size specifier (.size) is (.B) • When the size specifier (.size) is (.W)
 SP SP - 2 SP SP - 2
 M(SP)*1 src/[src] M(SP) src/[src]
 *1 The 8 high-order bits become indeterminate.

 Even when (.B) is specified for the size specifier (.size) , SP is decreased by 2.

• When the size specifier (.size) is (.L)
SP SP - 4
M(SP)*2 src/[src]
*2 When src is address register(A0, A1), the 8 high-order bits become 0.

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page= 265

Change

Flag

*3 Indirect addressing [src] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

src* 3

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16/#IMM32

121

Chapter 3 Functions
3.2 Functions

PUSH effective Address
Save effective address

 [Flag Change]

[Description Example]

[Function]

[Selectable src]

PUSHA PUSHA
[Syntax]

PUSHA src

• This instruction saves the effective address of src to the stack area.

PUSHA Ram:8[FB]

PUSHA Ram:16[SB]

[Operation]

SP SP - 4

M(SP)*1 EVA(src)
*1 The 8 high-order bits become indeterminate.

U I O B S Z D CFlag

Change

[Instruction Code/Number of Cycles]

Page= 267

src

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

122

Chapter 3 Functions
3.2 Functions

PUSH Control register
Save control register

[Syntax]

PUSHC src

[Flag Change]

[Description Example]

PUSHC SB

PUSHC PUSHC

[Function]
• This instruction saves the control register indicated by src to the stack area.

[Selectable src]

*3 Operation is performed on the stack pointer indicated by the U flag.

U I O B S Z D C

267

[Instruction Code/Number of Cycles]

Page=

Flag

Change

• When src is FB, SB, SP, ISP or INTB

SP SP - 4
 M(SP)*2 src*3

*2 The 8 high-order bits become 0.
*3 SP before 4 is subtracted is saved when src

is SP, or src is ISP while U flag is "0".

src

FB SB SP*3 ISP

INTB

DCT0 DCT1 DMD0 DMD1

DRC0 DRC1 SVF FLG

[Operation]

• When src is DCT0, DCT1, DMD0, DMD1,
DRC0, DRC1, SVF or FLG

SP SP - 2
M(SP)*1 src
*1 When src is DMD0 or DMD1, the 8 high-

order bits become indeterminate.

123

Chapter 3 Functions
3.2 Functions

PUSH Multiple
Save multiple registers

[Syntax]

PUSHM src

[Description Example]

[Function]

R0 R1 R2 R3 A0 A1 SB FB

PUSHM PUSHM

• This instruction saves the registers selected by src collectively to the stack area.
• The registers are saved to the stack area in the following order:

src *4

R0 R1 R2 R3 A0 A1 SB FB
*4 You can choose multiple src.

PUSHM R0,R1,A0,SB,FB

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page= 268

Saved sequentially beginning with FB

[Flag Change]

Flag

Change

[Selectable src]

[Operation]
SP SP – n1*1 2
SP SP – n2*1 4
M(SP)*3 src
*1 n1 denotes the number of R0, R1, R2 and R3 registers to be saved.
*2 n2 denotes the number of A0, A1, SB and FB registers to be saved.

*3 When src is A0, A1, SB or FB, the 8 high-order bits become 0.

124

Chapter 3 Functions
3.2 Functions

REturn from InTerrupt
Return from interrupt

[Syntax]

REIT

[Flag Change]

[Description Example]

[Function]

REIT REIT

REIT

U I O B S Z D C
*1 *1 *1 *1 *1 *1 *1 *1

Flag
*1 Becomes the value in the stack.

[Instruction Code/Number of Cycles]

Page= 269

Change

[Operation]

PCML M(SP)

SP SP + 2

PCH M(SP)*1

SP SP + 2

FLG M(SP)

SP SP + 2
*1 The 8 high-order bits are saved.

• This instruction restores the PC and FLG that were saved when an interrupt request was accepted to
return from the interrupt handler routine.

125

3.2 Functions
Chapter 3 Functions

Repeat MultiPle & Addition
Calculate sum-of-products

[Description Example]

RMPA RMPA
[Syntax]

RMPA.size

B , W

[Function]

• This instruction performs sum-of-product calculations, with the multiplicand address indicated by A0, the
multiplier address indicated by A1, and the count of operation indicated by R3. Calculations are
performed including the sign bits and the result is stored in R1R2R0 .

• The content of the address register when the instruction is completed indicates the next address of the
last-read data.

• When an interrupt request is received during instruction execution, the interrupt is acknowledged after
a sum-of- product addition is completed (i.e., after the content of R3 is decremented by 1).

• Make sure that R1R2R0 has the initial value set.

RMPA.B

[Operation] *1

Repeat

R1R2R0 R1R2R0 + M(A0) M(A1)

A0 A0 + 2 (1) *2

A1 A1 + 2 (1) *2

R3 R3 - 1

Until R3 = 0
*1 When you set a value 0 in R3, this instruction is ingored.

*2 Shown in ()*2 applies when (.B) is selected for the size specifier (.size).

Conditions

O : The flag is set when +231-1 or -231 is exceeded during operation; otherwise cleared.

U I O B S Z D CFlag

[Instruction Code/Number of Cycles]

Page=

[Fl ag Change]

Change

269

126

3.2 Functions
Chapter 3 Functions

ROtate to Left with Carry
Rotate left with carry

C

[Description Example]

[Function]

[Selectable dest]

ROLC ROLC

[Flag Change]

ROLC.B R0L

ROLC.W R0

ROLC.W [[A0]]

B , W

[Syntax]

ROLC.size dest

[Operation]

 This instruction rotates dest one bit to the left including the C flag.

 When (.W) is specified for the size specifier (.size) and dest is the address register(A0, A1), the 8

high-order bits become 0.

U I O B S Z D C

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in dest = 0; otherwise cleared.

C : The flag is set when the shifted-out bit is 1; otherwise cleared.

[Instruction Code/Number of Cycles]

Page=270

MSB dest/[dest] LSB

Flag

Change

*1 Indirect addressing [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

dest* 1

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

127

3.2 Functions
Chapter 3 Functions

ROtate to Right with Carry
Rotate right with carry

[Syntax]

RORC.size dest

[Flag Change]

[Function]

[Selectable dest]

RORC RORC

[Description Example]

RORC.B R0L

RORC.W R0

RORC.W [[A0]]

B , W

[Operation]

 This instruction rotates dest one bit to the right including the C flag.

 When (.W) is specified for the size specifier (.size) and dest is the address register(A0, A1), the 8

high-order bits become 0.

U I O B S Z D C

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in dest = 0; otherwise cleared.

C : The flag is set when the shifted-out bit is 1; otherwise cleared.

C

[Instruction Code/Number of Cycles]

Page=270

MSB dest/[dest] LSB

Flag

Change

*1 Indirect addressing [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

dest* 1

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

128

3.2 Functions
Chapter 3 Functions

ROTate
RotateROT ROT

[Syntax]

ROT.size src,dest
B , W

• This instruction rotates dest left or right the number of bits indicated by src. The bit overflowing from LSB
(MSB) is transferred to MSB(LSB) and the C flag.

• The direction of rotate is determined by the sign of src. When src is positive, bits are rotated left; when
negative, bits are rotated right.

• When src is an immediate, the number of rotates is - 8 to +8(≠0). You cannot set values less than - 8, equal
to 0, or greater than +8.

• When src is a register, the number of rotates is -16 to +16. Although you can set 0, no bits are rotated and
no flags are changed. When you set a value less than -17 or greater than +17, the result of rotation is
indeterminate.

• When (.W) is specified for the size specifier (.size) and dest is the address register(A0, A1), the 8 high-
order bits become 0.

[Operation]

LSB

src > 0

src < 0

C

[Function]

MSB

[Description Example]
ROT.B #1,R0L ; Rotated left

ROT.B #-1,R0L ; Rotated right

ROT.W R1H,R2

[Flag Change]

U I O B S Z D C

*1 Indirect addressing [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 When src is R1H, you cannot choose R1 or R1H for dest.
*3 The range of values that can be taken on is - 8 < #IMM4 < +8. However, you cannot set 0.

[Selectable src/dest]

C

[Instruction Code/Number of Cycles]

Page=271

dest/[dest]

Flag

Change

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when the bit shifted out last is 1; otherwise cleared.

*4 When the number of rotates is 0, no flags are changed.

src dest* 1

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM4*3

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1*2 R1H/R3/-*2

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

129

3.2 Functions
Chapter 3 Functions

ReTurn from Subroutine
Return from subroutine

[Flag Change]

[Description Example]
RTS

RTS RTS
[Syntax]

RTS

[Operation]

PCML M(SP)

SP SP + 2

PCH M(SP)*1

SP SP + 2

*1 The 8 low-order bits are saved.

[Function]

Flag

Change

U I O B S Z D C

 • This instruction causes control to return from a subroutine.

[Instruction Code/Number of Cycles]

Page=272

130

3.2 Functions
Chapter 3 Functions

SuBtract with Borrow
Subtract with borrow

[Syntax]

SBB.size src,dest

[Operation]

dest dest - src - C

[Flag Change]

[Description Example]
SBB.B #2,R0L

SBB.W A0,R0

SBB.B A0,R0L ; A0's 8 low-order bits and R0L are operated on.

SBB.B R0L,A0 ; R0L is zero-expanded and operated with A0.

[Function]
• This instruction subtracts src and inverted C flag from dest and stores the result in dest.
• When (.B) is specified for the size specifier (.size) and dest is the address register (A0, A1), src is zero-

extended to perform operation in 16 bits. In this case, the 8 high-oreder bits become 0. Also, when src
is the address register, the 8 low-order bits of the address register are used as data to be operated on.

• When (.W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order
bits become 0. Also, when src is the address register, the 16 low-order bits of the address register are
the data to be operated on.

[Selectable src/dest]

SBB SBB

B , W

*1 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or A1 for src and dest
simultaneously.

Conditions

O : The flag is set when a signed operation resulted in exceeding +32767 (.W) or -32768 (.W), or +127

(.B) or -128 (.B); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when an unsigned operation resulted in any value equal to or greater than 0;

otherwise cleared.

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page= 273

Flag

Change

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*1 A1/A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*1 A1/A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

131

3.2 Functions
Chapter 3 Functions

SuBtract then Jump on Not Zero
Subtract & conditional jump

[Selectable src/dest/label]

[Function]

SBJNZ SBJNZ
[Syntax]

SBJNZ.size src,dest,label

• This instruction subtracts src from dest and stores the result in dest.
• When the operation resulted in any value other than 0, control jumps to label . When the operation

resulted in 0, the next instruction is executed.
• The op-code of this instruction is the same as that of ADJNZ.
• When (.W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order

bits become 0. Also, when src is the address register, the 16 low-order bits of the address register are
the data to be operated on.

*1 The range of values that can be taken on is -7 < #IMM4 < +8.
*2 The PC indicates the start address of the instruction.

[Flag Change]

[Description Example]

SBJNZ.W #1,R0,label

SBJNZ.W #2,[A1],label

B , W

[Operation]

dest dest - src

if dest ≠ 0 then jump label

Flag

Change

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page= 275

 src dest label

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

#IMM4*1 A0/A0/A0 A1/A1/A1 [A0] [A1] PC*2-126 < label < PC*2+129

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

132

3.2 Functions
Chapter 3 Functions

Cnd Condition Expression Cnd Condition Expression

GEU/C C=1 Equal to or greater than LTU/NC C=0 Smaller than

C flag is 1. C flag is 0.

EQ/Z Z=1 Equal to = NE/NZ Z=0 Not equal

Z flag is 1. Z flag is 0.

GTU

C Z=1 Greater than LEU

C Z=0 Equal to or smaller than

PZ S=0 Positive or zero 0 N S=1 Negative 0

GE S O=0 Equal to or greater than LE (S O) Z=1 Equal to or smaller than

(signed value) (signed value)

GT (S O) Z=0 Greater than (signed value) LT S O=1 Smaller than (signed value)

O O=1 O flag is 1. NO O=0 O flag is 0.

≠

Store Condition on Condition
Store on condition

[Syntax]

SCCnd label

[Selectable dest]

[Description Example]
SCC R0L

SCC [dsp:8[A0]]

[Function]

[Operation]

if true then dest 1 if true then [dest] 1

else dest 0 else [dest] 0

SCCnd

[Flag Change]

U I O B S Z D C

SCCnd
[Instruction Code/Number of Cycles]

Page=

• When the condition specified by Cnd is true, this instruction stores a 1 in dest ; when the condition is
false, it stores a 0 in dest.

• When dest is the address register(A0, A1), the 8 high-order bits of the address register become 0.
• There are following types of Cnd:

Flag

Change

A

A A

A

dest* 1

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

*1 Indirect addressing [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

276

133

3.2 Functions
Chapter 3 Functions

[Flag Change]

[Description Example]

SCMPU.W

[Operation]

• When the size specifier (.size) is (.B) • When the size specifier (.size) is (.W)
 Repeat Repeat

M(A0) – M(A1) (compared by byte) M(A0) – M(A1) (compared by byte)

tmp0 M(A0) If M(A0)=M(A1) and M(A0)≠0 then M(A0+1)–M(A1+1)

tmp2 M(A1) (compared by byte)

A0 A0 + 1 tmp0 M(A0)

A1 A1 + 1 tmp1 M(A0+1)

 Until (tmp0=0) ıı (tmp0≠tmp2) tmp2 M(A1)

tmp0, tmp2: temporary registers tmp3 M(A1+1)

A0 A0 + 2

A1 A1 + 2

Until (tmp0=0) ıı (tmp1=0) ıı (tmp0≠tmp2) ıı (tmp1≠tmp3)

tmp0, tmp1, tmp2, tmp3: temporary registers

U I O B S Z D C
Change

Flag

String CoMPare Unequal
String compare unequal

[Syntax]

SCMPU.size

SCMPU SCMPU
[Instruction Code/Number of Cycles]

Page=
B , W

Conditions

O : The flag is set when a signed operation of M(A0)–M(A1) resulted in exceeding +127 or

-128; otherwise cleared.

S : The flag is set when the operation of M(A0)–M(A1) resulted in MSB = 1; otherwise cleared.

Z : The flag is set when fined 0 in M(A0) and terminated, or M(A0)–M(A1)=0 (when compared result

is matched); the flag is cleared when M(A0)–M(A1)≠0 (when compared result is not matched).

C : The flag is set when an unsigned operation of M(A0)–M(A1) resulted in any value equal to or

greater then 0; otherwise cleared.

[Function]
• Compares strings until contents do not match when compared in the address incrementing direction

from the comparison address (A0) to the compared address (A1), until M(A0) = 0 or M(A0+1)=0 (when
(.W) is specified for the size specifier (.size)) .

• The contents of the address register (A0, A1) when the instruction is terminated become indetermi-
nate.

• When an interrupt is requested during instruction execution, the interrupt is accepted after comparison
of one data is completed.

277

134

3.2 Functions
Chapter 3 Functions

SHift Arithmetic
Shift arithmetic

[Syntax]

SHA.size src,dest

SHA

B , W , L

 [Function]

[Operation]

When src < 0

When src > 0

[Selectable src/dest]

*1 Indirect addressing [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 When src is R1H, you cannot choose R1, R1H or R3R1 for dest.
*3 When (.B) or (.W) is selected for the size specifier (.size), the range of values that can be taken on is

-8 < #IMM4 < +8(≠0). When (.L) is selected for the size specifier (.size), the range of values that can
be taken on is -16 < #IMM8 < +16 (≠0).

SHA
[Instruction Code/Number of Cycles]

Page= 278

0

CMSB dest/[dest] LSB

MSB dest/[dest] LSBC

src dest* 1

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H*2/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM4/#IMM8*3

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1*2 R1H/R3/-*2

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

• This instruction arithmetically shifts dest left or right the number of bits indicated by src. The bit over-

flowing from LSB(MSB)is transferred to the C flg.

• The direction of shift is determined by the sign of src. When src is positive, bits are shifted left; when

negative, bits are shifted right.

• When src is an immediate and you selected (.B) or (.W) for the size specifier (.size), the number of

shifts is -8 to +8(≠0). You cannot set values less than -8, equal to 0, or greater than +8. When you

selected (.L) for the size specifier (.size), the number of shifts is -16 to +16(≠0). You cannot set values

less than -16, equal to 0, or greater than +16.

• When src is a register, the number of shifts is -16 to +16. Although you can set 0, no bits are shifted

and no flags are changed. When you set a value less than -16 or greater than +16, the result of shift

is indeterminate.

• When (.L) is specified for the size specifier (.size) and dest is the address register, dest is zero-

extended to perform operation in 32 bits. The 24 low-order bits of the operation result are stored in

dest.

135

3.2 Functions
Chapter 3 Functions

[Description Example]
SHA.B #3,R0L ; Arithmetically shifted left

SHA.B #-3,R0L ; Arithmetically shifted right

SHA.L R1H,Ram:8[A1]

SHA.W R1H,[[A1]]

[Flag Change]* 1

U I O B S Z D CFlag

Change

Conditions

O*2 : The flag is cleared when all the shift resulted in MSB and shift out bit are the same value;

otherwise set.

S*2 : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z*2 : The flag is set when the operation resulted in 0; otherwise cleared.

C*2 : The flag is set when the bit at last shifted out is 1; otherwise cleared.

*2 When (.L) is specified for the sign specifier (.size) and dest is the address register(A0, A1), the flag

become indeterminate.

*1 When the number of shifts is 0, no flags are changed.

136

3.2 Functions
Chapter 3 Functions

SHift Logical
Shift logical

[Syntax]

SHL.size src,dest

SHL SHL

B , W , L

0

0

[Operation]

When src < 0

When src > 0

[Function]

[Instruction Code/Number of Cycles]

Page=281

MSB dest/[dest] LSB

MSB dest/[dest] LSB

C

C

[Selectable src/dest]

*1 Indirect addressing [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 When src is R1H, you cannot choose R1, R1H or R3R1 for dest.
*3 When (.B) or (.W) is selected for the size specifier (.size), the range of values that can be taken on is

-8 < #IMM4 < +8(≠0). When (.L) is selected for the size specifier (.size), the range of values that can be
taken on is -16 < #IMM8 < +16 (≠0).

• This instruction logically shifts dest left or right the number of bits indicated by src. The bit overflowing

from LSB (MSB) is transferred to the C flag.

• The direction of shift is determined by the sign of src. When src is positive, bits are shifted left; when

negative, bits are shifted right.

• When src is an immediate and (.B) or (.W) is specified for the size specifier (.size), the number of shifts

is -8 to +8(≠0). You cannot set values less than -8, equal to 0, or greater than +8. When (.L) is

specified for the size specifier (.size), the number of shifts is -16 to +16(≠0). You cannot set values

less than -16, or greater than +16.

• When src is a register, the number of shifts is -16 to +16. Although you can set 0, no bits are shifted

and no flags are changed. When you set a value less than -16 or greater than +16, the result of shift

is indeterminate.

src dest* 1

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H*2/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM4/#IMM8*3

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1*2 R1H/R3/-*2

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

137

3.2 Functions
Chapter 3 Functions

[Description Example]

SHL.B #3,R0L ; Logically shifted left

SHL.B #-3,R0L ; Logically shifted right

SHL.L R1H,Ram:8[A1]

SHL.W R1H,[[A0]]

[Flag Change]* 1

U I O B S Z D C

Conditions

S*2: The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z*2: The flag is set when the operation resulted in 0; otherwise cleared.

C*2: The flag is set when the bit shifted out last is 1; otherwise cleared.

*2 When (.L) is specified for the sign specifier (.size) and dest is the address register(A0, A1), the flag

become indeterminate.

Flag

Change *1 When the number of shifts is 0, no flags are changed.

138

3.2 Functions
Chapter 3 Functions

String INput
 String input

[Syntax]

SIN.size

[Description Example]

SIN.W

SIN SIN

B , W

[Operation] *1

• When size specifier (.size) is (.B) • When size specifier (.size) is (.W)

While R3≠0 Do While R3≠0 Do

M(A1) M(A0) M(A1) M(A0)

A1 A1 + 1 A1 A1 + 2

R3 R3 - 1 R3 R3 - 1

End End

Flag

Change

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page=

[Flag Change]

[Function]

• Transfers strings from the fixed source address indicated by A0 to the destination address indicated by

A1 in the address incrementing direction as many times as specified by R3.

• Set the source of transfer address in A0, the destination address in A1, and the transfer count in R3.

• The content of A1 when the instruction is terminated indicates the next address following the last data

transferred.

• When an interrupt is requested during instruction execution, the interrupt is accepted after comparison

of one data is completed.

 *1 When you set a value 0 in R3, this instruction is ingored.

283

139

3.2 Functions
Chapter 3 Functions

String MOVe Backward
 Transfer string backward

[Syntax]

SMOVB.size

[Description Example]

SMOVB.B

SMOVB SMOVB

B , W

[Operation] *1

• When size specifier (.size) is (.B) • When size specifier (.size) is (.W)

 While R3≠0 Do While R3≠0 Do

M(A1) M(A0) M(A1) M(A0)

A0 A0 - 1 A0 A0 - 2

A1 A1 - 1 A1 A1 - 2

R3 R3 - 1 R3 R3 - 1

Flag

Change

U I O B S Z D C

284

[Instruction Code/Number of Cycles]

Page=

[Flag Change]

[Function]

• This instruction transfers string in successively address decrementing direction from the source ad-

dress indicated by A0 to the destination address indicated by A1.

• Set the transfer count in R3.

• The address register(A0, A1) when the instruction is completed contains the next address of the last-

read data.

• When an interrupt request is received during instruction execution, the interrupt is acknowledged after

one data transfer is completed.

 *1 When you set a value 0 in R3, this instruction is ingored.

End End

140

3.2 Functions
Chapter 3 Functions

String MOVe Forward
Transfer string forward

[Syntax]

SMOVF.size

[Description Example]

SMOVF SMOVF

[Flag Change]

SMOVF.W

B , W

Flag

Change

U I O B S Z D C

[Operation] *1

• When size specifier (.size) is (.B) • When size specifier (.size) is (.W)

While R3≠0 Do While R3≠0 Do

M(A1) M(A0) M(A1) M(A0)

A0 A0 + 1 A0 A0 + 2

A1 A1 + 1 A1 A1 + 2

R3 R3 - 1 R3 R3 - 1

 End End

[Instruction Code/Number of Cycles]

Page=284

[Function]
• This instruction transfers string in successively address incrementing direction from the source ad-

dress indicated by A0 to the destination address indicated by A1.

• Set the transfer count in R3.

• The address register (A0, A1) when the instruction is completed contains the next address of the last-

read data.

• When an interrupt request is received during instruction execution, the interrupt is acknowledged after

one ansfer is completed.

 *1 When you set a value 0 in R3, this instruction is ingored.

141

3.2 Functions
Chapter 3 Functions

String MOVe Unequal
Transfer string

[Syntax]

SMOVU.size

SMOVU SMOVU

B , W

[Instruction Code/Number of Cycles]

Page=

[Flag Change]

[Description Example]

[Function]

• Transfers strings from the source address indicated by A0 to the destination address indicated by A1 in

the address incrementing direction until 0 is detected.

• The contents of the address register (A0, A1) when the instruction is terminated become indetermi-

nate.

• When an interrupt is requested during instruction execution, the interrupt is accepted after comparison

of one data is completed.

SMOVU.B

[Operation]

• When size specifier (.size) is (.B) • When size specifier (.size) is (.W)

Repeat Repeat

M(A1) M(A0) (transfered by byte) M(A1) M(A0) (transfered by word)

tmp0 M(A0) tmp0 M(A0)

A0 A0 + 1 tmp1 M(A0 + 1)

A1 A1 + 1 A0 A0 + 2

Until tmp0 = 0 A1 A1 + 2

tmp0: temporary register Until (tmp0 = 0) ıı (tmp1 = 0)

tmp0, tmp1: temporary registers

U I O B S Z D C
Change

Flag

285

142

Chapter 3 Functions
3.2 Functions

String OUTput
Store string output

[Function]

[Flag Change]

[Description Example]
SOUT.W

SOUT SOUT
[Syntax]

SOUT.size

• This instruction transfers strings from the source address indicated by A0 to the fixed destination

address indicated by A1 in the address incrementing direction as many times as specified by R3.

• Set the source of transfer address in A0, the destination address in A1, and the transfer count in R3.

• The content of A0 when the instruction is terminated indicates the next address following the last

data transferred.

• When an interrupt request is received during instruction execution, the interrupt is acknowledged

after one data transfer is completed.

B , W

[Operation] *1

• When size specifier (.size) is (.B) • When size specifier (.size) is (.W)

While R3≠0 Do While R3≠0 Do

M(A1) M(A0) M(A1) M(A0)

A0 A0 + 1 A0 A0 + 2

R3 R3 - 1 R3 R3 - 1

End End

Flag

Change

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page=

*1 When you set a value 0 in R3, this instruction is ingored.

285

143

Chapter 3 Functions
3.2 Functions

String SToRe
Store string

[Function]

[Flag Change]

[Description Example]
SSTR.B

SSTR SSTR
[Syntax]

SSTR.size

• This instruction stores string, with the store data indicated by R0L/R0, the transfer address indi-

cated by A1, and the transfer count indicated by R3.

• The content of A1 when the instruction is terminated indicates the next address following the last

data transferred.

• When an interrupt request is received during instruction execution, the interrupt is acknowledged

after one data transfer is completed.

B , W

[Operation] *1

• When size specifier (.size) is (.B) • When size specifier (.size) is (.W)

While R3≠0 Do While R3≠0 Do

M(A1) R0L M(A1) R0

A1 A1 + 1 A1 A1 + 2

R3 R3 - 1 R3 R3 - 1

End End

Flag

Change

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page=

*1 When you set a value 0 in R3, this instruction is ingored.

286

144

Chapter 3 Functions
3.2 Functions

Transfer from control register

STore from Control register
[Syntax]

STC src,dest

[Description Example]

[Function]

[Selectable src/dest]

STC STC

• This instruction transfers the control register indicated by src to dest. When dest is memory, specify
the address in which to store the low-order address.

• When memory is specified for dest, the following bytes of memory are required.
2 bytes : DMD0*1, DMD1*1, FLG, DCT0, DCT1, DRC0, DRC1, SVF
4 bytes : FB*1, SB*1, SP*1, ISP*1, INTB*1, VCT*1, SVP*1, DMA0*1, DMA1*1, DRA0*1, DRA1*1,

 DSA0*1, DSA1*1

STC FLG,R0

STC FB,A0

[Operation]

dest src

[Flag Change]

*2 Operation is performed on the stack pointer indicated by the U flag.

Flag

Change

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page=

src dest

DMD0 DMD1 DCT0 DCT1

DRC0 DRC1 FLG SVF

FB SB SP*2 ISP

INTB VCT SVP

DMA0 DMA1 DRA0 DRA1

DSA0 DSA1

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

*1 The 1 high-order byte of dest becomes indeterminate.

286

145

Chapter 3 Functions
3.2 Functions

STore ConTeXt
Save context

STCTX Ram,Rom_TBL

[Flag Change]

STCTX STCTX
[Syntax]

STCTX abs16,abs24

[Description Example]

[Operation]

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page=

Flag

Change

[Function]
• This instruction saves task context to the stack area.
• Set the RAM address that contains the task number in abs16 and the start address of table data in abs24.
• The required register information is specified from table data by the task number and the data in the

stack area is transferred to each register according to the specified register information. Then the SP
correction value is subtracted to the stack pointer (SP). For this SP correction value, set the number of
bytes you want to the transferred. Calculated as 2 bytes when transferring the R0, R1, R2, or R3
registers. A0, A1, SB, and FB are calculated as 4 bytes.

• Information on transferred registers is configured as shown below. Logic 1 indicates a register to be
transferred and logic 0 indicates a register that is not transferred.

Transferred sequentially
beginning with FB

FB SB A1 A0 R3 R2 R1 R0

MSB LSB

• The table data is comprised as shown below. The address indicated by abs24 is the base address of
the table. The data stored at an address apart from the base address as much as twice the content of
abs16 indicates register information, and the next address contains the stack pointer correction value.

Register information for the task whose task number = 0.

 (See the above diagram.)

SP correction value for the task whose task number = 0.

Register information for the task whose task number = 1.

 (See the above diagram.)

SP correction value for the task whose task number = 1.

 Register information for the task whose task number = n*1.

(See the above diagram.)

SP correction value for the task whose task number = n*1.

abs24 Base address
of table

Direction in
which address
increases

abs16 2

*1 n=0 to 255

288

146

Chapter 3 Functions
3.2 Functions

STore on Not Zero
Conditional transfer

[Function]

[Flag Change]

[Description Example]

[Selectable src/dest]

STNZ STNZ
[Syntax]

STNZ.size src,dest

• This instruction transfers src to dest when the Z flag is 0. dest is not changed when the Z flag is 1.
• When (.B) is specified for the size specifier (.size) and dest is the address register (A0, A1), src is zero-

extended to perform operation in 16 bits. In this case, the 8 high-oreder bits become 0.
• When (.W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order

bits become 0.

STNZ.B #5,Ram:8[SB]

STNZ.W #15,[[A1]]

[Operation]

if Z = 0 then dest/[dest] src

Flag

Change

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page=
B , W

*1 Indirect addressing [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

src dest* 1

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

288

147

Chapter 3 Functions
3.2 Functions

STore on Zero
Conditional transfer

[Syntax]

STZ.size src,dest

[Function]

[Flag Change]

• This instruction transfers src to dest when the Z flag is 1. dest is not changed when the Z flag is 1.
• When (.B) is specified for the size specifier (.size) and dest is the address register (A0, A1), src is zero-

extended to perform operation in 16 bits. In this case, the 8 high-oreder bits become 0.
• When (.W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order

bits become 0.

[Description Example]

[Selectable src/dest]

STZSTZ

STZ.B #5,Ram:8[SB]

STZ.W #10,[[A0]]

[Operation]

if Z = 1 then dest/[dest] src

Flag

Change

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page=

B , W

*1 Indirect addressing [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

src dest* 1

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

289

148

Chapter 3 Functions
3.2 Functions

[Instruction Code/Number of Cycles]

Page=

STore on Zero eXtention
Conditional transfer

[Syntax]

STZX.size src1,src2,dest

[Flag Change]

[Description Example]

STZX.B #1,#2,Ram:8[SB]

STZX.W #5,#10,[R0]

STZX STZX

[Selectable src/dest]

[Operation]

If Z = 1 then dest src1 If Z = 1 then [dest] src1

else dest src2 else [dest] src2

[Function]
• This instruction transfers src1 to dest when the Z flag is 1. When the Z flag is 0, it transfers src2 to

dest.
• When (.B) is specified for the size specifier (.size) and dest is the address register (A0, A1), src is zero-

extended to perform operation in 16 bits. In this case, the 8 high-oreder bits become 0.
• When (.W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order

bits become 0.

Flag

Change

U I O B S Z D C

src dest* 1

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

*1 Indirect addressing [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

B , W
289

149

Chapter 3 Functions
3.2 Functions

[Selectable src/dest]* 1

SUBtract
Subtract without borrow

[Syntax]

SUB.size (:format) src,dest

[Operation]

dest dest - src [dest] [dest] - src

dest dest - [src] [dest] [dest] - [src]

[Function]

SUB SUB

• This instruction subtracts src from dest and stores the result in dest.
• When (.B) is specified for the size specifier (.size) and dest is the address register (A0, A1), src is zero-

extended to perform operation in 16 bits. In this case, the 8 high-oreder bits become 0. Also, when src
is the address register, the 8 low-order bits of the address register are used as data to be operated on.

• When (.W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order
bits become 0. Also, when src is the address register, the 16 low-order bits of the address register are
the data to be operated on.

• When (.L) is specified for the size specifier (.size) and dest is the address register, dest is zero-
extended to perform operation in 32 bits. The 24 low-order bits of the operation result are stored in
dest. When src is the address register, src is zero-extended to perform operation in 32 bits. The flags
also change states depending on the result of 32-bit operation.

[Flag Change]

G , S (Can be specified)

B , W , L

Flag

Change

U I O B S Z D C

(See the next page for src/dest classified by format.)

Conditions

O : The flag is set when a signed operation resulted in exceeding +2147483647(.L) or

-2147483648(.L), +32767 (.W) or -32768 (.W), or +127 (.B) or -128 (.B); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when an unsigned operation resulted in any value equal to or greater than 0;

otherwise cleared.

[Instruction Code/Number of Cycles]

Page=

*1 Indirect addressing [src] and [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or A1 for src and dest
simultaneously.

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16/#IMM32

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

290

150

Chapter 3 Functions
3.2 Functions

[src/dest Classified by Format]

G format* 1

S format

[Description Example]
SUB.B A0,R0L ; A0's 8 low-order bits and R0L are operated on.

SUB.B R0L,A0 ; R0L is zero-expanded and operated with A0.

SUB.B Ram:8[SB],R0L

SUB.W #2,[A0]

src dest *3

R0L/R0 dsp:8[SB] dsp:8[FB] abs16 R0L/R0 dsp:8[SB] dsp:8[FB] abs16

#IMM8/#IMM16*4

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16/#IMM32

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

*1 Indirect addressing [src] and [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or A1 for src and dest
simultaneously.

*3 Indirect addressing [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*4 You can specify only (.B) or (.W) for the size specifier (.size).

151

Chapter 3 Functions
3.2 Functions

[Selectable src/dest]* 1

SUBtract eXtend
Subtract extend without borrow

[Syntax]

SUBX src,dest

[Operation]

dest dest - EXT(src) [dest] [dest] - EXT(src)

dest dest - EXT([src]) [dest] [dest] - EXT([src])

[Function]

SUBX SUBX

• This instruction subtracts 8-bit src from dest (32 bits) after sign-extending src to 32 bits and stores the
result in dest.

• When dest is the address register (A0, A1), dest is zero-extended to perform operation in 32 bits. The
24 low-order bits of the operation result are stored in dest. The flags also change states depending on
the result of 32-bit operation.

[Flag Change]

Flag

Change

U I O B S Z D C

Conditions

O : The flag is set when a signed operation resulted in exceeding +2147483647(.L) or

-2147483648(.L); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when an unsigned operation resulted in any value equal to or greater than 0;

otherwise cleared.

[Instruction Code/Number of Cycles]

Page=

*1 Indirect addressing [src] and [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

[Description Example]
SUBX R0L,A0

SUBX Ram:8[SB],R2R0

SUBX #2,[A0]

294

152

Chapter 3 Functions
3.2 Functions

TeST
Test

[Syntax]

TST.size(:format) src,dest

[Description Example]
TST.B #3,R0L

TST.B A0,R0L ; A0's 8 low-order bits and R0L are operated on.

TST.B R0L,A0 ; R0L is zero-expanded and operated on with A0.

 [Function]

TST TST

• Each flag in the flag register changes state depending on the result of logical AND of src and dest.
• When (.B) is specified for the size specifier (.size) and dest is the address register (A0, A1), src is zero-

extended to perform operation in 16 bits. Also, when src is the address register, the 8 low-order bits of
the address register are used as data to be operated on.

• When (.W) is specified for the size specifier (.size) and src is the address register, the 16 low-order bits
of the address register are the data to be operated on.

[Operation]

dest src

[Flag Change]

[Selectable src/dest]

U I O B S Z D C

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

*1 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or A1 for src and dest
simultaneously.

[Instruction Code/Number of Cycles]

Page=

Flag

Change

G , S (Can be specified)

B , W

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*1 A1/A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*1 A1/A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

(See the next page for src/dest classified by format.)

296

153

Chapter 3 Functions
3.2 Functions

[src/dest Classified by Format]

G format

S format

*1 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or A1 for src and dest
simultaneously.

src dest

R0L/R0 dsp:8[SB] dsp:8[FB] abs16 R0L/R0 dsp:8[SB] dsp:8[FB] abs16

#IMM8/#IMM16

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*1 A1/A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*1 A1/A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

154

Chapter 3 Functions
3.2 Functions

UNDefined instruction
Interrupt for undefined instruction

[Syntax]

UND

[Flag Change]

[Description Example]

UND UND

[Operation]

SP SP - 2

M(SP) FLG

SP SP - 2

M(SP)*1 (PC + 1)H

SP SP - 2

M(SP) (PC + 1)L

PC M(FFFFDC16)
*1 The 8 high-order bits become indeterminate.

*1 The flags are saved to the stack area before the UND
instruction is executed. After the interrupt, the flag status
becomes as shown on the left.

U I O B S Z D C

Conditions

U : The flag is cleared.

I : The flag is cleared.

D : The flag is cleared.

UND

[Instruction Code/Number of Cycles]

Page=

Flag

Change

• This instruction generates an undefined instruction interrupt.

• The undefined instruction interrupt is a nonmaskable interrupt.

[Function]

298

155

Chapter 3 Functions
3.2 Functions

WAIT
Wait

[Syntax]

WAIT

[Flag Change]

[Description Example]

[Function]

WAIT WAIT

• Stops program execution. Program execution is restarted when an interrupt whose priority is higher

than that of the stop/wait restoring interrupt priority setup bit is accepted or a reset is generated.

U I O B S Z D C

WAIT

[Operation]

[Instruction Code/Number of Cycles]

Page=

Flag

Change

298

156

Chapter 3 Functions
3.2 Functions

eXCHanGe
Exchange

[Flag Change]

[Description Example]

[Function]

[Selectable src/dest]

XCHG XCHG
[Syntax]

XCHG.size src,dest

• This instruction exchanges contents between src and dest.

• When (.B) is specified for the size specifier (.size) and dest is address register(A0, A1), 24 bits of zero-

expanded src data are placed in the address register and the 8 low-order bits of the address register

are placed in src.

• When (.W) is specified for the size specifier (.size) and dest is address register, 24 bits of zero- ex-

panded src data are placed in the address register and the 16 low-order bits of the address register are

placed in src. When src is address register, 24 bits data are placed in the address register and the 16

low-order bits of the address register are placed in dest.

B , W

[Operation]

dest/[dest] src

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page=

Flag

Change

XCHG.B R0L,A0 ; A0's 8 low-order bits and R0L's zero-expanded value are exchanged.

XCHG.W R0,A1

XCHG.B R0L,[A0]

*1 Indirect addressing [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/
R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

src dest* 1

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0 A1/A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

299

157

Chapter 3 Functions
3.2 Functions

eXclusive OR
Exclusive OR

[Syntax]

XOR.size src,dest

[Flag Change]

[Selectable src/dest]* 1

[Description Example]

[Function]

XOR XOR

XOR.B A0,R0L ; A0's 8 low-order bits and R0L are exclusive ORed.

XOR.B R0L,A0 ; R0L is zero-expanded and exclusive ORed with A0.

XOR.B #3,R0L

XOR.W A0,A1

XOR.W [A0],[[A1]]

B , W

[Operation]

dest dest src [dest] [dest] src

dest dest [src] [dest] [dest] [src]

Flag

Change

U I O B S Z D C

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

*1 Indirect addressing [src] and [dest] can be used in all addressing except R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1,
R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

*2 When you specify (.B) for the size specifier (.size), you cannot choose A0 and/or A1 for src and dest
simultaneously.

• This instruction exclusive ORs src and dest together and stores the result in dest.
• When (.B) is specified for the size specifier (.size) and dest is the address register (A0, A1), src is zero-

extended to perform operation in 16 bits. In this case, the 8 high-oreder bits become 0. Also, when src
is the address register, the 8 low-order bits of the address register are used as data to be operated on.

• When (.W) is specified for the size specifier (.size) and dest is the address register, the 8 high-order
bits become 0. Also, when src is the address register, the 16 low-order bits of the address register are
the data to be operated on.

[Instruction Code/Number of Cycles]

Page=

A

src dest

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

#IMM8/#IMM16

R0L/R0/R2R0 R0H/R2/-

R1L/R1/R3R1 R1H/R3/-

A0/A0/A0*2 A1/A1/A1*2 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

A A

A

299

158

Chapter 3 Functions
3.3 Index instructions

Specify .B Memory

3.3 Index instructions

This section explains each INDEX instruction individually.

The INDEX instructions are provided for use on arrays. The execution addresses are derived by unsigned

adding the addresses indicated by src and dest of the next instruction to be executed after the INDEX

instruction to the content of src of the INDEX instruction.

The modifiable size is from 0 to 65535(64KB).

No interrupt request is not accepted immediately after the INDEX instruction.

The 10 types of INDEX instructions shown below are supported.

(1) INDEXB.size src
The INDEXB (INDEX Byte) instruction is used for arrays arranged in bytes.

The execution addresses for the INDEXB instruction are derived by unsigned adding the src content of

the INDEXB instruction to the addresses indicated by src and dest of the next instruction to be executed.

For the next instruction executed after the INDEXB instruction, be sure to choose memory for both src

and dest. Also, specify .B for the size specifier.

Example:
INDEXB.B src

MOV.B:G mem1,mem2

Operation in C language

char src;

char mem1[],mem2[];

mem2[src] = mem1[src];

Instruction which is modified by INDEXB

The src and dest of

ADC, ADD:G*1*2, AND, CMP:G*1, MAX, MIN, MOV:G*1*3, MUL, MULU, OR, SBB, SUB,

TST, XOR.

*1 You can only specify G format.

*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXB instruction.

AAAA

AAAA

mem1 address

mem2 address

The src content of
INDEXB Transfer

The src content of
INDEXB

159

Chapter 3 Functions
3.3 Index instructions

Specify .B Memory

(2) INDEXBD.size src
The INDEXBD (INDEX Byte Dest) instruction is used for arrays arranged in bytes.

The execution addresses for the INDEXBD instruction are derived by unsigned adding the src content of

the INDEXBD instruction to the addresses indicated by dest(some instructions are src) of the next in-

struction to be executed.

For the next instruction executed after the INDEXBD instruction, be sure to choose memory for

dest(some instructions are src). Also, specify .B for the size specifier.

Example:

INDEXBD.B src

MOV.B:G mem1,mem2

Operation in C language

char src,mem1;

char mem2[];

mem2[src] = mem1;

Instruction which is modified by INDEXBD

The dest of

ABS, ADC, ADCF, ADD:G*1*2, AND, CLIP, CMP:G*1, DEC, INC, MAX, MIN, MOV:G*1*3,

MUL, MULU, NEG, NOT, OR, POP, ROLC, RORC, ROT, SBB, SHA, SHL, STNZ, STZ,

STZX, SUB, TST, XCHG, XOR.

The src of

DIV, DIVU, DIVX, PUSH

*1 You can only specify G format.

*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXBD instruction.

AAAA
AAAA
AAAA

mem1 address

mem2 address

The src content of
INDEXBD

Transfer

160

Chapter 3 Functions
3.3 Index instructions

Specify .B Memory

(3) INDEXBS.size src
The INDEXBS (INDEX Byte Src) instruction is used for arrays arranged in bytes.

The execution addresses for the INDEXBS instruction are derived by unsigned adding the src content of

the INDEXBS instruction to the addresses indicated by src of the next instruction to be executed.

For the next instruction executed after the INDEXBS instruction, be sure to choose memory for src.

Also, specify .B for the size specifier.

Example:
INDEXBS.B src

MOV.B:G mem1,mem2

Operation in C language

char src,mem2;

char mem1[];

mem2 = mem1[src];

Instruction which is modified by INDEXBS
The src of

ADC, ADD:G*1*2, AND, CMP:G*1, MAX, MIN, MOV:G*1*3, MUL, MULU, OR, SBB, SUB,

TST, XOR

*1 You can only specify G format.

*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXBS instruction.

AAAA

AAAA
AAAA

mem1 address

The src content of
INDEXBS

mem2 address

Transfer

161

Chapter 3 Functions
3.3 Index instructions

(4)INDEXW.size src
The INDEXW (INDEX Word) is used for arrays arranged in words.

The execution addresses for the INDEXW instruction are derived by unsigned adding twice the src

content of the INDEXW instruction to the addresses indicated by src and dest of the next instruction to

be executed. The range of src of INDEXW instruction that can be taken on is from 0 to 32767. You can

not set otherwise.

For the next instruction executed after the INDEXW instruction, be sure to choose memory for both src

and dest. Also, specify .W for the size specifier.

Example:
INDEXW.B src

MOV.W:G mem1,mem2

Operation in C language

char src;

char mem1[],mem2[];

mem2[src] = mem1[src];

Instruction which is modified by INDEXW
The src and dest of

ADC, ADD:G*1*2, AND, CMP:G*1, MAX, MIN, MOV:G*1*3, MUL, MULU, OR, SBB, SUB,

TST, XOR.

*1 You can only specify G format.

*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXW instruction.

MemorySpecify .W

AAAAmem1 address

mem2 address

AAAA
AAAA

AAAA
AAAA
AAAA

Twice the src
content of INDEXW

Transfer

Twice the src
content of INDEXW

162

Chapter 3 Functions
3.3 Index instructions

(5) INDEXWD.size src
The INDEXWD (INDEX Word Dest) is used for arrays arranged in words.

The execution addresses for the INDEXWD instruction are derived by unsigned adding twice the src content

of the INDEXWD instruction to the addresses indicated by dest (some instructions are src) of the next instruc-

tion to be executed.

The range of src of INDEXWD instruction that can be taken on is from 0 to 32767. You cannot set

otherwise.

For the next instruction executed after the INDEXWD instruction, be sure to choose memory for

dest(some instructions are src). Also, specify .W for the size specifier.

Example:

INDEXWD.B src

MOV.W:G mem1,mem2

Operation in C language

char src;

int mem1;

int mem2[];

mem2[src] = mem1;

Instruction which is modified by INDEXWD
The dest of

ABS, ADC, ADCF, ADD:G*1*2, AND, CLIP, CMP:G*1, DEC, INC, MAX, MIN, MOV:G*1*3,

MUL, MULU, NEG, NOT, OR, POP, ROLC, RORC, ROT, SBB, SCcnd, SHA, SHL,

STNZ, STZ, STZX, SUB, TST, XCHG, XOR.

The src of

DIV, DIVU, DIVX, PUSH, JMPI, JSRI.

*1 You can only specify G format.

*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXWD instruction.

MemorySpecify .W

AAAA

mem1 address

mem2 address

AAAA
AAAA

Twice the src
content of
INDEXWD

Transfer

163

Chapter 3 Functions
3.3 Index instructions

Specify .W Memory

(6) INDEXWS.size src
The INDEXWS (INDEX Word Src) is used for arrays arranged in words.

The execution addresses for the INDEXWS instruction are derived by unsigned adding twice the src

content of the INDEXWS instruction to the addresses indicated by src of the next instruction to be

executed. The range of src of INDEXWS instruction that can be taken on is from 0 to 32767. You can

not set otherwise.

For the next instruction executed after the INDEXWS instruction, be sure to choose memory for src.

Also, specify .W for the size specifier.

Example:
INDEXWS.B src

MOV.W:G mem1,mem2

Operation in C language

char src;

int mem1[];

int mem2[];

mem2 = mem1[src];

Instruction which is modified by INDEXWS
The src of

ADC, ADD:G*1*2, AND, CMP:G*1, MAX, MIN, MOV:G*1*3, MUL, MULU, OR, SBB, SUB,

TST, XOR.

*1 You can only specify G format.

*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXWS instruction.

AAAAmem1 address

mem2 address

AAAA
AAAA

Twice the src
content of
INDEXWS

Transfer

164

Chapter 3 Functions
3.3 Index instructions

(7) INDEXL.size src

The INDEXL (INDEX Long word) is used for arrays arranged in long words.

The execution addresses for the INDEXL instruction are derived by unsigned adding four times the src

content of the INDEXL instruction to the addresses indicated by src and dest of the next instruction to be

executed. The range of src of INDEXL instruction that can be taken on is from 0 to 16383. You can not

set otherwise.

For the next instruction executed after the INDEXL instruction, be sure to choose memory for both src

and dest. Also, specify .L for the size specifier.

Example:
INDEXL.B src

MOV.L:G mem1,mem2

Operation in C language

char src;

long mem1[],mem2[];

mem2[src] = mem1[src];

Instruction which is modified by INDEXL
The src and dest of

ADD:G*1*2, CMP:G*1, MOV:G*1*3, SUB.

*1 You can only specify G format.

*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXL instruction.

MemorySpecify .L

AAAA
AAAA

mem1 address

mem2 address

AAAAAAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAAAAAAFour times the src

content of INDEXL

Transfer

Four times the src
content of INDEXL

165

Chapter 3 Functions
3.3 Index instructions

(8) INDEXLD.size src
The INDEXLD (INDEX Long word Dest) is used for arrays arranged in long words.

The execution addresses for the INDEXLD instruction are derived by unsigned adding four times the src

content of the INDEXLD instruction to the addresses indicated by dest (some instructions are src) of the

next instruction to be executed. The range of src of INDEXLD instruction that can be taken on is from 0

to 16383. You can not set otherwise.

For the next instruction executed after the INDEXLD instruction, be sure to choose memory for dest

(some instructions are src). Also, specify .L for the size specifier.

Example:
INDEXLD.B src

MOV.L:G mem1,mem2

Operation in C language

char src;

long mem1;

long mem2[];

mem2[src] = mem1;

Instruction which is modified by INDEXLD

The dest of ADD:G*1*2, CMP:G*1, MOV:G*1*3, SUB, SHA, SHL.

The src of JMPI, JSRI.

*1 You can only specify G format.

*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXLD instruction.

MemorySpecify .L

AAAA
AAAA

mem1 address

mem2 address

AAAAAAAA
AAAA
AAAAFour times the

src content of
INDEXLD

Transfer

166

Chapter 3 Functions
3.3 Index instructions

(9) INDEXLS.size src
The INDEXLS (INDEX Long word Src) is used for arrays arranged in long words.

The execution addresses for the INDEXLS instruction are derived by unsigned adding four times the src

content of the INDEXLS instruction to the addresses indicated by src of the next instruction to be ex-

ecuted. The range of src of INDEXLS instruction that can be taken on is from 0 to 16383. You cannot

set otherwize.

For the next instruction executed after the INDEXLS instruction, be sure to choose memory for src.

Also, specify .L for the size specifier.

Example:
INDEXLS.B src

MOV.L:G mem1,mem2

Operation in C language

char src;

long mem1[];

long mem2;

mem2 = mem1[src];

Instruction which is modified by INDEXLS

The src of ADD:G*1*2, CMP:G*1, MOV:G*1*3, SUB.

*1 You can only specify G format.

*2 The SP can not be used in dest of ADD instruction.

*3 The dsp:8[SP] can not be used in src or dest of MOV instruction.

Only above instructions can be used next to INDEXLS instruction.

MemorySpecify .L

mem1 address

mem2 address

AAAA
AAAA
AAAA
AAAAAAAA

Four times the src
content of INDEXLS

Transfer

167

Chapter 3 Functions
3.3 Index instructions

(10) BITINDEX.size src
The BITINDEX instruction is operated on the bit that is apart from bit 0 of the address indicated by dest

as many bits as indicated by src of BITINDEX.

Make sure the next instruction to be executed after BITINDEX is a bit instruction. Also, be sure to

specify memory for src or dest.

Example:

BITINDEX.B/W src

BSET 3,mem1

Instruction which is modified by BITINDEX
The src of BAND, BNAND, BNOR, BNTST, BNXOR, BOR, BTST:G*1, BXOR.

The dest of BCLR, BMcnd, BNOT, BSET, BTSTC, BTSTS.

*1 You can only specify G format.

Memory

Becomes invalid.

Bit instruction

AAAA

AAAA

mem1 address

Bit position

168

Chapter 3 Functions
3.3 Index instructions

(11) Next instructions that can be executed after INDEX
The table below lists the next instructions that can be executed after each INDEX instruction.

INDEXB.B/.W*2 ADC, ADD:G*4, AND, CMP:G, MAX, MIN, MOV:G*3, MUL,

MULU, OR, SBB, SUB,TST,XOR

The src and dest of above instructions.

INDEXBD.B/.W*2 ABS, ADC, ADCF, ADD:G*4, AND, CLIP, CMP:G, DEC,

INC, MAX, MIN, MOV:G*3, MUL, MULU, NEG, NOT, OR,

POP, ROLC, RORC, ROT, SBB, SCcnd, SHA, SHL,

STNZ, STZ, STZX, SUB, TST, XCHG, XOR

The dest of above instructions.

INDEXBS.B/.W*2 ADC, ADD:G*4, AND, CMP:G, MAX, MIN, MOV:G*3, MUL,

MULU, OR, SBB, SUB, TST, XOR

The src of above instructions.

INDEXW.B/.W*2 ADC, ADD:G*4, AND, CMP:G, MAX, MIN, MOV:G*3, MUL,

MULU, OR, SBB, SUB, TST, XOR

The src and dest of above instructions.

INDEXWD.B/.W*2 ABS, ADC, ADCF, ADD:G*4, AND, CLIP, CMP:G, DEC,

INC, MAX, MIN, MOV:G*3, MUL, MULU, NEG, NOT, OR,

POP, ROLC, RORC, ROT, SBB, SHA, SHL, STNZ, STZ,

STZX, SUB, TST, XCHG, XOR

The dest of above instructions.

INDEXWS.B/.W*2 ADC, ADD:G*4, AND, CMP:G, MAX, MIN, MOV:G*3, MUL,

MULU, OR, SBB, SUB, TST, XOR

The src of above instructions.

INDEXL.B/.W*2 ADD:G*4, CMP:G, MOV:G*3, SUB

The src and dest of above instructions.

INDEXLD.B/.W*2 ADD:G*4, CMP:G, MOV:G*3, SHA, SHL, SUB

The dest of above instructions.

INDEXLS.B/.W*2 ADD:G*4, CMP:G, MOV:G*3, SUB

The src of above instructions.

BITINDEX.B/.W BAND, BNAND, BNOR, BNTST, BNXOR, BOR,

BTST:G, BXOR

The src of above instructions.

DIV, DIVU, DIVX, PUSH

The src of above instructions.

DIV, DIVU, DIVX, PUSH, JMPI,

JSRI

The src of above instructions.

JMPI*1, JSRI*1

The src of above instructions.

BCLR, BMcnd, BNOT, BSET,

BTSTC, BTSTS

The dest of above instructions.

Valid instruction

*1 Since the size is specified for .A(3 bytes) by .L(4 bytes), care must be taken when using the

 data table.

*2 The ADD, CMP, and MOV instructions are valid in only the G format.

*3 The dsp:8[SP] cannot be used in src or dest of MOV instruction.

*4 The SP cannot be used in src or dest of ADD instruction.

169

Chapter 3 Functions
3.3 Index instructions

(12) Addressing modes
The table below lists the addressing modes that become valid in the next instructions that can be ex-

ecuted after INDEX. Indirect addressing modes can be used in each instruction.

*1 For the MOV instruction you cannot use dsp8:[SP].

*2 The SP in the ADD instruction cannot be used.

*3 You cannot use R0L/R0/R2R0, R0H/R2/-, R1L/R1/R3R1, R1H/R3/-, SP/SP/SP, dsp:8[SP], and #IMM.

src dest

[A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

[A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] dsp:16[FB]

dsp:24[A0] dsp:24[A1] abs24 abs16

170

Chapter 3 Functions
3.3 Index instructions

Chapter 4

Instruction Code/Number of Cycles

4.1 Guide to This Chapter

4.2 Instruction Code/Number of Cycles

Chapter 4 Instruction Code
4.1 Guide to This Chapter

172

b7 b0 b7 b0 b7 b0

4.1 Guide to This Chapter

This chapter describes instruction code and number of cycles for each op-code.

The following shows how to read this chapter by using an actual page as an example.

(1) LDIPL #IMM

LDIPL

(3)

(4)

(1)

(2)

(4)

(1)

(2)

(3)

b7 b0 b7 b0

1 1 0 1 0 1 0 1 1 1 1 0 1 #IMM

(1) MAX.size #IMM,dest MAX

[Number of Bytes/Number of Cycles]

.size

.B

.W

SIZE

0

1
R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

[Number of Bytes/Number of Cycles]

 Bytes/Cycles 2/2

dsp24/abs24

dest code
dsp8

dsp16/abs16)(#IMM8

#IMM16

Chapter 4 Instruction Code 4.2 Instruction Code/Number of Cycles

0000 0001 1 0 0 0 d4 d3 d2 SIZEd1 d0 1 1 1 1 1 1

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 4/3 4/3 4/5 5/5 5/5 6/5 6/5 7/5 6/5 7/5

Chapter 4 Instruction Code
4.1 Guide to This Chapter

173

(1) Mnemonic
Shows the mnemonic explained in this page.

(2) Syntax
Shows an instruction syntax using symbols.

(3) Instruction code
Shows instruction code. Entered in () are omitted depending on src/dest you selected.

.size

.B

.W

SIZE

0

1
                         

(4) Table of cycles
Shows the number of cycles required to execute this instruction and the number of instruction bytes.
The number of cycles shown are the minimum possible, and they vary depending on the following conditions:
• Number of bytes that have been loaded in the instruction queue buffer
• Accessing of an external memory using 8-bit external bus
• Whether a wait is inserted in the bus cycle
Instruction bytes are indicated on the left side of the slash and execution cycles are indicated on the right side.

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dsp24/abs24

dest code
dsp8

dsp16/abs16)(#IMM8

#IMM16
0000 0001 1 0 0 0 d4d3d2SIZEd1d0 1 1 1 1 1 1

b7 b0 b7 b0b7 b0

        
Contents at addresses following (start

address of instruction + 2)
(See the following figure.)

Content at start
address of
instruction

Content at (start
address of instruc-

tion+1)

CorrespondenceCorrespondence

Correspondence

Contents at addresses following (start address of instruction + 2) are arranged as follows:

Content at (start
address of instruc-

tion+2)

dsp8
#IMM8

        

+0

        

+1

        

+2

8 bits

b7 b0b7 b0

b7 b0

dsp16
abs16
#IMM16

abs24
dsp24
#IMM24

Low-order 8 bits High-order 8 bits

b7 b0b7 b0

Low-order 8 bits Middle-order 8bits

b7 b0

High-order 8 bits

174

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

ABS
(1) ABS.size dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 0 1 0 d4 d3 d2 SIZE d1 d0 0 1 1 1 1 1

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dest code
dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

ADC
(1) ADC.size #IMM, dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0 b7 b0

 0000 0001 1 0 0 0 d4 d3 d2 SIZE d1 d0 1 0 1 1 1 0

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 4/1 4/1 4/3 5/3 5/3 6/3 6/3 7/3 6/3 7/3

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dest code
dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

#IMM8

#IMM16

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3, respectively.

*1 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

[Number of Bytes/Number of Cycles]

[Number of Bytes/Number of Cycles]

175

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) ADC.size src, dest

.size

.B

.W

SIZE

0

1 R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

src/destsrc/dest
s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

ADC

b7 b0 b7 b0 b7 b0

 0000 0001 1 s4 s3 s2 d4 d3 d2 SIZE d1 d0 s1 s0 0 1 0 0

dsp24/abs24

src code
dsp8

dsp16/abs16)(dsp24/abs24

dest code
dsp8

dsp16/abs16)(

src dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Rn 3/1 3/1 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

An 3/1 3/1 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

[An] 3/3 3/3 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

dsp:8[An] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

dsp:8[SB/FB] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

dsp:16[An] 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

dsp:16[SB/FB] 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

dsp:24[An] 6/3 6/3 6/4 7/4 7/4 8/4 8/4 9/4 8/4 9/4

abs16 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

abs24 6/3 6/3 6/4 7/4 7/4 8/4 8/4 9/4 8/4 9/4

[Number of Bytes/Number of Cycles]

176

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) ADCF.size dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 0 1 1 d4 d3 d2 SIZE d1 d0 0 1 1 1 1 0

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

ADCF

(1) ADD.size:G #IMM,dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 0 0 0 d4 d3 d2 SIZE d1 d0 1 0 1 1 1 0

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 3/1 3/1 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

#IMM8

#IMM16

ADD

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

dest code

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

dest code

177

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) ADD.L:G #IMM,dest
b7 b0 b7 b0

1 0 0 0 d4 d3 d2 0 d1 d0 1 1 0 0 0 1

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 6/2 6/2 6/5 7/5 7/5 8/5 8/5 9/5 8/5 9/5

---/---/R2R0

---/---/R3R1

---/---/-

---/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

ADD

#IMM32
dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

178

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(3) ADD.size:Q #IMM, dest

.size

.B

.W

.L

SIZE1

0

0

1

b7 b0 b7 b0

1 1 1 SIZE1 d4 d3 d2 SIZE2 d1 d0 1 1 IMM4

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

 0

 +1

 +2

 +3

 +4

 +5

 +6

 +7

#IMM#IMM IMM4

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

IMM4

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

dsp24/abs24

dsp8

dsp16/abs16)(
ADD

R0L/R0/R2R0

R1L/R1/R3R1

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

 -8

 -7

 -6

 -5

 -4

 -3

 -2

 -1

SIZE2

0

1

0

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/2 2/2 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]
When (.B) and (.W) is specified for the size specifier (.size)

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

When (.L) is specified for the size specifier (.size)

*3 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

179

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

dest Rn dsp:8[SB/FB] abs16

Bytes/Cycles 2/1 3/3 4/3

(4) ADD.size:S #IMM, dest

.size

.B

.W

SIZE

0

1

b7 b0

0 0 d1 d0 0 1 1 SIZE

R0L/R0

dsp:8[SB]

dsp:8[FB]

abs16

Rn

dsp:8[SB/FB]

abs16

dest d1 d0

0 0

1 0

1 1

0 1

#IMM8

#IMM16

dsp8

abs16)(
ADD

(5) ADD.L:S #IMM, A0/A1

#IMM

#1

#2

IMM

0

1

b7 b0

1 0 IMM 0 1 1 0 d0

A0

A1

A0/A1 d0

0

1

ADD

Bytes/Cycles 1/2

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

dest code

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier (.size) the number of bytes in the table is increased by 1.

[Number of Bytes/Number of Cycles]

180

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

src dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Rn 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

An 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

[An] 2/3 2/3 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4

dsp:8[An] 3/3 3/3 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

dsp:8[SB/FB] 3/3 3/3 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

dsp:16[An] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

dsp:16[SB/FB] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

dsp:24[An] 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

abs16 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

abs24 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

(6) ADD.size:G src, dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 s4 s3 s2 d4 d3 d2 SIZE d1 d0 s1 s0 1 0 0 0

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

src/destsrc/dest s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dsp24/abs24

dsp8

dsp16/abs16)(
ADD

*1 For indirect addressing, the following number is added at
the beginning of code:

01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

dest codesrc code

[Number of Bytes/Number of Cycles]

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

181

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

src dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Rn 2/2 2/2 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5

An 2/2 2/2 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5

[An] 2/5 2/5 2/8 3/8 3/8 4/8 4/8 5/8 4/8 5/8

dsp:8[An] 3/5 3/5 3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8

dsp:8[SB/FB] 3/5 3/5 3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8

dsp:16[An] 4/5 4/5 4/8 5/8 5/8 6/8 6/8 7/8 6/8 7/8

dsp:16[SB/FB] 4/5 4/5 4/8 5/8 5/8 6/8 6/8 7/8 6/8 7/8

dsp:24[An] 5/5 5/5 5/8 6/8 6/8 7/8 7/8 8/8 7/8 8/8

abs16 4/5 4/5 4/8 5/8 5/8 6/8 6/8 7/8 6/8 7/8

abs24 5/5 5/5 5/8 6/8 6/8 7/8 7/8 8/8 7/8 8/8

(7) ADD.L:G src, dest
b7 b0 b7 b0

1 s4 s3 s2 d4 d3 d2 1 d1 d0 s1 s0 0 0 1 0

---/---/R2R0

---/---/R3R1

---/---/-

---/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

src/destsrc/dest s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dsp24/abs24

dsp8

dsp16/abs16)(
ADD

dest codesrc code

*1 For indirect addressing, the following number is added at
the beginning of code:

01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

[Number of Bytes/Number of Cycles]

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

182

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

 +5

 +6

 +7

 +8

(9) ADD.L:Q #IMM3, SP
b7 b0

0 1 i2 i1 0 0 1 i0

ADD

 +1

 +2

 +3

 +4

#IMM3#IMM3 i2 i1 i0

0 0 0

0 0 1

0 1 0

0 1 1

i2 i1 i0

1 0 0

1 0 1

1 1 0

1 1 1

Bytes/Cycles 1/1

(8) ADD.L:G #IMM16, SP
b7 b0 b7 b0

1 0 1 1 0 1 1 0 0 0 0 1 0 0 1 1 #IMM16

ADD

Bytes/Cycles 4/2

[Number of Bytes/Number of Cycles]

[Number of Bytes/Number of Cycles]

183

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) ADDX #IMM, dest
b7 b0 b7 b0

1 0 0 0 d4 d3 d2 0 d1 d0 0 1 0 0 0 1

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 3/2 3/2 3/5 4/5 4/5 5/5 5/5 6/5 5/5 6/5

dsp24/abs24

dsp8

dsp16/abs16)(
ADDX

---/---/R2R0

---/---/R3R1

---/---/-

---/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

#IMM8

(10) ADD.L:S #IMM8, SP
b7 b0 b7 b0

1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1

Bytes/Cycles 3/2

#IMM8

[Number of Bytes/Number of Cycles]

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

dest code

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

184

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

src dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Rn 2/2 2/2 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5

An 2/2 2/2 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5

[An] 2/5 2/5 2/8 3/8 3/8 4/8 4/8 5/8 4/8 5/8

dsp:8[An] 3/5 3/5 3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8

dsp:8[SB/FB] 3/5 3/5 3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8

dsp:16[An] 4/5 4/5 4/8 5/8 5/8 6/8 6/8 7/8 6/8 7/8

dsp:16[SB/FB] 4/5 4/5 4/8 5/8 5/8 6/8 6/8 7/8 6/8 7/8

dsp:24[An] 5/5 5/5 5/8 6/8 6/8 7/8 7/8 8/8 7/8 8/8

abs16 4/5 4/5 4/8 5/8 5/8 6/8 6/8 7/8 6/8 7/8

abs24 5/5 5/5 5/8 6/8 6/8 7/8 7/8 8/8 7/8 8/8

(2) ADDX src, dest
b7 b0 b7 b0

1 s4 s3 s2 d4 d3 d2 0 d1 d0 s1 s0 0 0 1 0

R0L/---/---

R1L/---/---

R0H/---/-

R1H/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dsp24/abs24

dsp8

dsp16/abs16)(
ADDX

---/---/R2R0

---/---/R3R1

---/---/-

---/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

src code dest code

*1 For indirect addressing, the following number is added at
the beginning of code:

01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

[Number of Bytes/Number of Cycles]

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

185

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) ADJNZ.size #IMM, dest, label

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 1 1 1 d4 d3 d2 SIZE d1 d0 0 1 IMM4

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 3/2 3/2 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

 0

 +1

 +2

 +3

 +4

 +5

 +6

 +7

#IMM#IMM IMM4

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

IMM4

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

dsp24/abs24

dsp8

dsp16/abs16)(
ADJNZ

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

 -8

 -7

 -6

 -5

 -4

 -3

 -2

 -1

dsp8

dsp8 (label code) = address indicated by label - (start address of instruction + 2)

*1 When branched to label, the number of cycles in the table is increased by 2.

dest code label code

[Number of Bytes/Number of Cycles]

186

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) AND.size:G #IMM, dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 0 0 0 d4 d3 d2 SIZE d1 d0 1 1 1 1 1 1

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 3/1 3/1 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

dsp24/abs24

dsp8

dsp16/abs16)(
AND

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

#IMM8

#IMM16

dest Rn dsp:8[SB/FB] abs16

Bytes/Cycles 2/1 3/3 4/3

(2) AND.size:S #IMM, dest

.size

.B

.W

SIZE

0

1

b7 b0

0 1 d1 d0 1 1 0 SIZE

R0L/R0

dsp:8[SB]

dsp:8[FB]

abs16

Rn

dsp:8[SB/FB]

abs16

dest d1 d0

0 0

1 0

1 1

0 1

#IMM8

#IMM16

dsp8

abs16)(
AND

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier (.size) the number of bytes in the table is increased by 1.

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

dest code

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier (.size) the number of bytes in the table is increased by 1.

187

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

 src dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Rn 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

An 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

[An] 2/3 2/3 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4

dsp:8[An] 3/3 3/3 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

dsp:8[SB/FB] 3/3 3/3 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

dsp:16[An] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

dsp:16[SB/FB] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

dsp:24[An] 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

abs16 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

abs24 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

(3) AND.size:G src, dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 s4 s3 s2 d4 d3 d2 SIZE d1 d0 s1 s0 1 1 0 1

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

src/destsrc/dest s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dsp24/abs24

dsp8

dsp16/abs16)(
AND

src code dest code

*1 For indirect addressing, the following number is added at
the beginning of code:

01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

[Number of Bytes/Number of Cycles]

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

188

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

bit,Rn

3/2

BAND
(1) BAND src

 src

 Bytes/Cycles

bit,R0L

bit,R0H

bit,R1L

bit,R1H

bit,A0

bit,A1

bit,[A0]

bit,[A1]

bit,base:11[A0]

bit,base:11[A1]

bit,base:11[SB/FB]

bit,base:19[An]

bit,base:19[SB/FB]

bit,base:27[An]

bit,base:19

bit,base:27

Rn

An

[An]

bit,base:11[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 0 0

1 0 0 1 1

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

bit,base:11[SB]

bit,base:11[FB]

bit,base:19[A0]

bit,base:19[A1]

bit,base:19[SB]

bit,base:19[FB]

bit,base:27[A0]

bit,base:27[A1]

bit,base:19

bit,base:27

BCLR

b7 b0 b7 b0 b7 b0

 0000 0001 1 1 0 1 s4 s3 s2 0 s1 s0 0 0 1 BIT

dsp24/abs24

dsp8

dsp16/abs16)(

bit,An

3/2

bit,[An]

3/4

bit,base:11
[An]

4/4

 bit,base:11
[SB/FB]

4/4

bit,base:19
[An]

5/4

 bit,base:19
[SB/FB]

5/4

bit,base:27
[An]

6/4

bit,base:19

5/4

 bit,base:27

6/4

bit,Rn

2/1

(1) BCLR dest

 dest

 Bytes/Cycles

bit,R0L

bit,R0H

bit,R1L

bit,R1H

bit,A0

bit,A1

bit,[A0]

bit,[A1]

bit,base:11[A0]

bit,base:11[A1]

bit,base:11[SB/FB]

bit,base:27[An]

bit,base:19[SB/FB]

bit,base:27[An]

bit,base:19

bit,base:27

Rn

An

[An]

bit,base:11[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 0 0

1 0 0 1 1

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

bit,base:11[SB]

bit,base:11[FB]

bit,base:19[A0]

bit,base:19[A1]

bit,base:19[SB]

bit,base:19[FB]

bit,base:27[A0]

bit,base:27[A1]

bit,base:19

bit,base:27

dsp24/abs24

dsp8

dsp16/abs16)(

bit,An

2/1

bit,[An]

2/3

bit,base:11
[An]

3/3

 bit,base:11
[SB/FB]

3/3

bit,base:19
[An]

4/3

 bit,base:19
[SB/FB]

4/3

bit,base:27
[An]

5/3

bit,base:19

4/3

 bit,base:27

5/3

b7 b0 b7 b0

1 1 0 1 d4 d3 d2 0 d1 d0 1 1 0 BIT

src code

[Number of Bytes/Number of Cycles]

dest code

[Number of Bytes/Number of Cycles]

189

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

BITINDEX
(1) BITINDEX.size src

dsp24/abs24

dsp8

dsp16/abs16)(
b7 b0 b7 b0

1 1 0 0 d4 d3 d2 SIZE d1 d0 1 0 1 1 1 0

.size

.B

.W

SIZE

0

1
R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

*1 The cycles of next instruction to be executed is increased by 1.

src code

[Number of Bytes/Number of Cycles]

src Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/4 2/4 2/6 3/3 3/6 4/6 4/6 5/6 4/6 5/6

190

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

GEU/C

GTU

EQ/Z

N

O

LE

LT

(1) BMcnd dest

BMcnd

bit,Rn

3/3

 dest

 Bytes/Cycles

bit,R0L

bit,R0H

bit,R1L

bit,R1H

bit,A0

bit,A1

bit,[A0]

bit,[A1]

bit,base:11[A0]

bit,base:11[A1]

bit,base:11[SB/FB]

bit,base:19[An]

bit,base:19[SB/FB]

bit,base:27[An]

bit,base:19

bit,base:27

Rn

An

[An]

bit,base:11[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 0 0

1 0 0 1 1

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

bit,base:11[SB]

bit,base:11[FB]

bit,base:19[A0]

bit,base:19[A1]

bit,base:19[SB]

bit,base:19[FB]

bit,base:27[A0]

bit,base:27[A1]

bit,base:19

bit,base:27

dsp24/abs24

dsp8

dsp16/abs16)(

bit,An

3/3

bit,[An]

3/4

bit,base:11
[An]

4/4

 bit,base:11
[SB/FB]

4/4

bit,base:19
[An]

5/4

 bit,base:19
[SB/FB]

5/4

bit,base:27
[An]

6/4

bit,base:19

5/4

 bit,base:27

6/4

b7 b0 b7 b0

LTU/NC

LEU

NE/NZ

PZ

NO

GT

GE

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

Cnd CND Cnd CND

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

 0 0 0 0 CND1 1 0 1 d4 d3 d2 0 d1 d0 0 1 0 BIT

dest code

[Number of Bytes/Number of Cycles]

191

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

GEU/C

GTU

EQ/Z

N

O

LE

LT

(2) BMcnd C
BMcnd

b7 b0 b7 b0

1 1 0 1 1 0 0 1 0 C 1 0 1 CND

LTU/NC

LEU

NE/NZ

PZ

NO

GT

GE

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

Cnd CND Cnd CND

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

C C

 2/2Bytes/Cycles

[Number of Bytes/Number of Cycles]

192

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) BNOR src

BNOR

bit,R0L

bit,R0H

bit,R1L

bit,R1H

bit,A0

bit,A1

bit,[A0]

bit,[A1]

bit,base:11[A0]

bit,base:11[A1]

bit,base:11[SB/FB]

bit,base:19[An]

bit,base:19[SB/FB]

bit,base:27[An]

bit,base:19

bit,base:27

Rn

An

[An]

bit,base:11[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 0 0

1 0 0 1 1

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

bit,base:11[SB]

bit,base:11[FB]

bit,base:19[A0]

bit,base:19[A1]

bit,base:19[SB]

bit,base:19[FB]

bit,base:27[A0]

bit,base:27[A1]

bit,base:19

bit,base:27

b7 b0 b7 b0 b7 b0

dsp24/abs24

dsp8

dsp16/abs16)(0000 0001 1 1 0 1 s4 s3 s2 0 s1 s0 1 1 0 BIT

(1) BNAND src

BNAND

bit,R0L

bit,R0H

bit,R1L

bit,R1H

bit,A0

bit,A1

bit,[A0]

bit,[A1]

bit,base:11[A0]

bit,base:11[A1]

bit,base:11[SB/FB]

bit,base:19[An]

bit,base:19[SB/FB]

bit,base:27[An]

bit,base:19

bit,base:27

Rn

An

[An]

bit,base:11[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 0 0

1 0 0 1 1

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

bit,base:11[SB]

bit,base:11[FB]

bit,base:19[A0]

bit,base:19[A1]

bit,base:19[SB]

bit,base:19[FB]

bit,base:27[A0]

bit,base:27[A1]

bit,base:19

bit,base:27

b7 b0 b7 b0 b7 b0

dsp24/abs24

src code
dsp8

dsp16/abs16)(0000 0001 1 1 0 1 s4 s3 s2 0 s1 s0 0 1 1 BIT

[Number of Bytes/Number of Cycles]

bit,Rn

3/2

 src

 Bytes/Cycles

bit,An

3/2

bit,[An]

3/4

bit,base:11
[An]

4/4

 bit,base:11
[SB/FB]

4/4

bit,base:19
[An]

5/4

 bit,base:19
[SB/FB]

5/4

bit,base:27
[An]

6/4

bit,base:19

5/4

 bit,base:27

6/4

bit,Rn

3/2

 src

 Bytes/Cycles

bit,An

3/2

bit,[An]

3/4

bit,base:11
[An]

4/4

 bit,base:11
[SB/FB]

4/4

bit,base:19
[An]

5/4

 bit,base:19
[SB/FB]

5/4

bit,base:27
[An]

6/4

bit,base:19

5/4

 bit,base:27

6/4

src code

[Number of Bytes/Number of Cycles]

193

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) BNOT dest

BNOT

bit,R0L

bit,R0H

bit,R1L

bit,R1H

bit,A0

bit,A1

bit,[A0]

bit,[A1]

bit,base:11[A0]

bit,base:11[A1]

bit,base:11[SB/FB]

bit,base:19[An]

bit,base:19[SB/FB]

bit,base:27[An]

bit,base:19

bit,base:27

Rn

An

[An]

bit,base:11[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 0 0

1 0 0 1 1

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

bit,base:11[SB]

bit,base:11[FB]

bit,base:19[A0]

bit,base:19[A1]

bit,base:19[SB]

bit,base:19[FB]

bit,base:27[A0]

bit,base:27[A1]

bit,base:19

bit,base:27

b7 b0 b7 b0

dsp24/abs24

dsp8

dsp16/abs16)(1 1 0 1 d4 d3 d2 0 d1 d0 0 1 1 BIT

(1) BNTST src

BNTST

bit,R0L

bit,R0H

bit,R1L

bit,R1H

bit,A0

bit,A1

bit,[A0]

bit,[A1]

bit,base:11[A0]

bit,base:11[A1]

bit,base:11[SB/FB]

bit,base:19[An]

bit,base:19[SB/FB]

bit,base:27[An]

bit,base:19

bit,base:27

Rn

An

[An]

bit,base:11[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 0 0

1 0 0 1 1

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

bit,base:11[SB]

bit,base:11[FB]

bit,base:19[A0]

bit,base:19[A1]

bit,base:19[SB]

bit,base:19[FB]

bit,base:27[A0]

bit,base:27[A1]

bit,base:19

bit,base:27

bit,Rn

2/1

 src

 Bytes/Cycles

bit,An

2/1

bit,[An]

2/3

bit,base:11
[An]

3/3

 bit,base:11
[SB/FB]

3/3

bit,base:19
[An]

4/3

 bit,base:19
[SB/FB]

4/3

bit,base:27
[An]

5/3

bit,base:19

4/3

 bit,base:27

5/3

bit,Rn

2/1

 dest

 Bytes/Cycles

bit,An

2/1

bit,[An]

2/3

bit,base:11
[An]

3/3

 bit,base:11
[SB/FB]

3/3

bit,base:19
[An]

4/3

 bit,base:19
[SB/FB]

4/3

bit,base:27
[An]

5/3

bit,base:19

4/3

 bit,base:27

5/3

b7 b0 b7 b0 b7 b0

dsp24/abs24

dsp8

dsp16/abs16)(0000 0001 1 1 0 1 s4 s3 s2 0 s1 s0 0 0 0 BIT

dest code

[Number of Bytes/Number of Cycles]

src code

[Number of Bytes/Number of Cycles]

194

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) BOR src

BOR

bit,R0L

bit,R0H

bit,R1L

bit,R1H

bit,A0

bit,A1

bit,[A0]

bit,[A1]

bit,base:11[A0]

bit,base:11[A1]

bit,base:11[SB/FB]

bit,base:19[An]

bit,base:19[SB/FB]

bit,base:27[An]

bit,base:19

bit,base:27

Rn

An

[An]

bit,base:11[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 0 0

1 0 0 1 1

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

bit,base:11[SB]

bit,base:11[FB]

bit,base:19[A0]

bit,base:19[A1]

bit,base:19[SB]

bit,base:19[FB]

bit,base:27[A0]

bit,base:27[A1]

bit,base:19

bit,base:27

b7 b0 b7 b0 b7 b0

dsp24/abs24

dsp8

dsp16/abs16)(0000 0001 1 1 0 1 s4 s3 s2 0 s1 s0 1 0 0 BIT

(1) BNXOR src

BNXOR

bit,R0L

bit,R0H

bit,R1L

bit,R1H

bit,A0

bit,A1

bit,[A0]

bit,[A1]

bit,base:11[A0]

bit,base:11[A1]

bit,base:11[SB/FB]

bit,base:19[An]

bit,base:19[SB/FB]

bit,base:27[An]

bit,base:19

bit,base:27

Rn

An

[An]

bit,base:11[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 0 0

1 0 0 1 1

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

bit,base:11[SB]

bit,base:11[FB]

bit,base:19[A0]

bit,base:19[A1]

bit,base:19[SB]

bit,base:19[FB]

bit,base:27[A0]

bit,base:27[A1]

bit,base:19

bit,base:27

b7 b0 b7 b0 b7 b0

dsp24/abs24

dsp8

dsp16/abs16)(0000 0001 1 1 0 1 s4 s3 s2 0 s1 s0 1 1 1 BIT

bit,Rn

3/2

 src

 Bytes/Cycles

bit,An

3/2

bit,[An]

3/4

bit,base:11
[An]

4/4

 bit,base:11
[SB/FB]

4/4

bit,base:19
[An]

5/4

 bit,base:19
[SB/FB]

5/4

bit,base:27
[An]

6/4

bit,base:19

5/4

 bit,base:27

6/4

bit,Rn

3/2

bit,An

3/2

bit,[An]

3/4

bit,base:11
[An]

4/4

 bit,base:11
[SB/FB]

4/4

bit,base:19
[An]

5/4

 bit,base:19
[SB/FB]

5/4

bit,base:27
[An]

6/4

bit,base:19

5/4

 bit,base:27

6/4

src code

[Number of Bytes/Number of Cycles]

[Number of Bytes/Number of Cycles]

src code

 src

 Bytes/Cycles

195

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

BRK

 1/17

(1) BRK

Bytes/Cycles

b7 b0

0 0 0 0 0 0 0 0

*1 When you specify the target address of the BRK interrupt by use of the interruput table register (INTB) the number of
cycles shown in the table increases by 2. At this time, set FF16 in address FFFFE416 through FFFFE716.

 1/19

(1) BRK2

Bytes/Cycles

b7 b0

0 0 0 0 1 0 0 0

BRK2

[Number of Bytes/Number of Cycles]

[Number of Bytes/Number of Cycles]

196

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

 bit,base:27

5/3

(1) BTST:G src

BTST

bit,R0L

bit,R0H

bit,R1L

bit,R1H

bit,A0

bit,A1

bit,[A0]

bit,[A1]

bit,base:11[A0]

bit,base:11[A1]

bit,base:11[SB/FB]

bit,base:19[An]

bit,base:19[SB/FB]

bit,base:27[An]

bit,base:19

bit,base:27

Rn

An

[An]

bit,base:11[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 0 0

1 0 0 1 1

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

bit,base:11[SB]

bit,base:11[FB]

bit,base:19[A0]

bit,base:19[A1]

bit,base:19[SB]

bit,base:19[FB]

bit,base:27[A0]

bit,base:27[A1]

bit,base:19

bit,base:27

dsp24/abs24

dsp8

dsp16/abs16)(
b7 b0 b7 b0

1 1 0 1 s4 s3 s2 0 s1 s0 0 0 0 BIT

bit,Rn

2/1

 src

 Bytes/Cycles

bit,An

2/1

bit,[An]

2/3

bit,base:11
[An]

3/3

 bit,base:11
[SB/FB]

3/3

bit,base:19
[An]

4/3

 bit,base:19
[SB/FB]

4/3

bit,base:27
[An]

5/3

bit,base:19

4/3

BSET
(1) BSET dest

bit,R0L

bit,R0H

bit,R1L

bit,R1H

bit,A0

bit,A1

bit,[A0]

bit,[A1]

bit,base:11[A0]

bit,base:11[A1]

bit,base:11[SB/FB]

bit,base:19[An]

bit,base:19[SB/FB]

bit,base:27[An]

bit,base:19

bit,base:27

Rn

An

[An]

bit,base:11[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 0 0

1 0 0 1 1

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

bit,base:11[SB]

bit,base:11[FB]

bit,base:19[A0]

bit,base:19[A1]

bit,base:19[SB]

bit,base:19[FB]

bit,base:27[A0]

bit,base:27[A1]

bit,base:19

bit,base:27

dsp24/abs24

dsp8

dsp16/abs16)(
b7 b0 b7 b0

1 1 0 1 d4 d3 d2 0 d1 d0 1 1 1 BIT

bit,Rn

2/1

 dest

 Bytes/Cycles

bit,An

2/1

bit,[An]

2/3

bit,base:11
[An]

3/3

 bit,base:11
[SB/FB]

3/3

bit,base:19
[An]

4/3

 bit,base:19
[SB/FB]

4/3

bit,base:27
[An]

5/3

bit,base:19

4/3

 bit,base:27

5/3

dest code

[Number of Bytes/Number of Cycles]

src code

[Number of Bytes/Number of Cycles]

197

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

BTSTC
(1) BTSTC dest

bit,R0L

bit,R0H

bit,R1L

bit,R1H

bit,A0

bit,A1

bit,[A0]

bit,[A1]

bit,base:11[A0]

bit,base:11[A1]

bit,base:11[SB/FB]

bit,base:19[An]

bit,base:19[SB/FB]

bit,base:27[An]

bit,base:19

bit,base:27

Rn

An

[An]

bit,base:11[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 0 0

1 0 0 1 1

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

bit,base:11[SB]

bit,base:11[FB]

bit,base:19[A0]

bit,base:19[A1]

bit,base:19[SB]

bit,base:19[FB]

bit,base:27[A0]

bit,base:27[A1]

bit,base:19

bit,base:27

dsp24/abs24

dsp8

dsp16/abs16)(
b7 b0 b7 b0

1 1 0 1 d4 d3 d2 0 d1 d0 1 0 0 BIT

bit,Rn

2/2

 dest

 Bytes/Cycles

bit,An

2/2

bit,[An]

2/4

bit,base:11
[An]

3/4

 bit,base:11
[SB/FB]

3/4

bit,base:19
[An]

4/4

 bit,base:19
[SB/FB]

4/4

bit,base:27
[An]

5/4

bit,base:19

4/4

 bit,base:27

5/4

(2) BTST:S src
BTST

abs16

b7 b0

0 0 b2 b1 1 0 1 b0

 3/3Bytes/Cycles

 bit,base:19 src

src code

dest code

[Number of Bytes/Number of Cycles]

[Number of Bytes/Number of Cycles]

198

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) BXOR src

BXOR

bit,R0L

bit,R0H

bit,R1L

bit,R1H

bit,A0

bit,A1

bit,[A0]

bit,[A1]

bit,base:11[A0]

bit,base:11[A1]

bit,base:11[SB/FB]

bit,base:19[An]

bit,base:19[SB/FB]

bit,base:27[An]

bit,base:19

bit,base:27

Rn

An

[An]

bit,base:11[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 0 0

1 0 0 1 1

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

bit,base:11[SB]

bit,base:11[FB]

bit,base:19[A0]

bit,base:19[A1]

bit,base:19[SB]

bit,base:19[FB]

bit,base:27[A0]

bit,base:27[A1]

bit,base:19

bit,base:27

dsp24/abs24

dsp8

dsp16/abs16)(

BTSTS
(1) BTSTS dest

bit,R0L

bit,R0H

bit,R1L

bit,R1H

bit,A0

bit,A1

bit,[A0]

bit,[A1]

bit,base:11[A0]

bit,base:11[A1]

bit,base:11[SB/FB]

bit,base:19[An]

bit,base:19[SB/FB]

bit,base:27[An]

bit,base:19

bit,base:27

Rn

An

[An]

bit,base:11[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 0 0

1 0 0 1 1

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

bit,base:11[SB]

bit,base:11[FB]

bit,base:19[A0]

bit,base:19[A1]

bit,base:19[SB]

bit,base:19[FB]

bit,base:27[A0]

bit,base:27[A1]

bit,base:19

bit,base:27

dsp24/abs24

dsp8

dsp16/abs16)(
b7 b0 b7 b0

1 1 0 1 d4 d3 d2 0 d1 d0 1 0 1 BIT

b7 b0 b7 b0 b7 b0

 0000 0001 1 1 0 1 s4 s3 s2 0 s1 s0 1 0 1 BIT

bit,Rn

2/2

 dest

 Bytes/Cycles

bit,An

2/2

bit,[An]

2/4

bit,base:11
[An]

3/4

 bit,base:11
[SB/FB]

3/4

bit,base:19
[An]

4/4

 bit,base:19
[SB/FB]

4/4

bit,base:27
[An]

5/4

bit,base:19

4/4

 bit,base:27

5/4

bit,Rn

3/2

 src

 Bytes/Cycles

bit,An

3/2

bit,[An]

3/4

bit,base:11
[An]

4/4

 bit,base:11
[SB/FB]

4/4

bit,base:19
[An]

5/4

 bit,base:19
[SB/FB]

5/4

bit,base:27
[An]

6/4

bit,base:19

5/4

 bit,base:27

6/4

[Number of Bytes/Number of Cycles]

dest code

src code

[Number of Bytes/Number of Cycles]

199

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) CLIP.size #IMM1, #IMM2, dest

#IMM8-1

#IMM16-1

dsp24/abs24

dest code
dsp8

dsp16/abs16)(

CLIP

b7 b0 b7 b0 b7 b0

 0000 0001 1 0 0 0 d4 d3 d2 SIZE d1 d0 1 1 1 1 1 0

.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 5/6 5/6 5/8 6/8 6/8 7/8 7/8 8/8 7/8 8/8

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

#IMM8-2

#IMM16-2

*1 When (.W) is specified for the size specifier (.size) the numberof bytes in the table is increased by 2.

200

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) CMP.L:G #IMM32, dest
b7 b0 b7 b0

1 0 1 0 d4 d3 d2 0 d1 d0 1 1 0 0 0 1

---/---/R2R0

---/---/R3R1

---/---/-

---/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

CMP

#IMM32

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 6/2 6/2 6/4 7/4 7/4 8/4 8/4 9/4 8/4 9/4

b7 b0 b7 b0

1 0 0 1 d4 d3 d2 SIZE d1 d0 1 0 1 1 1 0

CMP
(1) CMP.size:G #IMM, dest

.size

.B

.W

SIZE

0

1

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 3/1 3/1 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

#IMM8

#IMM16

dest code

[Number of Bytes/Number of Cycles]

*1 When dest is indirectly addressed, the code has
00001001 added at the beginning.

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier (.size), the number of bytes in the table is increased by 1.

dest code

*1 When dest is indirectly addressed, the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

201

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

b7 b0 b7 b0

1 1 1 0 d4 d3 d2 SIZE d1 d0 0 1 IMM4

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

 0

 +1

 +2

 +3

 +4

 +5

 +6

 +7

#IMM#IMM IMM4

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

IMM4

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

dsp24/abs24

dsp8

dsp16/abs16)(
CMP

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

 -8

 -7

 -6

 -5

 -4

 -3

 -2

 -1

.size

.B

.W

SIZE

0

1

dest code

*1 When dest is indirectly addressed, the code has
00001001 added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

(3) CMP.size:Q #IMM, dest

202

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

dest Rn dsp:8[SB/FB] abs16

Bytes/Cycles 2/1 3/3 4/3

(4) CMP.size:S #IMM, dest

.size

.B

.W

SIZE

0

1

b7 b0

0 1 d1 d0 0 1 1 SIZE

R0L/R0

dsp:8[SB]

dsp:8[FB]

abs16

Rn

dsp:8[SB/FB]

abs16

dest d1 d0

0 0

1 0

1 1

0 1

#IMM8

#IMM16

dsp8

abs16)(
CMP

dest code

*1 When dest is indirectly addressed, the code has
00001001 added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier (.size), the number of bytes in the table is increased by 1.

203

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

 src dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Rn 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

An 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

[An] 2/3 2/3 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4

dsp:8[An] 3/3 3/3 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

dsp:8[SB/FB] 3/3 3/3 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

dsp:16[An] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

dsp:16[SB/FB] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

dsp:24[An] 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

abs16 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

abs24 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

(5) CMP.size:G src, dest
b7 b0 b7 b0

1 s4 s3 s2 d4 d3 d2 SIZE d1 d0 s1 s0 0 1 1 0

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

src/destsrc/dest s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dsp24/abs24

dsp8

dsp16/abs16)(
CMP

.size

.B

.W

SIZE

0

1

dest codesrc code

*1 For indirect addressing, the following number is added at
the beginning of code:

01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

[Number of Bytes/Number of Cycles]

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

204

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

1 s4 s3 s2 d4 d3 d2 1 d1 d0 s1 s0 0 0 0 1

src dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Rn 2/2 2/2 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5

An 2/2 2/2 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5

[An] 2/5 2/5 2/8 3/8 3/8 4/8 4/8 5/8 4/8 5/8

dsp:8[An] 3/5 3/5 3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8

dsp:8[SB/FB] 3/5 3/5 3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8

dsp:16[An] 4/5 4/5 4/8 5/8 5/8 6/8 6/8 7/8 6/8 7/8

dsp:16[SB/FB] 4/5 4/5 4/8 5/8 5/8 6/8 6/8 7/8 6/8 7/8

dsp:24[An] 5/5 5/5 5/8 6/8 6/8 7/8 7/8 8/8 7/8 8/8

abs16 4/5 4/5 4/8 5/8 5/8 6/8 6/8 7/8 6/8 7/8

abs24 5/5 5/5 5/8 6/8 6/8 7/8 7/8 8/8 7/8 8/8

(6) CMP.L:G src, dest
b7 b0 b7 b0

---/---/R2R0

---/---/R3R1

---/---/-

---/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

src/destsrc/dest s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dsp24/abs24

dsp8

dsp16/abs16)(
CMP

dest codesrc code

*1 For indirect addressing, the following number is added at
the beginning of code:

01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

[Number of Bytes/Number of Cycles]

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

205

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

src dsp:8[SB/FB] abs16

Bytes/Cycles 2/3 3/3

(7) CMP.size:S src, R0/R0L

.size

.B

.W

SIZE

0

1

b7 b0

0 1 d1 d0 0 0 0 SIZE

dsp:8[SB]

dsp:8[FB]

abs16

dsp:8[SB/FB]

abs16

src d1 d0

1 0

1 1

0 1

dsp8

abs16)(
CMP

*1 When src is indirectly addressed, the code has 00001001
added at the beginning.

src code

[Number of Bytes/Number of Cycles]

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

206

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) DADC.size #IMM, dest

.size

.B

.W

SIZE

0

1

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

#IMM8

#IMM16

DADC

b7 b0 b7 b0 b7 b0

 0000 0001 1 0 0 0 d4 d3 d2 SIZE d1 d0 0 0 1 1 1 0

(1) CMPX #IMM, dest
b7 b0 b7 b0

1 0 1 0 d4 d3 d2 0 d1 d0 0 1 0 0 0 1

--- / --- /R2R0

--- / --- /R3R1

--- / --- /-

--- / --- /-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

CMPX

#IMM8

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 3/2 3/2 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 4/4 4/4 4/6 5/6 5/6 6/6 6/6 7/6 6/6 7/6

dest code

*1 When dest is indirectly addressed, the code has
00001001 added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

dest code

[Number of Bytes/Number of Cycles]

*1 When (.W)is specified for the size specifier(.size), the numberof bytes in the table is increased by 1.

207

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

src dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Rn 3/4 3/4 3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6

An 3/4 3/4 3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6

[An] 3/6 3/6 3/7 4/7 4/7 5/7 5/7 6/7 5/7 6/7

dsp:8[An] 4/6 4/6 4/7 5/7 5/7 6/7 6/7 7/7 6/7 7/7

dsp:8[SB/FB] 4/6 4/6 4/7 5/7 5/7 6/7 6/7 7/7 6/7 7/7

dsp:16[An] 5/6 5/6 5/7 6/7 6/7 7/7 7/7 8/7 7/7 8/7

dsp:16[SB/FB] 5/6 5/6 5/7 6/7 6/7 7/7 7/7 8/7 7/7 8/7

dsp:24[An] 6/6 6/6 6/7 7/7 7/7 8/7 8/7 9/7 8/7 9/7

abs16 5/6 5/6 5/7 6/7 6/7 7/7 7/7 8/7 7/7 8/7

abs24 6/6 6/6 6/7 7/7 7/7 8/7 8/7 9/7 8/7 9/7

(2) DADC.size src, dest

dsp24/abs24

dsp8

dsp16/abs16)(dsp24/abs24

dsp8

dsp16/abs16)(
DADC

b7 b0 b7 b0 b7 b0

 0000 0001 1 s4 s3 s2 d4 d3 d2 SIZE d1 d0 s1 s0 1 0 0 0

.size

.B

.W

SIZE

0

1 R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

src/destsrc/dest s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

src code dest code

[Number of Bytes/Number of Cycles]

208

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) DADD.size #IMM, dest

.size

.B

.W

SIZE

0

1

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 4/4 4/4 4/6 5/6 5/6 6/6 6/6 7/6 6/6 7/6

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

#IMM8

#IMM16

b7 b0 b7 b0 b7 b0

 0000 0001 1 0 0 0 d4 d3 d2 SIZE d1 d0 0 1 1 1 1 0

DADD
dest code

[Number of Bytes/Number of Cycles]

*1 When (.W) is specified for the size specifier (.size), the number of bytes in the table is increased by 1.

209

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

DADD

src dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

 Rn 3/4 3/4 3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6

 An 3/4 3/4 3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6

 [An] 3/6 3/6 3/7 4/7 4/7 5/7 5/7 6/7 5/7 6/7

 dsp:8[An] 4/6 4/6 4/7 5/7 5/7 6/7 6/7 7/7 6/7 7/7

 dsp:8[SB/FB] 4/6 4/6 4/7 5/7 5/7 6/7 6/7 7/7 6/7 7/7

 dsp:16[An] 5/6 5/6 5/7 6/7 6/7 7/7 7/7 8/7 7/7 8/7

 dsp:16[SB/FB] 5/6 5/6 5/7 6/7 6/7 7/7 7/7 8/7 7/7 8/7

 dsp:24[An] 6/6 6/6 6/7 7/7 7/7 8/7 8/7 9/7 8/7 9/7

 abs16 5/6 5/6 5/7 6/7 6/7 7/7 7/7 8/7 7/7 8/7

 abs24 6/6 6/6 6/7 7/7 7/7 8/7 8/7 9/7 8/7 9/7

(2) DADD.size src, dest

dsp24/abs24

dsp8

dsp16/abs16)(dsp24/abs24

dsp8

dsp16/abs16)(
b7 b0 b7 b0 b7 b0

 0000 0001 1 s4 s3 s2 d4 d3 d2 SIZE d1 d0 s1 s0 0 0 0 0

.size

.B

.W

SIZE

0

1 R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

src/destsrc/dest s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dest codesrc code

[Number of Bytes/Number of Cycles]

210

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

 Bytes/Cycles 3/18

(1) DIV.size #IMM

.size

.B

.W

SIZE

0

1

#IMM8

#IMM16

DIV

b7 b0 b7 b0

1 0 1 1 0 0 0 0 0 1 0 SIZE 0 0 1 1

(1) DEC.size dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 0 1 1 d4 d3 d2 SIZE d1 d0 0 0 1 1 1 0

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

dsp24/abs24

dsp8

dsp16/abs16)(
DEC

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dest code

*1 When dest is indirectly addressed,the code has
00001001 added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

[Number of Bytes/Number of Cycles]

*1 When (.W) is specified for the size specifier (.size), the number of bytes and cycles in the table are increased by 1 and
6, respectively.

211

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

src Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/18 2/18 2/20 3/20 3/20 4/20 4/20 5/20 4/20 5/20

(2) DIV.size src

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 0 0 0 s4 s3 s2 SIZE s1 s0 0 1 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
DIV

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

Bytes/Cycles 3/18

(1) DIVU.size #IMM

.size

.B

.W

SIZE

0

1

#IMM8

#IMM16

DIVU

b7 b0 b7 b0

1 0 1 1 0 0 0 0 0 0 0 SIZE 0 0 1 1

*1 When src is indirectly addressed, the code has 00001001
added at the beginning.

src code

[Number of Bytes/Number of Cycles]

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier (.size), the number of bytes in the table is increased by 6.

[Number of Bytes/Number of Cycles]

*1 When (.W) is specified for the size specifier (.size), the number of bytes and cycles in the table are increased by 1 and
5, respectively.

212

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

 Bytes/Cycles 3/18

(1) DIVX.size #IMM

.size

.B

.W

SIZE

0

1

#IMM8

#IMM16

DIVX

b7 b0 b7 b0

1 0 1 1 0 0 1 0 0 1 0 SIZE 0 0 1 1

(2) DIV.size src

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 0 0 0 s4 s3 s2 SIZE s1 s0 0 0 1 1 1 0
dsp8

dsp16/abs16)(
DIVU

src Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/18 2/18 2/20 3/20 3/20 4/20 4/20 5/20 4/20 5/20

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

*1 When src is indirectly addressed, the code has 00001001
added at the beginning.

src code

[Number of Bytes/Number of Cycles]

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier (.size), the number of cycles in the table is increased by 5.

[Number of Bytes/Number of Cycles]

*1 When (.W) is specified for the size specifier (.size), the number of bytes and cycles in the table are increased by 1 and
6, respectively.

dsp24/abs24

213

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) DIVX.size src

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 0 0 1 s4 s3 s2 SIZE s1 s0 0 1 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
DIVX

src Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An]abs16 abs24

Bytes/Cycles 2/18 2/18 2/20 3/20 3/20 4/20 4/20 5/20 4/20 5/20

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

DSBB
(1) DSBB.size #IMM, dest

.size

.B

.W

SIZE

0

1

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Btyes/Cycles 4/2 4/2 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

#IMM8

#IMM16

b7 b0 b7 b0 b7 b0

 0000 0001 1 0 0 1 d4 d3 d2 SIZE d1 d0 0 0 1 1 1 0

*1 When src is indirectly addressed,the code has 00001001
added at the beginning.

src code

[Number of Bytes/Number of Cycles]

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier (.size), the number of cycles in the table is increased by 6.

dest code

[Number of Bytes/Number of Cycles]

*1 When (.W) is specified for the size specifier (.size), the numberof bytes in the table is increased by 1.

214

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

src dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Rn 3/2 3/2 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

An 3/2 3/2 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

[An] 3/4 3/4 3/5 4/5 4/5 5/5 5/5 6/5 5/5 6/5

dsp:8[An] 4/4 4/4 4/5 5/5 5/5 6/5 6/5 7/5 6/5 7/5

dsp:8[SB/FB] 4/4 4/4 4/5 5/5 5/5 6/5 6/5 7/5 6/5 7/5

dsp:16[An] 5/4 5/4 5/5 6/5 6/5 7/5 7/5 8/5 7/5 8/5

dsp:16[SB/FB] 5/4 5/4 5/5 6/5 6/5 7/5 7/5 8/5 7/5 8/5

dsp:24[An] 6/4 6/4 6/5 7/5 7/5 8/5 8/5 9/5 8/5 9/5

abs16 5/4 5/4 5/5 6/5 6/5 7/5 7/5 8/5 7/5 8/5

abs24 6/4 6/4 6/5 7/5 7/5 8/5 8/5 9/5 8/5 9/5

(2) DSBB.size src, dest

dsp24/abs24

dsp8

dsp16/abs16)(dsp24/abs24

dsp8

dsp16/abs16)(
b7 b0 b7 b0 b7 b0

 0000 0001 1 s4 s3 s2 d4 d3 d2 SIZE d1 d0 s1 s0 1 0 1 0

.size

.B

.W

SIZE

0

1 R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

src/destsrc/dest s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

DSBB

src code dest code

[Number of Bytes/Number of Cycles]

215

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) DSUB.size #IMM, dest

.size

.B

.W

SIZE

0

1

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 4/2 4/2 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

#IMM8

#IMM16

DSUB

b7 b0 b7 b0 b7 b0

 0000 0001 1 0 0 1 d4 d3 d2 SIZE d1 d0 0 1 1 1 1 0

dest code

[Number of Bytes/Number of Cycles]

*1 When (.W) is specified for the size specifier (.size), the numberof bytes in the table is increased by 1.

216

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

src dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Rn 3/2 3/2 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

An 3/2 3/2 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

[An] 3/4 3/4 3/5 4/5 4/5 5/5 5/5 6/5 5/5 6/5

dsp:8[An] 4/4 4/4 4/5 5/5 5/5 6/5 6/5 7/5 6/5 7/5

dsp:8[SB/FB] 4/4 4/4 4/5 5/5 5/5 6/5 6/5 7/5 6/5 7/5

dsp:16[An] 5/4 5/4 5/5 6/5 6/5 7/5 7/5 8/5 7/5 8/5

dsp:16[SB/FB] 5/4 5/4 5/5 6/5 6/5 7/5 7/5 8/5 7/5 8/5

dsp:24[An] 6/4 6/4 6/5 7/5 7/5 8/5 8/5 9/5 8/5 9/5

abs16 5/4 5/4 5/5 6/5 6/5 7/5 7/5 8/5 7/5 8/5

abs24 6/4 6/4 6/5 7/5 7/5 8/5 8/5 9/5 8/5 9/5

(2) DSUB.size src, dest

dsp24/abs24

dsp8

dsp16/abs16)(dsp24/abs24

dsp8

dsp16/abs16)(
DSUB

b7 b0 b7 b0 b7 b0

 0000 0001 1 s4 s3 s2 d4 d3 d2 SIZE d1 d0 s1 s0 0 0 1 0

.size

.B

.W

SIZE

0

1 R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

src/destsrc/dest s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

src code

[Number of Bytes/Number of Cycles]

dest code

217

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) ENTER #IMM

#IMM8

ENTER

b7 b0

1 1 1 0 1 1 0 0

(1) EXITD

EXITD

b7 b0

1 1 1 1 1 1 0 0

 Bytes/Cycles 2/4

[Number of Bytes/Number of Cycles]

Bytes/Cycles 1/8

[Number of Bytes/Number of Cycles]

218

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

b7 b0 b7 b0

1 1 0 0 d4 d3 d2 SIZE d1 d0 0 1 1 1 1 0

EXTS
(1) EXTS.size dest

.size

.B

.W

SIZE

0

1

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 5/3 5/3

R0L/R0/---

R1L/R1/---

---/---/-

---/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

[Number of Bytes/Number of Cycles]

dest code

*1 When (.W) is specified for the size specifier(.size) the number of cycles in the table is increased by 1.

219

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

 src dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Rn 3/1 3/1 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

[An] 3/3 3/3 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

dsp:8[An] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

dsp:8[SB/FB] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

dsp:16[An] 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

dsp:16[SB/FB] 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

dsp:24[An] 6/3 6/3 6/4 7/4 7/4 8/4 8/4 9/4 8/4 9/4

abs16 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

abs24 6/3 6/3 6/4 7/4 7/4 8/4 8/4 9/4 8/4 9/4

EXTS
(2) EXTS.B src,dest
b7 b0 b7 b0 b7 b0

 0000 0001 1 s4 s3 s2 d4 d3 d2 0 d1 d0 s1 s0 0 1 1 1

dsp24/abs24

dsp8

dsp16/abs16)(dsp24/abs24

dsp8

dsp16/abs16)(

---/R0/---

---/R1/---

---/R2/-

---/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

R0L/---/---

R1L/---/---

R0H/---/-

R1H/---/-

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

src code dest code

[Number of Bytes/Number of Cycles]

220

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

src dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Rn 3/1 3/1 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

[An] 3/3 3/3 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

dsp:8[An] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

dsp:8[SB/FB] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

dsp:16[An] 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

dsp:16[SB/FB] 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

dsp:24[An] 6/3 6/3 6/4 7/4 7/4 8/4 8/4 9/4 8/4 9/4

abs16 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

abs24 6/3 6/3 6/4 7/4 7/4 8/4 8/4 9/4 8/4 9/4

EXTZ
(1) EXTZ src,dest
b7 b0 b7 b0 b7 b0

 0000 0001 1 s4 s3 s2 d4 d3 d2 0 d1 d0 s1 s0 1 0 1 1

dsp24/abs24

dsp8

dsp16/abs16)(dsp24/abs24

dsp8

dsp16/abs16)(

---/R0/---

---/R1/---

---/R2/-

---/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

R0L/---/---

R1L/---/---

R0H/---/-

R1H/---/-

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

src code dest code

[Number of Bytes/Number of Cycles]

221

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) FCLR dest

C

D

Z

S

B

O

I

U

dest D E S T

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

FCLR

(1) FREIT
b7 b0

1 0 0 1 1 1 1 1

FREIT

b7 b0 b7 b0

1 1 0 1 0 0 1 1 1 1 1 0 1 DEST

Bytes/Cycles 2/1

Bytes/Cycles 1/3

[Number of Bytes/Number of Cycles]

[Number of Bytes/Number of Cycles]

222

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) FSET dest

C

D

Z

S

B

O

I

U

dest D E S T

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

FSET

b7 b0 b7 b0

1 1 0 1 0 0 0 1 1 1 1 0 1 DEST

Bytes/Cycles 2/1

[Number of Bytes/Number of Cycles]

223

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) INC.size dest
b7 b0 b7 b0

1 0 1 0 d4 d3 d2 SIZE d1 d0 0 0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
INC

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

.size

.B

.W

SIZE

0

1

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

(1) INDEXB.size src
b7 b0 b7 b0

1 0 0 0 s4 s3 s2 0 s1 s0 0 SIZE 0 0 1 1

dsp24/abs24

dsp8

dsp16/abs16)(
INDEXB

src Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/2 2/2 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4

.size

.B

.W

SIZE

0

1

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dest code

*1 When dest is indirectly addressed,the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

src code

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

[Number of Bytes/Number of Cycles]

*1 When (.W) is specified for the size specifier(.size) the number of cycles in the table is increased by 2.

224

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) INDEXBD.size src
b7 b0 b7 b0

1 0 1 0 s4 s3 s2 0 s1 s0 0 SIZE 0 0 1 1

dsp24/abs24

dsp8

dsp16/abs16)(
INDEXBD

src Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

.size

.B

.W

SIZE

0

1

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

(1) INDEXBS.size src
b7 b0 b7 b0

1 1 0 0 s4 s3 s2 0 s1 s0 0 SIZE 0 0 1 1

dsp24/abs24

dsp8

dsp16/abs16)(
INDEXBS

src Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

.size

.B

.W

SIZE

0

1

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

src code

[Number of Bytes/Number of Cycles]

*1 When (.W) is specified for the size specifier(.size) the number of cycles in the table is increased by 1.

src code

[Number of Bytes/Number of Cycles]

*1 When (.W) is specified for the size specifier(.size) the number of cycles in the table is increased by 1.

225

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) INDEXL.size src
b7 b0 b7 b0

1 0 0 1 s4 s3 s2 0 s1 s0 1 SIZE 0 0 1 1

dsp24/abs24

dsp8

dsp16/abs16)(
INDEXL

src Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/4 2/4 2/6 3/6 3/6 4/6 4/6 5/6 4/6 5/6

.size

.B

.W

SIZE

0

1

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

(1) INDEXLD.size src
b7 b0 b7 b0

1 0 1 1 s4 s3 s2 0 s1 s0 1 SIZE 0 0 1 1

dsp24/abs24

dsp8

dsp16/abs16)(
INDEXLD

src Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/2 2/2 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4

.size

.B

.W

SIZE

0

1

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

src code

[Number of Bytes/Number of Cycles]

*1 When (.W) is specified for the size specifier(.size) the number of cycles in the table is increased by 2.

src code

[Number of Bytes/Number of Cycles]

*1 When (.W) is specified for the size specifier(.size) the number of cycles in the table is increased by 1.

226

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) INDEXLS.size src
b7 b0 b7 b0

1 0 0 1 s4 s3 s2 0 s1 s0 0 SIZE 0 0 1 1

dsp24/abs24

dsp8

dsp16/abs16)(
INDEXLS

src Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/2 2/2 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4

.size

.B

.W

SIZE

0

1

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

(1) INDEXW.size src
b7 b0 b7 b0

1 0 0 0 s4 s3 s2 0 s1 s0 1 SIZE 0 0 1 1

dsp24/abs24

dsp8

dsp16/abs16)(
INDEXW

src Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/2 2/2 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4

.size

.B

.W

SIZE

0

1

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

src code

[Number of Bytes/Number of Cycles]

*1 When (.W) is specified for the size specifier(.size) the number of cycles in the table is increased by 1.

src code

[Number of Bytes/Number of Cycles]

*1 When (.W) is specified for the size specifier(.size) the number of cycles in the table is increased by 2.

227

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) INDEXWD.size src
b7 b0 b7 b0

1 0 1 0 s4 s3 s2 0 s1 s0 1 SIZE 0 0 1 1

dsp24/abs24

dsp8

dsp16/abs16)(
INDEXWD

src Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

.size

.B

.W

SIZE

0

1

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

(1) INDEXWS.size src
b7 b0 b7 b0

1 1 0 0 s4 s3 s2 0 s1 s0 1 SIZE 0 0 1 1

dsp24/abs24

dsp8

dsp16/abs16)(
INDEXWS

src Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

.size

.B

.W

SIZE

0

1

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

src code

[Number of Bytes/Number of Cycles]

*1 When (.W) is specified for the size specifier(.size) the number of cycles in the table is increased by 1.

src code

[Number of Bytes/Number of Cycles]

*1 When (.W) is specified for the size specifier(.size) the number of cycles in the table is increased by 1.

228

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) INT #IMM
b7 b0

1 0 1 1 1 1 1 0 IMM6 0 0

INT

(1) INTO
b7 b0

1 0 1 1 1 1 1 1

INTO

 Bytes/Cycles 2/ 12

Bytes/Cycles 1/ 1

*1 When O flag is 1, the number of cycles in the table is increased by 13.

[Number of Bytes/Number of Cycles]

[Number of Bytes/Number of Cycles]

229

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) Jcnd label

dsp8

Jcnd

*1 When branched to label the number of cycles in the table is increased by 2.

b7 b0

1 c3 c2 c1 1 0 1 c0

(1) JMP.S label

JMP

b7 b0

0 1 d2 d1 1 0 1 d0

GEU/C

GTU

EQ/Z

N

O

LE

LT

LTU/NC

LEU

NE/NZ

PZ

NO

GT

GE

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

Cnd c3 c2 c1 c0 Cnd c3 c2 c1 c0

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

labe code

 Bytes/Cycles 2/1

 Bytes/Cycles 1/3

PC + 6

PC + 7

PC + 8

PC + 9

PC + 2

PC + 3

PC + 4

PC + 5

0 0 0

0 0 1

0 1 0

0 1 1

label d2 d1 d0 label d2 d1 d0

1 0 0

1 0 1

1 1 0

1 1 1

[Number of Bytes/Number of Cycles]

[Number of Bytes/Number of Cycles]

dsp8 = address indicated by label - (start address of instruction +1)

230

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

label code
dsp8

dsp16

(2) JMP.B label
JMP

b7 b0

1 0 1 1 1 0 1 1

dsp8 = address indicated by label - (start address of instruction +1)

(3) JMP.W label
JMP

b7 b0

1 1 0 0 1 1 1 0

label code

 Bytes/Cycles 2/3

 Bytes/Cycles 3/3

[Number of Bytes/Number of Cycles]

dsp16 = address indicated by label - (start address of instruction +1)

[Number of Bytes/Number of Cycles]

231

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

abs24
label code

(4) JMP.A label
JMP

b7 b0

1 1 0 0 1 1 0 0

(1) JMPI.W src

JMPI
b7 b0 b7 b0

1 1 0 0 s4 s3 s2 1 s1 s0 0 0 1 1 1 1

dsp24/abs24

dsp8

dsp16/abs16)(

src Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/7 2/7 2/8 3/8 3/8 4/8 4/8 5/8 4/8 5/8

---/R0/---

---/R1/---

---/R2/-

---/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

Bytes/Cycles 4/3

[Number of Bytes/Number of Cycles]

src code

[Number of Bytes/Number of Cycles]

232

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

Bytes/Cycles 2/8

(1) JMPS #IMM8
b7 b0

1 1 0 1 1 1 0 0

JMPS

(2) JMPI.A src
JMPI

b7 b0 b7 b0

1 0 0 0 s4 s3 s2 0 s1 s0 0 0 0 0 0 1

dsp24/abs24

dsp8

dsp16/abs16)(

src Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycle 2/5 2/5 2/7 3/7 3/7 4/7 4/7 5/7 4/7 5/7

---/---/R2R0

---/---/R3R1

---/---/-

---/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

#IMM8

src code

[Number of Bytes/Number of Cycles]

[Number of Bytes/Number of Cycles]

233

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

 Bytes/Cycles 4/3

(2) JSR.A label
b7 b0

1 1 0 0 1 1 0 1

JSR

label code

dsp16

 Bytes/Cycles 3/3

(1) JSR.W label
b7 b0

1 1 0 0 1 1 1 1

JSR

label code

abs24

[Number of Bytes/Number of Cycles]

[Number of Bytes/Number of Cycles]

dsp16 = address indicated by label - (start address of instruction +1)

234

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) JSRI.A src
b7 b0 b7 b0

1 0 0 1 s4 s3 s2 0 s1 s0 0 0 0 0 0 1

dsp24/abs24

dsp8

dsp16/abs16)(

JSRI

src Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/5 2/5 2/7 3/7 3/7 4/7 4/7 5/7 4/7 5/7

(1) JSRI.W src
b7 b0 b7 b0

1 1 0 0 s4 s3 s2 1 s1 s0 0 1 1 1 1 1

dsp24/abs24

dsp8

dsp16/abs16)(

JSRI

src Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

 Bytes/Cycles 2/7 2/7 2/8 3/8 3/8 4/8 4/8 5/8 4/8 5/8

---/R0/---

---/R1/---

---/R2/-

---/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

---/---/R2R0

---/---/R3R1

---/---/-

---/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

src code

[Number of Bytes/Number of Cycles]

src code

[Number of Bytes/Number of Cycles]

235

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

Bytes/Cycles 2/8

(1) JSRS #IMM8
b7 b0

1 1 0 1 1 1 0 1

JSRS

#IMM8

(1) LDC #IMM16, dest
b7 b0 b7 b0

1 1 0 1 0 1 0 1 1 0 1 0 1 DEST

LDC

DCT0

DCT1

FLG

SVF

DRC0

DRC1

DMD0

DMD1

dest DEST

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

#IMM16

Bytes/Cycles 4/1

[Number of Bytes/Number of Cycles]

[Number of Bytes/Number of Cycles]

236

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) LDC #IMM24, dest
b7 b0 b7 b0

1 1 0 1 0 1 0 1 0 0 1 0 1 DEST

LDC

INTB

SP

SB

FB

SVP

VCT

ISP

dest DEST

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

#IMM24

Bytes/Cycles 5/2

(3) LDC #IMM24, dest
b7 b0 b7 b0

1 1 0 1 0 1 0 1 0 1 1 0 1 DEST

LDC

DMA0

DMA1

DRA0

DRA1

DSA0

DSA1

dest DEST

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

#IMM24

Bytes/Cycles 5/2

[Number of Bytes/Number of Cycles]

[Number of Bytes/Number of Cycles]

237

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

 0000 0001 1 1 0 1 s4 s3 s2 1 s1 s0 0 0 1 DEST

---/R0/---

---/R1/---

---/R2/-

---/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

(4) LDC src, dest

dsp24/abs24

dsp8

dsp16/abs16)(
LDC

DCT0

DCT1

FLG

SVF

DRC0

DRC1

DMD0

DMD1

dest DEST

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

b7 b0 b7 b0 b7 b0

src Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cyclse 3/1 3/1 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

---/---/R2R0

---/---/R3R1

---/---/-

---/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

(5) LDC src, dest
b7 b0 b7 b0

1 1 0 1 s4 s3 s2 1 s1 s0 0 0 0 DEST

dsp24/abs24

dsp8

dsp16/abs16)(
LDC

INTB

SP

SB

FB

SVP

VCT

ISP

dest DEST

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

src Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/2 2/2 2/6 3/6 3/6 4/6 4/6 5/6 4/6 5/6

[Number of Bytes/Number of Cycles]

[Number of Bytes/Number of Cycles]

src code

src code

238

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

 0000 0001 1 1 0 1 s4 s3 s2 1 s1 s0 0 0 0 DEST

---/---/R2R0

---/---/R3R1

---/---/-

---/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

(6) LDC src, dest

dsp24/abs24

dsp8

dsp16/abs16)(
LDC

DMA0

DMA1

DRA0

DRA1

DSA0

DSA1

dest DEST

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

b7 b0 b7 b0 b7 b0

src Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cyclse 3/3 3/3 3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6

(1) LDCTX abs16,abs24
b7 b0 b7 b0

1 0 1 1 0 1 1 0 1 1 0 0 0 0 1 1
abs24abs16

LDCTX

*1 m denotes the number of transfers performed.
 m = (Number of R0,R1,R2,R3) + 2 x (Number of A0,A1,FB,SB)

Bytes/Cycles 7/10 + m

src code

[Number of Bytes/Number of Cycles]

[Number of Bytes/Number of Cycles]

239

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) LDIPL #IMM
b7 b0 b7 b0

1 1 0 1 0 1 0 1 1 1 1 0 1 IMM3

LDIPL

(1) MAX.size #IMM,dest

MAX

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 4/3 4/3 4/5 5/5 5/5 6/5 6/5 7/5 6/5 7/5

.size

.B

.W

SIZE

0

1

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

Bytes/Cycles 2/2

dsp24/abs24

dsp8

dsp16/abs16)(#IMM8

#IMM16

b7 b0 b7 b0 b7 b0

 0000 0001 1 0 0 0 d4 d3 d2 SIZE d1 d0 1 1 1 1 1 1

[Number of Bytes/Number of Cycles]

dest code

*1 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

[Number of Bytes/Number of Cycles]

240

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

 src dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Rn 3/2 3/2 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

An 3/2 3/2 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

[An] 3/4 3/4 3/5 4/5 4/5 5/5 5/5 6/5 5/5 6/5

dsp:8[An] 4/4 4/4 4/5 5/5 5/5 6/5 6/5 7/5 6/5 7/5

dsp:8[SB/FB] 4/4 4/4 4/5 5/5 5/5 6/5 6/5 7/5 6/5 7/5

dsp:16[An] 5/4 5/4 5/5 6/5 6/5 7/5 7/5 8/5 7/5 8/5

dsp:16[SB/FB] 5/4 5/4 5/5 6/5 6/5 7/5 7/5 8/5 7/5 8/5

dsp:24[An] 6/4 6/4 6/5 7/5 7/5 8/5 8/5 9/5 8/5 9/5

abs16 5/4 5/4 5/5 6/5 6/5 7/5 7/5 8/5 7/5 8/5

abs24 6/4 6/4 6/5 7/5 7/5 8/5 8/5 9/5 8/5 9/5

(2) MAX.size src, dest

dsp24/abs24

dsp8

dsp16/abs16)(dsp24/abs24

dsp8

dsp16/abs16)(
MAX

b7 b0 b7 b0 b7 b0

 0000 0001 1 s4 s3 s2 d4 d3 d2 SIZE d1 d0 s1 s0 1 1 0 1

.size

.B

.W

SIZE

0

1 R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

src/destsrc/dest s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dest codesrc code

[Number of Bytes/Number of Cycles]

241

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) MIN.size #IMM,dest

MIN

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 4/3 4/3 4/5 5/5 5/5 6/5 6/5 7/5 6/5 7/5

.size

.B

.W

SIZE

0

1

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dsp24/abs24

dsp8

dsp16/abs16)(#IMM8

#IMM16

b7 b0 b7 b0 b7 b0

 0000 0001 1 0 0 0 d4 d3 d2 SIZE d1 d0 1 0 1 1 1 1

dest code

[Number of Bytes/Number of Cycles]

*1 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

242

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

 src dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Rn 3/2 3/2 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

An 3/2 3/2 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

[An] 3/4 3/4 3/5 4/5 4/5 5/5 5/5 6/5 5/5 6/5

dsp:8[An] 4/4 4/4 4/5 5/5 5/5 6/5 6/5 7/5 6/5 7/5

dsp:8[SB/FB] 4/4 4/4 4/5 5/5 5/5 6/5 6/5 7/5 6/5 7/5

dsp:16[An] 5/4 5/4 5/5 6/5 6/5 7/5 7/5 8/5 7/5 8/5

dsp:16[SB/FB] 5/4 5/4 5/5 6/5 6/5 7/5 7/5 8/5 7/5 8/5

dsp:24[An] 6/4 6/4 6/5 7/5 7/5 8/5 8/5 9/5 8/5 9/5

abs16 5/4 5/4 5/5 6/5 6/5 7/5 7/5 8/5 7/5 8/5

abs24 6/4 6/4 6/5 7/5 7/5 8/5 8/5 9/5 8/5 9/5

(2) MIN.size src, dest

dsp24/abs24

dsp8

dsp16/abs16)(dsp24/abs24

dsp8

dsp16/abs16)(
MIN

b7 b0 b7 b0 b7 b0

.size

.B

.W

SIZE

0

1 R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

src/destsrc/dest s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

 0000 0001 1 s4 s3 s2 d4 d3 d2 SIZE d1 d0 s1 s0 1 1 0 0

dest codesrc code

[Number of Bytes/Number of Cycles]

243

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) MOV.size:G #IMM,dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 0 0 1 d4 d3 d2 SIZE d1 d0 1 0 1 1 1 1

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

#IMM8

#IMM16

MOV

(2) MOV.L:G #IMM,dest
b7 b0 b7 b0

1 0 1 1 d4 d3 d2 0 d1 d0 1 1 0 0 0 1

---/---/R2R0

---/---/R3R1

---/---/-

---/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

MOV

#IMM32

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 3/1 3/1 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 6/2 6/2 6/2 7/2 7/2 8/2 8/2 9/2 8/2 9/2

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

244

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(3) MOV.size:Q #IMM4, dest
b7 b0 b7 b0

1 1 1 1 d4 d3 d2 SIZE d1 d0 1 0 IMM4

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/1 2/1 2/1 3/1 3/1 4/1 4/1 5/1 4/1 5/1

 0

 +1

 +2

 +3

 +4

 +5

 +6

 +7

#IMM#IMM IMM4

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

IMM4

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

dsp24/abs24

dsp8

dsp16/abs16)(
MOV

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

 -8

 -7

 -6

 -5

 -4

 -3

 -2

 -1

.size

.B

.W

SIZE

0

1

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

245

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

dest Rn dsp:8[SB/FB] abs16

Bytes/Cycles 2/1 3/2 4/2

(4) MOV.size:S #IMM, dest

.size

.B

.W

SIZE

0

1

b7 b0

0 0 d1 d0 0 1 0 SIZE

R0L/R0

dsp:8[SB]

dsp:8[FB]

abs16

Rn

dsp:8[SB/FB]

abs16

dest d1 d0

0 0

1 0

1 1

0 1

#IMM8

#IMM16

dsp8

abs16)(
MOV

1 0 SIZE 1 1 1 0 d0

(5) MOV.size:S #IMM,A0/A1
b7 b0

 #IMM An

 #IMM16 3/1

 #IMM24 4/2

A0

A1

A0/A1 d0

0

1

#IMM16

#IMM24

MOV

.size

.W

.L

SIZE

0

1

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

[Number of Bytes/Number of Cycles]

246

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

dest Rn dsp:8[SB/FB] abs16

Bytes/Cycles 1/1 2/1 3/1

(6) MOV.size:Z #0, dest

.size

.B

.W

SIZE

0

1

b7 b0

0 0 d1 d0 0 0 1 SIZE

R0L/R0

dsp:8[SB]

dsp:8[FB]

abs16

Rn

dsp:8[SB/FB]

abs16

dest d1 d0

0 0

1 0

1 1

0 1

dsp8

abs16)(
MOV

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

247

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

src dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Rn 2/1 2/1 2/1 3/1 3/1 4/1 4/1 5/1 4/1 5/1

An 2/1 2/1 2/1 3/1 3/1 4/1 4/1 5/1 4/1 5/1

[An] 2/3 2/3 2/3 3/2 3/2 4/2 4/2 5/2 4/2 5/2

dsp:8[An] 3/3 3/3 3/3 4/2 4/2 5/2 5/2 6/2 5/2 6/2

dsp:8[SB/FB] 3/3 3/3 3/3 4/2 4/2 5/2 5/2 6/2 5/2 6/2

dsp:16[An] 4/3 4/3 4/3 5/2 5/2 6/2 6/2 7/2 6/2 7/2

dsp:16[SB/FB] 4/3 4/3 4/3 5/2 5/2 6/2 6/2 7/2 6/2 7/2

dsp:24[An] 5/3 5/3 5/3 6/2 6/2 7/2 7/2 8/2 7/2 8/2

abs16 4/3 4/3 4/3 5/2 5/2 6/2 6/2 7/2 6/2 7/2

abs24 5/3 5/3 5/3 6/2 6/2 7/2 7/2 8/2 7/2 8/2

(7) MOV.size:G src, dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 s4 s3 s2 d4 d3 d2 SIZE d1 d0 s1 s0 1 0 1 1

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

src/destsrc/dest s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dsp24/abs24

dsp8

dsp16/abs16)(
MOV

dest codesrc code

*1 For indirect addressing, the following number is added at
the beginning of code:

01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

[Number of Bytes/Number of Cycles]

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3,
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

248

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

src dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Rn 2/2 2/2 2/2 3/2 3/2 4/2 4/2 5/2 4/2 5/2

An 2/2 2/2 2/2 3/2 3/2 4/2 4/2 5/2 4/2 5/2

[An] 2/4 2/4 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4

dsp:8[An] 3/4 3/4 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

dsp:8[SB/FB] 3/4 3/4 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

dsp:16[An] 4/4 4/4 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

dsp:16[SB/FB] 4/4 4/4 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

dsp:24[An] 5/4 5/4 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

abs16 4/4 4/4 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

abs24 5/4 5/4 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

(8) MOV.L:G src, dest
b7 b0 b7 b0

1 s4 s3 s2 d4 d3 d2 1 d1 d0 s1 s0 0 0 1 1

---/---/R2R0

---/---/R3R1

---/---/-

---/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

src/destsrc/dest s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dsp24/abs24

dsp8

dsp16/abs16)(
MOV

dest codesrc code

*1 For indirect addressing, the following number is added at
the beginning of code:

01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

[Number of Bytes/Number of Cycles]

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

249

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

MOV
(9) MOV.size:S src, R0L/R0
b7 b0

0 0 s1 s0 1 0 0 SIZE
dsp8

abs16)(

src dsp:8[SB/FB] abs16

Bytes/Cycles 2/2 3/2

.size

.B

.W

SIZE

0

1

dsp:8[SB]

dsp:8[FB]

abs16

dsp:8[SB/FB]

abs16

src s1 s0

1 0

1 1

0 1

MOV
(10) MOV.size:S src, R1L/R1
b7 b0

0 1 s1 s0 1 1 1 SIZE
dsp8

abs16)(

src Rn dsp:8[SB/FB] abs16

Bytes/Cycles 1/3 2/3 3/3

.size

.B

.W

SIZE

0

1

R0L/R0

dsp:8[SB]

dsp:8[FB]

abs16

Rn

dsp:8[SB/FB]

abs16

src s1 s0

0 0

1 0

1 1

0 1

src code

*1 When src is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

src code

*1 When src is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3, respectively.

250

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

MOV
(12) MOV.L:S src, A0/A1
b7 b0

0 1 s1 s0 1 0 0 d0
dsp8

abs16)(

src dsp:8[SB/FB] abs16

Bytes/Cycles 2/3 3/3

dsp:8[SB]

dsp:8[FB]

abs16

dsp:8[SB/FB]

abs16

src s1 s0

1 0

1 1

0 1

A0

A1

A0/A1 d0

0

1

(11) MOV.size:S R0L/R0, dest
b7 b0

0 0 d1 d0 0 0 0 SIZE
dsp8

abs16)(
MOV

dest dsp:8[SB/FB] abs16

Bytes/Cycles 2/1 3/1

.size

.B

.W

SIZE

0

1

dsp:8[SB]

dsp:8[FB]

abs16

dsp:8[SB/FB]

abs16

dest d1 d0

1 0

1 1

0 1

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

src code

[Number of Bytes/Number of Cycles]

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

251

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(13) MOV.size:G dsp:8[SP], dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 0 1 1 d4 d3 d2 SIZE d1 d0 0 0 1 1 1 1

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dsp8

MOV

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 3/3 3/3 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

(14) MOV.size:G src, dsp:8[SP]
b7 b0 b7 b0

1 0 1 0 s4 s3 s2 SIZE s1 s0 0 0 1 1 1 1

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

MOV

src Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 3/3 3/3 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

dsp8

.size

.B

.W

SIZE

0

1

src code dest code

[Number of Bytes/Number of Cycles]

dest codesrc code

[Number of Bytes/Number of Cycles]

252

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

b7 b0 b7 b0

1 1 0 1 s4 s3 s2 1 s1 s0 0 1 1 DEST

dsp24/abs24

dsp8

dsp16/abs16)(
(1) MOVA src, dest

MOVA

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

srcsrc s4 s3 s2 s1 s0

0 0 1 0 0

0 0 1 0 1

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

s4 s3 s2 s1 s0

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

R2R0

R3R1

A0

A1

dest DEST

0 0 0

0 0 1

0 1 0

0 1 1

src code

[Number of Bytes/Number of Cycles]

src dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 3/2 3/2 4/2 4/2 5/2 4/2 5/2

253

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

LL

HL

LH

HH

Dir o3 o2 o1 o0

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

MOVDir
(1) MOVDir R0L, dest

 Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

 3/3 3/3 3/5 4/5 4/5 5/5 5/5 6/5 5/5 6/5

 3/6 3/6 3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8

R0L/---/---

R1L/---/---

R0H/---/-

R1H/---/-

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dsp24/abs24

dsp8

dsp16/abs16)(
b7 b0 b7 b0 b7 b0

 0000 0001 1 0 1 o2 d4 d3 d2 0 d1 d0 o1 o0 1 1 1 o3

dest

MOVHH,

MOVLL

MOVHL,

MOVLH

dest code

[Number of Bytes/Number of Cycles]

254

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

MOVDir
(2) MOVDir src, R0L

R0L/---/---

R1L/---/---

R0H/---/-

R1H/---/-

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dsp24/abs24

dsp8

dsp16/abs16)(
b7 b0 b7 b0 b7 b0

LL

HL

LH

HH

Dir o3 o2 o1 o0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

src code

[Number of Bytes/Number of Cycles]

 Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

 3/3 3/3 3/5 4/5 4/5 5/5 5/5 6/5 5/5 6/5

 3/6 3/6 3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8

dest

MOVHH,

MOVLL

MOVHL,

MOVLH

 0000 0001 1 0 1 o2 s4 s3 s2 0 s1 s0 o1 o0 1 1 1 o3

255

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) MOVX #IMM, dest
b7 b0 b7 b0

1 0 1 1 d4 d3 d2 0 d1 d0 0 1 0 0 0 1

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 3/2 3/2 3/2 4/2 4/2 5/2 5/2 6/2 5/2 6/2

---/---/R2R0

---/---/R3R1

---/---/-

---/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

#IMM8

MOVX

(1) MUL.size #IMM, dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 0 0 0 d4 d3 d2 SIZE d1 d0 0 1 1 1 1 1

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 3/3 3/3 3/5 4/5 4/5 5/5 5/5 6/5 5/5 6/5

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

#IMM8

#IMM16

MUL

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

dest code

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3, respectively.
*3 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

[Number of Bytes/Number of Cycles]

256

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

src
dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Rn 2/3 2/3 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5

An 2/3 2/3 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5

[An] 2/5 2/5 2/6 3/6 3/6 4/6 4/6 5/6 4/6 5/6

dsp:8[An] 3/5 3/5 3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6

dsp:8[SB/FB] 3/5 3/5 3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6

dsp:16[An] 4/5 4/5 4/6 5/6 5/6 6/6 6/6 7/6 6/6 7/6

dsp:16[SB/FB] 4/5 4/5 4/6 5/6 5/6 6/6 6/6 7/6 6/6 7/6

dsp:24[An] 5/5 5/5 5/6 6/6 6/6 7/6 7/6 8/6 7/6 8/6

abs16 4/5 4/5 4/6 5/6 5/6 6/6 6/6 7/6 6/6 7/6

abs24 5/5 5/5 5/6 6/6 6/6 7/6 7/6 8/6 7/6 8/6

(2) MUL.size src, dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 s4 s3 s2 d4 d3 d2 SIZE d1 d0 s1 s0 1 1 0 0

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

src/destsrc/dest s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dsp24/abs24

dsp8

dsp16/abs16)(
MUL

dest codesrc code

*1 For indirect addressing, the following number is added at
the beginning of code:

01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

[Number of Bytes/Number of Cycles]

257

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) MULEX src
b7 b0 b7 b0

1 1 0 0 s4 s3 s2 1 s1 s0 1 1 1 1 1 0

---/---/---

---/---/---

---/---/-

---/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

MULEX

(1) MULU.size #IMM, dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 0 0 0 d4 d3 d2 SIZE d1 d0 0 0 1 1 1 1

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

MULU

#IMM8

#IMM16

src Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/8 2/8 2/10 3/10 3/10 4/10 4/10 5/10 4/10 5/10

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 3/3 3/3 3/5 4/5 4/5 5/5 5/5 6/5 5/5 6/5

src code

*1 When src is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3, respectively.
*3 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

258

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

src
dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Rn 2/3 2/3 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5

An 2/3 2/3 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5

[An] 2/5 2/5 2/6 3/6 3/6 4/6 4/6 5/6 4/6 5/6

dsp:8[An] 3/5 3/5 3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6

dsp:8[SB/FB] 3/5 3/5 3/6 4/6 4/6 5/6 5/6 6/6 5/6 6/6

dsp:16[An] 4/5 4/5 4/6 5/6 5/6 6/6 6/6 7/6 6/6 7/6

dsp:16[SB/FB] 4/5 4/5 4/6 5/6 5/6 6/6 6/6 7/6 6/6 7/6

dsp:24[An] 5/5 5/5 5/6 6/6 6/6 7/6 7/6 8/6 7/6 8/6

abs16 4/5 4/5 4/6 5/6 5/6 6/6 6/6 7/6 6/6 7/6

abs24 5/5 5/5 5/6 6/6 6/6 7/6 7/6 8/6 7/6 8/6

(2) MULU.size src, dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 s4 s3 s2 d4 d3 d2 SIZE d1 d0 s1 s0 0 1 0 0

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

src/destsrc/dest s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dsp24/abs24

dsp8

dsp16/abs16)(
MULU

src code dest code

*1 For indirect addressing, the following number is added at
the beginning of code:

01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

[Number of Bytes/Number of Cycles]

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

259

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) NEG.size dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 0 1 0 d4 d3 d2 SIZE d1 d0 1 0 1 1 1 1

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

NEG

(1) NOP
NOP

 Bytes/Cycles 1/1

b7 b0

1 1 0 1 1 1 1 0

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

[Number of Bytes/Number of Cycles]

260

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

b7 b0 b7 b0

1 0 1 0 d4 d3 d2 SIZE d1 d0 0 1 1 1 1 0

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

.size

.B

.W

SIZE

0

1

(1)NOT .size dest

dsp24/abs24

dsp8

dsp16/abs16)(
NOT

(1) OR.size:G #IMM, dest

#IMM8

#IMM16

OR

b7 b0 b7 b0

1 0 0 0 d4 d3 d2 SIZE d1 d0 1 0 1 1 1 1

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

.size

.B

.W

SIZE

0

1

dsp24/abs24

dsp8

dsp16/abs16)(

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 3/1 3/1 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

dest code

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

261

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) OR.size:S #IMM, dest
b7 b0

0 1 d1 d0 0 1 0 SIZE
dsp8

abs16)(
OR

dest Rn dsp:8[SB/FB] abs16

Bytes/Cycles 2/1 3/3 4/3

.size

.B

.W

SIZE

0

1

R0L/R0

dsp:8[SB]

dsp:8[FB]

abs16

Rn

dsp:8[SB/FB]

abs16

dest d1 d0

0 0

1 0

1 1

0 1

#IMM8

#IMM16

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

262

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

 src
dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Rn 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

An 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

[An] 2/3 2/3 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4

dsp:8[An] 3/3 3/3 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

dsp:8[SB/FB] 3/3 3/3 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

dsp:16[An] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

dsp:16[SB/FB] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

dsp:24[An] 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

abs16 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

abs24 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

(3) OR.size:G src, dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 s4 s3 s2 d4 d3 d2 SIZE d1 d0 s1 s0 0 1 0 1

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

src/destsrc/dest s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dsp24/abs24

dsp8

dsp16/abs16)(
OR

dest codesrc code

*1 For indirect addressing, the following number is added at
the beginning of code:

01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

[Number of Bytes/Number of Cycles]

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

263

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

POPC
(1) POPC dest
b7 b0 b7 b0

1 1 0 1 0 0 1 1 1 0 1 0 1 DEST

DCT0

DCT1

FLG

SVF

destdest DEST

0 0 0

0 0 1

0 1 0

0 1 1

DEST

1 0 0

1 0 1

1 1 0

1 1 1

DRC0

DRC1

DMD0

DMD1

 Bytes/Cycles 2/3

POP
(1) POP.size dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 0 1 1 d4 d3 d2 SIZE d1 d0 1 0 1 1 1 1

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/3 2/3 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

[Number of Bytes/Number of Cycles]

264

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

POPC
(2) POPC dest
b7 b0 b7 b0

1 1 0 1 0 0 1 1 0 0 1 0 1 DEST

INTB

SP

SB

FB

destdest DEST

0 0 0

0 0 1

0 1 0

0 1 1

DEST

1 0 0

1 0 1

1 1 0

1 1 1

ISP

Bytes/Cycles 2/4

(1)POPM dest
b7 b0

1 0 0 0 1 1 1 0

POPM

 Bytes/Cycles 2/1+m

*2 m denotes the number of register to be restored.
 m = (number of R0, R1,R2,R3)+ 2 x (number of A0,A1,FB,SB)

dest

FB SB R3 R2 R1 R0A1 A0

DEST*1

*1 The bit for a selected register is 1.
 The bit for a non-selected register is 0.

DEST

[Number of Bytes/Number of Cycles]

[Number of Bytes/Number of Cycles]

265

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

PUSH

(1) PUSH.size #IMM
b7 b0

1 0 1 0 1 1 1 SIZE
#IMM8

#IMM16

Bytes/Cycles 2/1

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 1 0 0 s4 s3 s2 SIZE s1 s0 0 0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(

src Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

PUSH

.size

.B

.W

SIZE

0

1

(2) PUSH.size src

[Number of Bytes/Number of Cycles]

*1 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

*1 When src is indirectly addressed the code has 00001001
added at the beginning.

src code

[Number of Bytes/Number of Cycles]

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

266

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

b7 b0 b7 b0

1 0 1 0 s4 s3 s2 0 s1 s0 0 0 0 0 0 1

dsp24/abs24

dsp8

dsp16/abs16)(

src Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/2 2/2 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5

---/---/R2R0

---/---/R3R1

---/---/-

---/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

PUSH
(4) PUSH.L src

PUSH
(3) PUSH.L #IMM32
b7 b0 b7 b0

1 0 1 1 0 1 1 0 0 1 0 1 0 0 1 1 #IMM32

Bytes/Cycles 6/3

[Number of Bytes/Number of Cycles]

src code

*1 When src is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When src is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

267

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

PUSHC
(1) PUSHC src
b7 b0 b7 b0

1 1 0 1 0 0 0 1 1 0 1 0 1 SRC

DCT0

DCT1

FLG

SVF

srcsrc SRC

0 0 0

0 0 1

0 1 0

0 1 1

SRC

1 0 0

1 0 1

1 1 0

1 1 1

DRC0

DRC1

DMD0

DMD1

 Bytes/Cycles 2/1

PUSHA
(1) PUSHA src
b7 b0 b7 b0

1 0 1 1 s4 s3 s2 0 s1 s0 0 0 0 0 0 1

---/---/---

---/---/---

---/---/-

---/---/-

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

src code

[Number of Bytes/Number of Cycles]

[Number of Bytes/Number of Cycles]

src dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 3/3 3/3 4/3 4/3 5/3 4/3 5/3

268

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

PUSHC
(2) PUSHC src
b7 b0 b7 b0

1 1 0 1 0 0 0 1 0 0 1 0 1 SRC

INTB

SP

SB

FB

srcsrc SRC

0 0 0

0 0 1

0 1 0

0 1 1

SRC

1 0 0

1 0 1

1 1 0

1 1 1

ISP

 Bytes/Cycles 2/4

(1) PUSHM src

PUSHM

b7 b0

1 0 0 0 1 1 1 1

Bytes/Cycles 2/m

src

R0 R1 A0 A1 SB FBR2 R3

SRC*1

*1 The bit for a selected register is 1.
 The bit for a non-selected register is 0.

*2 m denotes the number of registers to be saved.
 m = (number of R0,R1,R2,R3)+2x(number of A0,A1,FB,SB)

SRC

[Number of Bytes/Number of Cycles]

[Number of Bytes/Number of Cycles]

269

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

RMPA
(1) RMPA.size

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 0 1 1 1 0 0 0 0 1 0 SIZE 0 0 1 1

Bytes/Cycles 2/7+2m

*1 m denotes the number of operations performed.

(1) REIT

REIT

b7 b0

1 0 0 1 1 1 1 0

 Bytes/Cycles 1/6

[Number of Bytes/Number of Cycles]

[Number of Bytes/Number of Cycles]

270

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

ROLC
(1) ROLC.size dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 0 1 1 d4 d3 d2 SIZE d1 d0 1 0 1 1 1 0

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

RORC
(1) RORC.size dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 0 1 0 d4 d3 d2 SIZE d1 d0 1 0 1 1 1 0

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

271

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

ROT
(1) ROT.size #IMM, dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 1 1 0 d4 d3 d2 SIZE d1 d0 1 0 IMM4

+1

+2

+3

+4

+5

+6

+7

+8

dest#IMM IMM4

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

IMM4

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

dsp24/abs24

dsp8

dsp16/abs16)(
-1

-2

-3

-4

-5

-6

-7

-8

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

*2 m denotes the number of rotates performed.

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*3 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/m 2/m 2/2+m 3/2+m 3/2+m 4/2+m 4/2+m 5/2+m 4/2+m 5/2+m

272

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/2+m 2/2+m 2/3+m 3/3+m 3/3+m 4/3+m 4/3+m 5/3+m 4/3+m 5/3+m

ROT
(2) ROT.size R1H, dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 0 1 0 d4 d3 d2 SIZE d1 d0 1 1 1 1 1 1

dsp24/abs24

dsp8

dsp16/abs16)(
R0L/R0/---

R1L/---/---

R0H/R2/-

---/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

RTS
(1) RTS
b7 b0

1 1 0 1 1 1 1 1

Bytes/Cycles 1/6

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

[Number of Bytes/Number of Cycles]

*2 m denotes the number of rotates performed.
*3 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

273

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) SBB.size #IMM, dest

.size

.B

.W

SIZE

0

1

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

SBB

b7 b0 b7 b0 b7 b0

 0000 0001 1 0 0 1 d4 d3 d2 SIZE d1 d0 1 0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(#IMM8

#IMM16

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 4/1 4/1 4/3 5/3 5/3 6/3 6/3 7/3 6/3 7/3

dest code

[Number of Bytes/Number of Cycles]

*1 When (.W) is specified for the size specifier(.size),the number of bytes in the table is increased by 1.

274

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

src dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Rn 3/1 3/1 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

An 3/1 3/1 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

[An] 3/3 3/3 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

dsp:8[An] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

dsp:8[SB/FB] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

dsp:16[An] 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

dsp:16[SB/FB] 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

dsp:24[An] 6/3 6/3 6/4 7/4 7/4 8/4 8/4 9/4 8/4 9/4

abs16 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

abs24 6/3 6/3 6/4 7/4 7/4 8/4 8/4 9/4 8/4 9/4

(2) SBB.size src, dest

.size

.B

.W

SIZE

0

1 R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

src/destsrc/dest s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dsp24/abs24

dsp8

dsp16/abs16)(
SBB

b7 b0 b7 b0 b7 b0

0000 0001 1 s4 s3 s2 d4 d3 d2 SIZE d1 d0 s1 s0 0 1 1 0

src code dest code

[Number of Bytes/Number of Cycles]

275

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) SBJNZ.size #IMM, dest, label

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 1 1 1 d4 d3 d2 SIZE d1 d0 0 1 IMM4

 dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

 Bytes/Cycles 3/2 3/2 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

 0

 -1

 -2

 -3

 -4

 -5

 -6

 -7

#IMM#IMM IMM4

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

IMM4

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

dsp24/abs24

dsp8

dsp16/abs16)(
SBJNZ

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

 +8

 +7

 +6

 +5

 +4

 +3

 +2

 +1

label code
dsp8

dsp8 (label code) = address indicated by label - (start address of instruction +2)

*1 When branched to label the number of cycles in the table is increased by 2.

dest code

[Number of Bytes/Number of Cycles]

276

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(1) SCCnd dest

SCCnd

GEU/C

GTU

EQ/Z

N

O

LE

LT

LTU/NC

LEU

NE/NZ

PZ

NO

GT

GE

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

Cnd CND Cnd CND

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

b7 b0 b7 b0

1 1 0 1 d4 d3 d2 1 d1 d0 1 1 CND

dsp24/abs24

dsp8

dsp16/abs16)(

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/1 2/1 2/1 3/1 3/1 4/1 4/1 5/1 4/1 5/1

R0/---/---

R1/---/---

R2/---/-

R3/---/-

---/A0/---

---/A1/---

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

277

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 0 1 1 1 0 0 0 1 1 0 SIZE 0 0 1 1

SCMPU
(1) SCMPU.size

*1 m denotes the number of transfers performed.

[Number of Bytes/Number of Cycles]

Contents match and
the instruction is terminated

Contents do not match and
the instruction is terminated

Size specifier Bytes/Cycles

 .B 2/6+3m 2/6+3m

 .W 2/6+1.5m 2/9+1.5m

.W 2/8+1.5m 2/10+1.5m

Remark

 The last 0 (null) is the 8 high-order bits

 of word

 The last 0(null) is the 8 low-order bits

 of word

278

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SHA
(1) SHA.size #IMM, dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 1 1 1 d4 d3 d2 SIZE d1 d0 0 0 IMM4

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

*2 m denotes the number of shifts performed.

+1

+2

+3

+4

+5

+6

+7

+8

#IMM#IMM IMM4

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

IMM4

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

-1

-2

-3

-4

-5

-6

-7

-8

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*3 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/m 2/m 2/2+m 3/2+m 3/2+m 4/2+m 4/2+m 5/2+m 4/2+m 5/2+m

279

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SHA
(3) SHA.size R1H, dest
b7 b0 b7 b0

1 0 1 1 d4 d3 d2 SIZE d1 d0 1 1 1 1 1 0

R0L/R0/---

R1L/---/---

R0H/R2/-

---/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

.size

.B

.W

SIZE

0

1

SHA
(2) SHA.L #IMM, dest
b7 b0 b7 b0

1 0 1 0 d4 d3 d2 0 d1 d0 1 0 0 0 0 1

dsp24/abs24

dsp8

dsp16/abs16)(
---/---/R2R0

---/---/R3R1

---/---/-

---/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

#IMM8

*2 m denotes the number of shifts performed.

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*3 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 m denotes the number of shifts performed.
*3 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 3/3+m 3/3+m 3/2+m 4/3+m 4/3+m 5/3+m 5/3+m 6/3+m 5/3+m 6/3+m

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

 Bytes/Cycles 2/2+m 2/2+m 2/3+m 3/3+m 3/3+m 4/3+m 4/3+m 5/3+m 4/3+m 5/3+m

280

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SHA
(4) SHA.L R1H, dest
b7 b0 b7 b0

1 1 0 0 d4 d3 d2 0 d1 d0 0 1 0 0 0 1

dsp24/abs24

dsp8

dsp16/abs16)(
---/---/R2R0

---/---/---

---/---/-

---/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 m denotes the number of shifts performed.

*3 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/4+m 2/4+m 2/4+m 3/4+m 3/4+m 4/4+m 4/4+m 5/4+m 4/4+m 5/4+m

281

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

+1

+2

+3

+4

+5

+6

+7

+8

dest#IMM IMM4

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

IMM4

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

-1

-2

-3

-4

-5

-6

-7

-8

SHL
(1) SHL.size #IMM, dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 1 1 0 d4 d3 d2 SIZE d1 d0 0 0 #IMM4

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 m denotes the number of shifts performed.

*3 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/m 2/m 2/2+m 3/2+m 3/2+m 4/2+m 4/2+m 5/2+m 4/2+m 5/2+m

282

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SHL
(2) SHL.L #IMM, dest
b7 b0 b7 b0

1 0 0 1 d4 d3 d2 0 d1 d0 1 0 0 0 0 1

dsp24/abs24

dsp8

dsp16/abs16)(
---/---/R2R0

---/---/R3R1

---/---/-

---/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

#IMM8

SHL
(3) SHL.size R1H, dest
b7 b0 b7 b0

1 0 1 0 d4 d3 d2 SIZE d1 d0 1 1 1 1 1 0

R0L/R0/---

R1L/R1/---

R0H/R2/-

---/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

.size

.B

.W

SIZE

0

1

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 m denotes the number of shifts performed.

*3 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 m denotes the number of shifts performed.

*3 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 3/3+m 3/3+m 3/3+m 4/3+m 4/3+m 5/3+m 5/3+m 6/3+m 5/3+m 6/3+m

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/2+m 2/2+m 3/3+m 3/3+m 3/3+m 4/3+m 4/3+m 5/3+m 4/3+m 5/3+m

283

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SIN
(1) SIN.size
b7 b0 b7 b0

1 0 1 1 0 0 1 0 1 0 0 SIZE 0 0 1 1

.size

.B

.W

SIZE

0

1

 Bytes/Cycles 2/1+2m

SHL
(4) SHL.L R1H, dest
b7 b0 b7 b0

1 1 0 0 d4 d3 d2 0 d1 d0 0 0 0 0 0 1

dsp24/abs24

dsp8

dsp16/abs16)(
---/---/R2R0

---/---/---

---/---/-

---/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 m denotes the number of shifts performed.

*3 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

[Number of Bytes/Number of Cycles]

*1 m denotes the number of transfers performed.

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/4+m 2/4+m 2/4+m 3/4+m 3/4+m 4/4+m 4/4+m 5/4+m 4/4+m 5/4+m

284

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SMOVB
(1) SMOVB.size
b7 b0 b7 b0

1 0 1 1 0 1 1 0 1 0 0 SIZE 0 0 1 1

.size

.B

.W

SIZE

0

1

 Bytes/Cycles 2/1+2m

SMOVF
(1) SMOVF.size
b7 b0 b7 b0

1 0 1 1 0 0 0 0 1 0 0 SIZE 0 0 1 1

.size

.B

.W

SIZE

0

1

 Bytes/Cycles 2/1+2m

[Number of Bytes/Number of Cycles]

*1 m denotes the number of transfers performed.

[Number of Bytes/Number of Cycles]

*1 m denotes the number of transfers performed.

285

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SMOVU
(1) SMOVU.size
b7 b0 b7 b0

1 0 1 1 1 0 0 0 1 0 0 SIZE 0 0 1 1

.size

.B

.W

SIZE

0

1

 Bytes/Cycles 2/1+2m

[Number of Bytes/Number of Cycles]

*1 m denotes the number of transfers performed.

SOUT
(1) SOUT.size
b7 b0 b7 b0

1 0 1 1 0 1 0 0 1 0 0 SIZE 0 0 1 1

.size

.B

.W

SIZE

0

1

 Bytes/Cycles 2/1+2m

[Number of Bytes/Number of Cycles]

*1 m denotes the number of transfers performed.

286

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SSTR
(1) SSTR.size
b7 b0 b7 b0

1 0 1 1 1 0 0 0 0 0 0 SIZE 0 0 1 1

.size

.B

.W

SIZE

0

1

 Bytes/Cycles 2/2+m

[Number of Bytes/Number of Cycles]

*1 m denotes the number of transfers performed.

(1) STC src, dest

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 3/3 3/3 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

-

-

DMA0

DMA1

DRA0

DRA1

DSA0

DSA1

src SRC

000

001

010

011

100

101

110

111

dsp24/abs24

dsp8

dsp16/abs16)(
STC

---/---/R2R0

---/---/R3R1

---/---/-

---/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

b7 b0 b7 b0 b7 b0

 0000 0001 1 1 0 1 d4 d3 d2 1 d1 d0 0 1 0 SRC

[Number of Bytes/Number of Cycles]

dest code

287

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(3) STC src, dest
b7 b0 b7 b0

1 1 0 1 d4 d3 d2 1 d1 d0 0 1 0 SRC

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 2/3 2/3 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

INTB

SP

SB

FB

SVP

VCT

-

ISP

src SRC

000

001

010

011

100

101

110

111

dsp24/abs24

dsp8

dsp16/abs16)(
STC

---/---/R2R0

---/---/R3R1

---/---/-

---/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

(2) STC src, dest

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 3/2 3/2 3/2 4/2 4/2 5/2 5/2 6/2 5/2 6/2

DCT0

DCT1

FLG

SVF

DRC0

DRC1

DMD0

DMD1

src SRC

000

001

010

011

100

101

110

111

dsp24/abs24

dsp8

dsp16/abs16)(
STC

---/R0/---

---/R1/---

---/R2/-

---/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

b7 b0 b7 b0 b7 b0

 0000 0001 1 1 0 1 d4 d3 d2 1 d1 d0 0 1 1 SRC

dest code

[Number of Bytes/Number of Cycles]

dest code

[Number of Bytes/Number of Cycles]

288

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

STCTX
(1) STCTX abs16, abs24
b7 b0 b7 b0

1 0 1 1 0 1 1 0 1 1 0 1 0 0 1 1

 Bytes/Cycles 7/10+2m

abs24abs16

STNZ
(1) STNZ.size #IMM, dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 0 0 1 d4 d3 d2 SIZE d1 d0 0 1 1 1 1 1

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 3/2 3/2 3/2 4/2 4/2 5/2 5/2 6/2 5/2 6/2

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

#IMM8

#IMM16

[Number of Bytes/Number of Cycles]

*1 m denotes the number of transfers performed.

dest code

*1 When dest is indirectly addressed,the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

289

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

STZX
(1) STZX.size #IMM1, #IMM2, dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 0 0 1 d4 d3 d2 SIZE d1 d0 1 1 1 1 1 1

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 4/3 4/3 4/3 5/3 5/3 6/3 6/3 7/3 6/3 7/3

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

#IMM8-1

#IMM16-1

#IMM8-2

#IMM16-2

STZ
(1) STZ.size #IMM, dest

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 3/2 3/2 3/2 4/2 4/2 5/2 5/2 6/2 5/2 6/2

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

b7 b0 b7 b0

1 0 0 1 d4 d3 d2 SIZE d1 d0 0 0 1 1 1 1

.size

.B

.W

SIZE

0

1

#IMM8

#IMM16

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When Z flag is 0,the number of cycles in the table is increased by 1.
*4 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 2.

290

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SUB
(1) SUB.size:G #IMM, dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 0 0 0 d4 d3 d2 SIZE d1 d0 1 1 1 1 1 0

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 3/1 3/1 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

#IMM8

#IMM16

SUB
(2) SUB.L:G #IMM, dest
b7 b0 b7 b0

1 0 0 1 d4 d3 d2 0 d1 d0 1 1 0 0 0 1

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 6/2 6/2 6/5 7/5 7/5 8/5 8/5 9/5 8/5 9/5

---/---/R2R0

---/---/R3R1

---/---/-

---/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

#IMM32

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

dest code

*1 When dest is indirectly addressed,the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

291

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

dest Rn dsp:8[SB/FB] abs16

Bytes/Cycles 2/1 3/3 4/3

(3) SUB.size:S #IMM, dest

.size

.B

.W

SIZE

0

1

b7 b0

0 0 d1 d0 1 1 1 SIZE

R0L/R0

dsp:8[SB]

dsp:8[FB]

abs16

Rn

dsp:8[SB/FB]

abs16

dest d1 d0

0 0

1 0

1 1

0 1

#IMM8

#IMM16

dsp8

abs16)(
SUB

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.
*3 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

292

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

 src
dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Rn 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

An 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

[An] 2/3 2/3 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4

dsp:8[An] 3/3 3/3 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

dsp:8[SB/FB] 3/3 3/3 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

dsp:16[An] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

dsp:16[SB/FB] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

dsp:24[An] 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

abs16 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

abs24 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

(4) SUB.size:G src, dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 s4 s3 s2 d4 d3 d2 SIZE d1 d0 s1 s0 1 0 1 0

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

src/destsrc/dest s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dsp24/abs24

dsp8

dsp16/abs16)(
SUB

src code dest code

*1 For indirect addressing, the following number is added at
the beginning of code:

01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

[Number of Bytes/Number of Cycles]

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

293

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

 src dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Rn 2/2 2/2 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5

An 2/2 2/2 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5

[An] 2/5 2/5 2/8 3/8 3/8 4/8 4/8 5/8 4/8 5/8

dsp:8[An] 3/5 3/5 3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8

dsp:8[SB/FB] 3/5 3/5 3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8

dsp:16[An] 4/5 4/5 4/8 5/8 5/8 6/8 6/8 7/8 6/8 7/8

dsp:16[SB/FB] 4/5 4/5 4/8 5/8 5/8 6/8 6/8 7/8 6/8 7/8

dsp:24[An] 5/5 5/5 5/8 6/8 6/8 7/8 7/8 8/8 7/8 8/8

abs16 4/5 4/5 4/8 5/8 5/8 6/8 6/8 7/8 6/8 7/8

abs24 5/5 5/5 5/8 6/8 6/8 7/8 7/8 8/8 7/8 8/8

(5) SUB.L:G src, dest
b7 b0 b7 b0

1 s4 s3 s2 d4 d3 d2 1 d1 d0 s1 s0 0 0 0 0

---/---/R2R0

---/---/R3R1

---/---/-

---/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

src/destsrc/dest s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dsp24/abs24

dsp8

dsp16/abs16)(
SUB

src code dest code

*1 For indirect addressing, the following number is added at
the beginning of code:

01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

[Number of Bytes/Number of Cycles]

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

294

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SUBX
(1) SUBX #IMM, dest
b7 b0 b7 b0

1 0 0 1 d4 d3 d2 0 d1 d0 0 1 0 0 0 1

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 3/2 3/2 3/5 4/5 4/5 5/5 5/5 6/5 5/5 6/5

---/---/R2R0

---/---/R3R1

---/---/-

---/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

#IMM8

dest code

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

295

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

 src dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Rn 2/2 2/2 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5

An 2/2 2/2 2/5 3/5 3/5 4/5 4/5 5/5 4/5 5/5

[An] 2/5 2/5 2/8 3/8 3/8 4/8 4/8 5/8 4/8 5/8

dsp:8[An] 3/5 3/5 3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8

dsp:8[SB/FB] 3/5 3/5 3/8 4/8 4/8 5/8 5/8 6/8 5/8 6/8

dsp:16[An] 4/5 4/5 4/8 5/8 5/8 6/8 6/8 7/8 6/8 7/8

dsp:16[SB/FB] 4/5 4/5 4/8 5/8 5/8 6/8 6/8 7/8 6/8 7/8

dsp:24[An] 5/5 5/5 5/8 6/8 6/8 7/8 7/8 8/8 7/8 8/8

abs16 4/5 4/5 4/8 5/8 5/8 6/8 6/8 7/8 6/8 7/8

abs24 5/5 5/5 5/8 6/8 6/8 7/8 7/8 8/8 7/8 8/8

(2) SUBX src, dest
b7 b0 b7 b0

1 s4 s3 s2 d4 d3 d2 0 d1 d0 s1 s0 0 0 0 0

dsp24/abs24

dsp8

dsp16/abs16)(dsp24/abs24

dsp8

dsp16/abs16)(
SUBX

R0L/---/---

R1L/---/---

R0H/---/-

R1H/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

srcsrc s4 s3 s2 s1 s0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1s0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

---/---/R2R0

---/---/R3R1

---/---/-

---/---/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

src code dest code

*1 For indirect addressing, the following number is added at
the beginning of code:

01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

[Number of Bytes/Number of Cycles]

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

296

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

dest Rn dsp:8[SB/FB] abs16

Bytes/Cycles 2/1 3/3 4/3

(2) TST.size:S #IMM, dest

.size

.B

.W

SIZE

0

1

b7 b0

0 0 d1 d0 1 1 0 SIZE

R0L/R0

dsp:8[SB]

dsp:8[FB]

abs16

Rn

dsp:8[SB/FB]

abs16

dest d1 d0

0 0

1 0

1 1

0 1

#IMM8

#IMM16

dsp8

abs16)(
TST

TST
(1) TST.size:G #IMM, dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 0 0 1 d4 d3 d2 SIZE d1 d0 1 1 1 1 1 0

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 3/1 3/1 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

#IMM8

#IMM16

dest code

[Number of Bytes/Number of Cycles]

*1 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

dest code

[Number of Bytes/Number of Cycles]

*1 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

297

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

src dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Rn 3/1 3/1 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

An 3/1 3/1 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

[An] 3/3 3/3 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

dsp:8[An] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

dsp:8[SB/FB] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

dsp:16[An] 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

dsp:16[SB/FB] 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

dsp:24[An] 6/3 6/3 6/4 7/4 7/4 8/4 8/4 9/4 8/4 9/4

abs16 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

abs24 6/3 6/3 6/4 7/4 7/4 8/4 8/4 9/4 8/4 9/4

(3) TST.size:G src, dest

.size

.B

.W

SIZE

0

1 R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

src/destsrc/dest s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

dsp24/abs24

dsp8

dsp16/abs16)(
TST

b7 b0 b7 b0 b7 b0

 0000 0001 1 s4 s3 s2 d4 d3 d2 SIZE d1 d0 s1 s0 1 0 0 1

src code dest code

[Number of Bytes/Number of Cycles]

298

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

UND
(1) UND
b7 b0

1 1 1 1 1 1 1 1

(1) WAIT

WAIT

b7 b0 b7 b0

1 0 1 1 0 0 1 0 0 0 0 0 0 0 1 1

Bytes 2

 Bytes/Cycles 1/13

[Number of Bytes/Number of Cycles]

[Number of Bytes]

299

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

XOR
(1) XOR.size #IMM, dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 0 0 1 d4 d3 d2 SIZE d1 d0 0 0 1 1 1 0

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/Cycles 3/1 3/1 3/3 4/3 4/3 5/3 5/3 6/3 5/3 6/3

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

#IMM8

#IMM16

XCHG
(1) XCHG.size src, dest

.size

.B

.W

SIZE

0

1

b7 b0 b7 b0

1 1 0 1 d4 d3 d2 SIZE d1 d0 0 0 1 SRC

dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Bytes/cycles 2/3 2/3 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

destdest d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp24/abs24

dsp8

dsp16/abs16)(
dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

src SRC

0 0 0

0 0 1

1 0 0

1 0 1

0 1 0

0 1 1

*1 When dest is indirectly addressed the code has 00001001
added at the beginning.

dest code

[Number of Bytes/Number of Cycles]

*2 When dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3 respectively.

dest code

*1 When dest is indirectly addressed,the code has 00001001
added at the beginning.

[Number of Bytes/Number of Cycles]

*2 When (.W) is specified for the size specifier(.size) the number of bytes in the table is increased by 1.

300

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

src dest Rn An [An] dsp:8[An] dsp:8[SB/FB] dsp:16[An] dsp:16[SB/FB] dsp:24[An] abs16 abs24

Rn 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

An 2/1 2/1 2/3 3/3 3/3 4/3 4/3 5/3 4/3 5/3

[An] 2/3 2/3 2/4 3/4 3/4 4/4 4/4 5/4 4/4 5/4

dsp:8[An] 3/3 3/3 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

dsp:8[SB/FB] 3/3 3/3 3/4 4/4 4/4 5/4 5/4 6/4 5/4 6/4

dsp:16[An] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

dsp:16[SB/FB] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

dsp:24[An] 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

abs16 4/3 4/3 4/4 5/4 5/4 6/4 6/4 7/4 6/4 7/4

abs24 5/3 5/3 5/4 6/4 6/4 7/4 7/4 8/4 7/4 8/4

(2) XOR.size src, dest

.size

.B

.W

SIZE

0

1 R0L/R0/---

R1L/R1/---

R0H/R2/-

R1H/R3/-

A0

A1

[A0]

[A1]

dsp:8[A0]

dsp:8[A1]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB/FB]

dsp:24[An]

abs16

abs24

Rn

An

[An]

dsp:8[An]

src/destsrc/dest s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

1 0 0 1 0

1 0 0 1 1

1 0 0 0 0

1 0 0 0 1

0 0 0 1 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 1 0 1

s4 s3 s2 s1 s0
d4 d3 d2 d1 d0

0 0 1 1 0

0 0 1 1 1

0 1 0 0 0

0 1 0 0 1

0 1 0 1 0

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 1

0 1 1 1 0

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

dsp:16[FB]

dsp:24[A0]

dsp:24[A1]

abs16

abs24

XOR

b7 b0 b7 b0

1 s4 s3 s2 d4 d3 d2 SIZE d1 d0 s1 s0 1 0 0 1

dsp24/abs24

dsp8

dsp16/abs16)(dsp24/abs24

dsp8

dsp16/abs16)(
src code dest code

*1 For indirect addressing, the following number is added at
the beginning of code:

01000001 when src is indirectly addressed
00001001 when dest is indirectly addressed
01001001 when src and dest are indirectly addressed

*2 When src or dest is indirectly addressed, the number of bytes and cycles in the table are increased by 1 and 3
respectively. Also, when src and dest both are indirectly addressed, the number of bytes and cycles in the table are
increased by 1 and 6, respectively.

[Number of Bytes/Number of Cycles]

Chapter 5

Interrupt

5.1 Outline of Interrupt

5.2 Interrupt Control

5.3 Interrupt Sequence

5.4 Return from Interrupt Routine

5.5 Interrupt Priority

5.6 Multiple Interrupts

5.7 Precautions for Interrupts

5.8 Exit from Stop Mode and Wait Mode

302

Chapter 5 Interrupt

Undefined instruction (UND instruction)
Overflow (INTO instruction)
BRK instruction
BRK2 instruction
INT instruction

Remarks

Interrupt generated by the UND instruction.
Interrupt generated by the INTO instruction.
Executed beginning from address indicated by
vector in variable vector table if content of address
FFFFE716 is FF16.
Can be controlled by an interrupt enable bit.

External interrupt generated by driving NMI pin low.

















Software

Hardware

 Interrupt














Reset

NMI
Watchdog timer
Single step
Address matched

*1 Peripheral I/O interrupts are generated by the peripheral functions built into the microcomputer

system. High-speed interrupt can be used as highest priority in peripheral I/O interrupts.

Special

Peripheral I/O*1

5.1 Outline of Interrupt
When an interrupt request is acknowledged, control branches to the interrupt routine that is set to an inter-

rupt vector table. Each interrupt vector table must have had the start address of its corresponding interrupt

routine set. For details about the interrupt vector table, refer to Section 1.10, “Vector Table.”

5.1.1 Types of Interrupts
Figure 5.1.1 lists the types of interrupts. Table 5.1.1 and 5.1.2 list the source of interrupts (non-

maskable) and the fixed vector tables.

Vector table addresses
Address (L) to address (H)

5.1 Outline of Interrupt

Interrupt source

Watchdog timer
Address match

Undefined instruction
Overflow

BRK instruction

NMI

Reset

FFFFDC16 to FFFFDF16

FFFFE016 to FFFFE316

FFFFE416 to FFFFE716

FFFFE816 to FFFFEB16

FFFFF016 to FFFFF316

FFFFF816 to FFFFFB16

FFFFFC16 to FFFFFF16

Figure 5.1.1. Classification of interrupts

Table 5.1.1 Interrupt Source (Nonmaskable) and Fixed Vector Table

303

Chapter 5 Interrupt

5.1.2 Software Interrupts
Software interrupts are generated by some instruction that generates an interrupt request when ex-

ecuted. Software interrupts are nonmaskable interrupts.

(1) Undefined-instruction interrupt

This interrupt occurs when the UND instruction is executed.

(2) Overflow interrupt

This interrupt occurs if the INTO instruction is executed when the O flag is 1.

The following lists the instructions that cause the O flag to change:

ABS, ADC, ADCF, ADD, ADDX, CMP, CMPX, DIV, DIVU, DIVX, NEG, RMPA, SBB, SCMPU, SHA, SUB,

SUBX

(3) BRK interrupt

This interrupt occurs when the BRK instruction is executed.

(4) BRK2 interrupt

This interrupt occurs when the BRK2 instruction is executed. This interrupt is used exclusively for

debugger purposes. You normally do not need to use this interrupt.

(5) INT instruction interrupt

This interrupt occurs when the INT instruction is executed after specifying a software interrupt number

from 0 to 63. Note that software interrupt numbers 0 to 43 are assigned to peripheral I/O interrupts. This

means that by executing the INT instruction, you can execute the same interrupt routine as used in

peripheral I/O interrupts.

The stack pointer used in INT instruction interrupt varies depending on the software interrupt number.

For software interrupt numbers 0 to 31, the U flag is saved when an interrupt occurs and the U flag is

cleared to 0 to choose the interrupt stack pointer (ISP) before executing the interrupt sequence. The

previous U flag before the interrupt occurred is restored when control returns from the interrupt routine.

For software interrupt numbers 32 to 63, such stack pointer switchover does not occur.

However, in peripheral I/O interrupts, the U flag is saved when an interrupt occurs and the U flag is

cleared to 0 to choose ISP.

Therefore movement of U flag is different by peripheral I/O interrupt or INT instruction in software interrupt

number 32 to 43.

5.1 Outline of Interrupt

Remarks

This interrupt is used
exclusively for debugger
purposes.

Vector table addresses
Address (L) to address (H)

Interrupt source

BRK2 instruction

Single step

Interrupt vector table register exclusively for
emulator
00002016 to 00002316

Table 5.1.2 Interrupt Exclusively for Emulator (Nonmaskable) and Vector Table

 Maskable interrupt: This type of interrupt can be controlled by using the I flag to enable (or

disable) an interrupt or by changing the interrupt priority level.

 Nonmaskable interrupt: This type of interrupt cannot be controlled by using the I flag to enable (or

disable) an interrupt or by changing the interrupt priority level.

304

Chapter 5 Interrupt

5.1.3 Hardware Interrupts
There are Two types in hardware Interrupts; special interrupts and Peripheral I/O interrupts.

(1) Special interrupts

Special interrupts are nonmaskable interrupts.

• Reset

A reset occurs when the RESET pin is pulled low.

• NMI interrupt

This interrupt occurs when the NMI pin is pulled low.

• Watchdog timer interrupt

This interrupt is caused by the watchdog timer.

• Address-match interrupt

This interrupt occurs when the program's execution address matches the content of the address match

register while the address match interrupt enable bit is set (= 1).

This interrupt does not occur if any address other than the start address of an instruction is set in the

address match register.

• Single-step interrupt

This interrupt is used exclusively for debugger purposes. You normally do not need to use this inter-

rupt. A single-step interrupt occurs when the D flag is set (= 1); in this case, an interrupt is generated

each time an instruction is executed.

(2) Peripheral I/O interrupts

These interrupts are generated by the peripheral functions built into the microcomputer system. The

types of built-in peripheral functions vary with each M16C model, so do the types of interrupt causes. The

interrupt vector table uses the same software interrupt numbers 0–43 that are used by the INT instruction.

Peripheral I/O interrupts are maskable interrupts. For details about peripheral I/O interrupts, refer to the

M16C User’s Manual.

For peripheral I/O interrupts, the U flag is saved when an interrupt occurs and the U flag is cleared to 0 to

choose the interrupt stack pointer (ISP) before executing the interrupt sequence. The previous U flag

before the interrupt occurred is restored when control returns from the interrupt routine.

(3) High-speed interrupts

High-speed interrupts are interrupts in which the response is executed at high-speed. High-speed inter-

rupt can be used as highest priority in peripheral I/O interrupts.

Execute a FREIT instruction to return from the high-speed interrupt routine.

For details about high-speed interrupt, refer to the M16C User’s Manual.

5.1 Outline of Interrupt

305

Chapter 5 Interrupt

FSET I

Time

5.2 Interrupt Control
The following explains how to enable/disable maskable interrupts and set acknowledge priority. The expla-

nation here does not apply to non-maskable interrupts.

Maskable interrupts are enabled and disabled by using the interrupt enable flag (I flag), interrupt priority

level select bit, and processor interrupt priority level (IPL). Whether there is any interrupt requested is

indicated by the interrupt request bit. The interrupt request bit and interrupt priority level select bit are

arranged in the interrupt control register provided for each specific interrupt. The interrupt enable flag (I

flag) and processor interrupt priority level (IPL) are arranged in the flag register (FLG).

For details about the memory allocation and the configuration of interrupt control registers, refer to the

M16C User's Manual.

5.2.1 Interrupt Enable Flag (I Flag)
The interrupt enable flag (I flag) is used to disable/enable maskable interrupts. When this flag is set (=

1), all maskable interrupts are enabled; when the flag is cleared to 0, they are disabled. This flag is

automatically cleared to 0 after a reset is cleared.

When the I flag is changed, the altered flag status is reflected in determining whether or not to accept an

interrupt request at the following timing:

• If the flag is changed by an REIT or FREIT instruction, the changed status takes effect begin-

ning with that REIT or FREIT instruction.

• If the flag is changed by an FCLR, FSET, POPC, or LDC instruction, the changed status takes

effect beginning with the next instruction.

Previous
instruction

Interrupt sequenceREIT

Interrupt sequence Next instruction
Previous
instruction

Time

Figure 5.2.1 Timing at which changes of I flag are reflected in interrupt handling

Interrupt request generated

Interrupt request generated

5.2 Interrupt Control

When changed by REIT or FREIT instruction

Determination whether or not to
accept interrupt request

Determination whether or not to
accept interrupt request

When changed by FCLR, FSET, POPC, or LDC instruction

(If I flag is changed from 0 to 1 by REIT instruction)

 (If I flag is changed from 0 to 1 by FSET instruction)

5.2.2 Interrupt Request Bit
This bit is set (= 1) when an interrupt request is generated. This bit remains set until the interrupt request

is acknowledged. The bit is cleared to 0 when the interrupt request is acknowledged.

This bit can be cleared to 0 (but cannot be set to 1) in software.

306

Chapter 5 Interrupt

When the processor interrupt priority level (IPL) or the interrupt priority level of some interrupt is

changed, the altered level is reflected in interrupt handling at the following timing:

• If the processor interrupt priority level (IPL) is changed by an REIT or FREIT instruction, the changed

level takes effect beginning with the REIT or FREIT instruction.

• If the processor interrupt priority level (IPL) is changed by a POPC, LDC, or LDIPL instruction, the

changed level takes effect beginning with the next instruction.

• If the interrupt priority level of a particular interrupt is changed by an instruction such as MOV, the

changed level takes effect beginning with the instruction that is executed two clock or two clock peri-

ods after the last clock of the instruction used.

5.2.3 Interrupt Priority Level Select Bit and Processor Interrupt Priority Level (IPL)
Interrupt priority levels are set by the interrupt priority select bit in an interrupt control register. When an

interrupt request is generated, the interrupt priority level of this interrupt is compared with the processor

interrupt priority level (IPL). This interrupt is enabled only when its interrupt priority level is greater than

the processor interrupt priority level (IPL). This means that you can disable any particular interrupt by

setting its interrupt priority level to 0.

Table 5.2.1 shows how interrupt priority levels are set. Table 5.2.2 shows interrupt enable levels in

relation to the processor interrupt priority level (IPL).

The following lists the conditions under which an interrupt request is acknowledged:

• Interrupt enable flag (I flag) = 1

• Interrupt request bit = 1

• Interrupt priority level > Processor interrupt priority level (IPL)

The interrupt enable flag (I flag), interrupt request bit, interrupt priority level select bit, and the processor

interrupt priority level (IPL) all are independent of each other, so they do not affect any other bit.

0 1 0

0 1 1

1 1 0

1 1 1

0 0 1

0 0 0

Low

High

1 0 1

1 1 0

1 1 1

0 0 0

1 0 0

0 0 1

0 1 0

0 1 1

Table 5.2.2 IPL and Interrupt Enable LevelsTable 5.2.1 Interrupt Priority Levels

Interrupt priority

level select bit
Interrupt priority level

Priority

order
b0b1b2

1 0 0

1 0 1

Processor interrupt

priority level (IPL)

 Enabled interrupt priority

levels
IPL1 IPL0 Interrupt levels 1 and above are enabled.

Interrupt levels 2 and above are enabled.

Interrupt levels 3 and above are enabled.

Interrupt levels 4 and above are enabled.

Interrupt levels 5 and above are enabled.

Interrupt levels 6 and above are enabled.

Interrupt levels 7 and above are enabled.

All maskable interrupts are disabled.

Level 0 (interrupt disabled)

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

IPL2

5.2 Interrupt Control

307

Chapter 5 Interrupt
5.2 Interrupt Control

5.2.4 Rewrite the interrupt control register
When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the

interrupt request bit is not set sometimes even if the interrupt request for that register has been gener-

ated. This will depend on the instruction. If this creates problems, use the below instructions to change

the register.

Instructions : AND, OR, BCLR, BSET

5.3 Interrupt Sequence
An interrupt sequence — what are performed over a period from the instant an interrupt is accepted to the

instant the interrupt routine is executed — is described here.

If an interrupt occurs during execution of an instruction, the processor determines its priority when the

execution of the instruction is completed, and transfers control to the interrupt sequence from the next

cycle. If an interrupt occurs during execution of either the SCMPU, SIN, SMOVB, SMOVF, SMOVU,

SSTR, SOUT or RMPA instruction, the processor temporarily suspends the instruction being executed,

and transfers control to the interrupt sequence.

In the interrupt sequence, the processor carries out the following in sequence given:

(1) CPU gets the interrupt information (the interrupt number and interrupt request level) by reading address

00000016 (address 00000216 when high-speed interrupt).

(2) Saves the content of the flag register (FLG) as it was immediately before the start of interrupt sequence

in the temporary register (Note) within the CPU.

(3) Sets the interrupt enable flag (I flag), the debug flag (D flag), and the stack pointer select flag (U flag) to

“0” (the U flag, however does not change if the INT instruction, in software interrupt numbers 32 through

63, is executed)

(4) Saves the content of the temporary register (Note 1) within the CPU in the stack area. Saves in the flag

save register (SVF) in high-speed interrupt.

(5) Saves the content of the program counter (PC) in the stack area. Saves in the PC save register (SVP)

in high-speed interrupt.

(6) Sets the interrupt priority level of the accepted instruction in the IPL.

After the interrupt sequence is completed, the processor resumes executing instructions from the first ad-

dress of the interrupt routine.

Note: This register cannot be utilized by the user.

308

Chapter 5 Interrupt

Time (a) varies with each instruction being executed. The DIVX instruction requires a maximum time that

consists of 29* cycles.

Time (b) is shown in table 5.3.1.

* It is when the divisor is immediate or register. When the divisor is memory, the following value is

 added.

• Normal addressing : 2 + X

• Index addressing : 3 + X

• Indirect addressing : 5 + X + 2Y

• Indirect index addressing : 5 + X + 2Y

 X is number of wait of the divisor area. Y is number of wait of the indirect address stored area.

 When X and Y are in odd address or in 8 bits bus area, double the value of X and Y.

5.3.1 Interrupt Response Time
The interrupt response time means a period of time from when an interrupt request is generated till when

the first instruction of the interrupt routine is executed. This period consists of time (a) from when an

interrupt request is generated to when the instruction then under way is completed and time (b) in which

an interrupt sequence is executed. Figure 5.3.1 shows the interrupt response time.

Figure 5.3.1. Interrupt response time

(a) (b)

Time

Instruction

Interrupt response time

Instruction in interrupt
routine

Interrupt sequence

Interrupt request acknowledgedInterrupt request generated

(a) Time from when interrupt request is generated to when the instruction then under execu-
tion is completed

(b) Time in which the interrupt sequence is executed

5.3 Interrupt Sequence

309

Chapter 5 Interrupt

Table 5.3.1 Interrupt Sequence Execution Time

8 bits data bus

16 cycles

16 cycles

14 cycles

14 cycles

15 cycles

16 cycles

19 cycles

19 cycles

21 cycles

16 bits data bus

14 cycles

16 cycles

12 cycles

14 cycles

13 cycles

14 cycles

17 cycles

19 cycles

19 cycles

Interrupt vector address

Even address

Odd address*2

Even address

Odd address*2

Even address*1

Even address*1

Even address

Odd address*2

Even address*1

Vector table is internal register

5.3 Interrupt Sequence

*1 The vector table is fixed to even address.
*2 Allocate interrupt vector addresses in even addresses as must as possible.
*3 The high-speed interrupt is independent of these conditions.

Interrupt

Peripheral I/O

INT instruction

NMI

Watchdog timer

Undefined instruction

Address match

Overflow

BRK instruction

(Variable vector table)

Single step

BRK2 instruction

BRK instruction

(Fixed vector table)

High-speed interrupt*3 5 cycles

Value that is set to IPL

7

0

Not changed

5.3.2 Changes of IPL When Interrupt Request Acknowledged
When an interrupt request is acknowledged, the interrupt priority level of the acknowledged interrupt is

set to the processor interrupt priority level (IPL).

If an interrupt request is acknowledged that does not have an interrupt priority level, the value shown in

Table 5.3.2 is set to the IPL.

Table 5.3.2 Relationship between Interrupts without Interrupt Priority Levels and IPL

Interrupt sources without interrupt priority levels

Watchdog timer, NMI

Reset

Other

310

Chapter 5 Interrupt

5.3.3 Saving Registers
In an interrupt sequence, only the contents of the flag register (FLG) and program counter (PC) are

saved to the stack area.

The order in which these contents are saved is as follows: First, the FLG register is saved to the stack

area. Next, the 16 high-order bits and 16 low-order bits of the program counter expanded to 32-bit are

saved. Figure 5.3.2 shows the stack status before an interrupt request is acknowledged and the stack

status after an interrupt request is acknowledged.

In a high-speed interrupt sequence, the contents of the flag register (FLG) is saved to the flag save

register (SVF) and program counter (PC) is saved to PC save register (SVP).

If there are any other registers you want to be saved, save them in software at the beginning of the

interrupt routine. The PUSHM instruction allows you to save all registers except the stack pointer (SP)

by a single instruction.

5.3 Interrupt Sequence

[SP]
Stack pointer
value before
interrupt occurs

Stack status before interrupt request is acknowledged

Address

Stack status after interrupt request is acknowledged

Figure 5.3.2 Stack status before and after an interrupt request is acknowledged

m-6

m-5

m–4

m–3

m–2

m–1

m

m+1

LSBMSBLSBMSB
Address Stack area Stack area

Flag register
(FLGL)

Program counter
(PCH)

Flag register
(FLGH)

Content of
previous stack

Content of
previous stack

Content of
previous stack
Content of
previous stack

Program counter
(PCL)

Program counter
(PCM)

[SP]
New stack
pointer value

m-6

m-5

m–4

m–3

m–2

m–1

m

m+1

0 0

311

Chapter 5 Interrupt

5.5 Interrupt Priority
If two or more interrupt requests are sampled active at the same time, whichever interrupt request is ac-

knowledged that has the highest priority.

Maskable interrupts (Peripheral I/O interrupts) can be assigned any desired priority by setting the interrupt

priority level select bit accordingly. If some maskable interrupts are assigned the same priority level, the

interrupt that a request came to most in the first place is accepted at first, and then, the priority between

these interrupts is resolved by the priority that is set in hardware*1.

Certain nonmaskable interrupts such as a reset (reset is given the highest priority) and watchdog timer

interrupt have their priority levels set in hardware. Figure 5.5.1 lists the hardware priority levels of these

interrupts.

Software interrupts are not subjected to interrupt priority. They always cause control to branch to an inter-

rupt routine whenever the relevant instruction is executed.

*1 Hardware priority varies with each M16C model. Please refer to your M16C User’s Manual.

Reset > NMI > Watchdog > Peripheral I/O > Single step > Address match

Figure 5.5.1. Interrupt priority that is set in hardware

5.4 Return from Interrupt Routine
As you execute the REIT instruction at the end of the interrupt routine, the contents of the flag register (FLG)

and program counter (PC) that have been saved to the stack area immediately preceding the interrupt

sequence are automatically restored. In high-speed interrupt, as you execute the REIT instruction at the end

of the interrupt routine, the contents of the flag register (FLG) and program counter (PC) that have been

saved to the save registers immediately preceding the interrupt sequence are automatically restored.

Then control returns to the routine that was under execution before the interrupt request was acknowledged,

and processing is resumed from where control left off.

If there are any registers you saved via software in the interrupt routine, be sure to restore them using an

instruction (e.g., POPM instruction) before executing the REIT or FREIT instruction.

5.4 Return from Interrupt Routine

312

Chapter 5 Interrupt

5.6 Multiple Interrupts
The following shows the internal bit states when control has branched to an interrupt routine:

• The interrupt enable flag (I flag) is cleared to 0 (interrupts disabled).

• The interrupt request bit for the acknowledged interrupt is cleared to 0.

• The processor interrupt priority level (IPL) equals the interrupt priority level of the acknowledged interrupt.

By setting the interrupt enable flag (I flag) (= 1) in the interrupt routine, you can reenable interrupts so that an

interrupt request can be acknowledged that has higher priority than the processor interrupt priority level

(IPL). Figure 5.6.1 shows how multiple interrupts are handled.

The interrupt requests that have not been acknowledged for their low interrupt priority level are kept pend-

ing. When the IPL is restored by an REIT and FREIT instruction and interrupt priority is resolved against it,

the pending interrupt request is acknowledged if the following condition is met:

Interrupt priority level of

pending interrupt request

Restored processor interrupt

priority level (IPL)
>

5.6 Multiple interrupts

313

Chapter 5 Interrupt

I = 0

IPL = 0

I = 1

I = 0

IPL = 3

I = 1

I = 0

IPL = 5

REIT

I = 1

IPL = 3

REIT

I = 1

IPL = 0

I = 0

IPL = 2

REIT

I = 1

IPL = 0

Interrupt priority level = 3

Interrupt priority level = 5

Interrupt 3

Interrupt priority level = 2

Not acknowledged because

of low interrupt priority

Main routine instructions

are not executed.

Interrupt request
generated Nesting

 Main routineReset
Time

Interrupt 1

Interrupt 1

Interrupt 2

Figure 5.6.1. Multiple interrupts

: Automatically executed.
: Be sure to set in software.

 I : Interrupt enable flag
IPL : Processor interrupt priority level

REIT

Interrupt 3

Interrupt 3

REIT

Interrupt 2

Multiple interrupts

5.6 Multiple interrupts

REIT

314

Chapter 5 Interrupt

5.7 Precautions for Interrupts
(1) Reading addresses 000000 16 and 00000216

• When maskable interrupt is occurred, CPU read the interrupt information (the interrupt number and

interrupt request level) in the interrupt sequence from address 00000016. When high-speed interrupt

is occurred, CPU read from address 00000216.

 The interrupt request bit of the certain interrupt will then be set to “0”.

 However, reading addresses 00000016 and 00000216 by software does not set request bit to “0”.

(2) Setting the stack pointer
• The value of the stack pointer immediately after reset is initialized to 00000016. Accepting an interrupt

before setting a value in the stack pointer may become a factor of runaway. Be sure to set a value in

the stack pointer before accepting an interrupt. When using the NMI interrupt, initialize the stack

pointer at the beginning of a program. Any interrupt including the NMI interrupt is generated immedi-

ately after executing the first instruction after reset. Set an even number to the stack pointer. When an

even number is set, execution efficiency is increased.

(3) Rewrite the interrupt control register

• When a instruction to rewrite the interrupt control register is executed but the interrupt is disabled, the

interrupt request bit is not set sometimes even if the interrupt request for that register has been gener-

ated. This will depend on the instruction. If this creates problems, use the below instructions to change

the register.

 Instructions : AND, OR, BCLR, BSET

5.8 Exit from Stop Mode and Wait Mode
When using an peripheral I/O interrupt to exit stop mode or wait mode, the relevant interrupt must have been

enabled and set to a priority level above the level set by the interrupt priority set bits for exiting a stop/wait

state. Set the interrupt priority set bits for exiting a stop/wait state to the same level as the processor interrupt

level (IPL) of flag register (FLG).

RESET and NMI interrupt are independent of the interrupt priority set bits for exiting a stop/wait state, and

stop/wait state is exited.

Chapter 6

Calculation Number of Cycles

6.1 Instruction queue buffer

316

6.1 Instruction queue bufferChapter 6 Calculation number of cycles

6.1 Instruction queue buffer
The M16C/80 series have 8-stage (8-byte) instruction queue buffers. If the instruction queue buffer has a

free space when the CPU can use the bus, instruction codes are taken into the instruction queue buffer.

This is referred to as “prefetch”. The CPU reads (fetches) these instruction codes from the instruction

queue buffer as it executes a program.

Explanation about the number of cycles in Chapter 4 assumes that all the necessary instruction codes are

placed in the instruction queue buffer, and that data is read or written to the memory connected via a 16-bit

bus (including the internal memory) beginning with even addresses without software wait or RDY or other

wait states. In the following cases, more cycles may be needed than the number of cycles shown in this

manual:

• When not all of the instruction codes needed by the CPU are placed in the instruction queue buffer...

Instruction codes are read in until all of the instruction codes required for program execution are avail-

able. Furthermore, the number of read cycles increases in the following cases:

(1) The number of read cycles increases as many as the number of wait cycles incurred when reading

instruction codes from an area in which software wait or RDY or other wait states exist.

(2) When reading instruction codes from memory chips connected to an 8-bit bus, more read cycles are

required than for 16-bit bus.

• When reading or writing data to an area in which software wait or RDY or other wait states exist...

The number of read or write cycles increases as many as the number of wait cycles incurred.

• When reading or writing 16-bit data to memory chips connected to an 8-bit bus...

The memory is accessed twice to read or write one 16-bit data. Therefore, the number of read or write

cycles increases by one for each 16-bit data read or written.

• When reading or writing 16-bit data to memory chips connected to a 16-bit bus beginning with an odd

address...

The memory is accessed twice to read or write one 16-bit data. Therefore, the number of read or write

cycles increases by one for each 16-bit data read or written.

Note that if prefetch and data access occur in the same timing, data access has priority. Also, if more than

seven bytes of instruction codes exist in the instruction queue buffer, the CPU assumes there is no free

space in the instruction queue buffer and, therefore, does not prefetch instruction code.

Figures 6.1.1 to 6.1.8 show examples of instruction queue buffer operation and CPU execution cycles.

317

6.1 Instruction queue bufferChapter 6 Calculation number of cycles

Fetch code

Instructions
under execution

Instruction
queue buffer

Address bus

Data bus(H)

Data bus(L)

Fetch Fetch
Content at jump address is
prefetched at the same time the
instruction queue buffer is cleared.

Jump address

Content at jump address is
prefetched at the same time the
instruction queue buffer is cleared.

Sample program
Address Code Instruction
FFC024 TEST_10:
FFC024 7A JMP TEST_11
FFC025 DE NOP
FFC026 DE NOP
FFC027 DE NOP
FFC028 DE NOP
FFC029 DE NOP
FFC02A DE NOP
FFC02B DE NOP
FFC02C TEST_11:
FFC02C C9EB MOV.W:G R0,R1
FFC02E 7A JMP TEST_12
FFC02F DE NOP
FFC030 DE NOP
FFC031 DE NOP
FFC032 DE NOP
FFC033 DE NOP
FFC034 DE NOP
FFC035 DE NOP
FFC036 TEST_12:

7A C9EB 7A

JMP TEST_11 MOV.W JMP TEST_12

DE

DE

DE

DE

DE

DE

DE

WR

RD

BCLK

C9

EB

C9

EB

7A

DE

DE

DE

DE

DE

DE

7A

DE

DE

DE

C9

EB

C9

EB

BB

FF

P P PP P P P

FFC02A FFC02C FFC02E FFC030 FFC032 FFC036 FFC038

DE EB DE DE DE EB FF

DE C9 7A DE DE C9 BB

: Indicates the locations of the instruction queue buffer that are cleared.

P : Indicates a prefetch (reading from memory into the instruction queue buffer).

Figure 6.1.1. When executing a register transfer instruction starting from an even address
(Program area: 16-bit bus without wait state; Data area: 16-bit bus without wait state)

318

6.1 Instruction queue bufferChapter 6 Calculation number of cycles

Figure 6.1.2. When executing a register transfer instruction starting from an odd address
(Program area: 16-bit bus without wait state; Data area: 16-bit bus without wait state)

Not all codes are ready in the
instruction queue buffer, so
the next read is performed

Fetch code

Instructions
under execution

Address bus

Data bus (H)

Data bus (L)

BCLK

FetchFetch
Content at jump address is
prefetched at the same time the
instruction queue buffer is cleared.

Instruction
queue buffer

Jump address

Sample program
Address Code Instruction
FFC024 TEST_10:
FFC024 7B JMP TEST_11
FFC025 DE NOP
FFC026 DE NOP
FFC027 DE NOP
FFC028 DE NOP
FFC029 DE NOP
FFC02A DE NOP
FFC02B DE NOP
FFC02C DE NOP
FFC02D TEST_11:
FFC02D C9EB MOV.W:G R0,R1
FFC02F 7A JMP TEST_12
FFC030 DE NOP
FFC031 DE NOP
FFC032 DE NOP
FFC033 DE NOP
FFC034 DE NOP
FFC035 DE NOP
FFC036 DE NOP
FFC037 TEST_12:

7B C9EB 7A

JMP TEST_11 MOV.W JMP TEST_12

DE

DE

DE

DE

DE

DE

DE

WR

RD

C9 C9

EB

7A

DE

DE

DE

DE

DE

DE

DE

DE

7A

DE

DE

DE

DE

C9C9

EB

7A

C9

EB

BB

FF

9E

C9

EB

BB

DE C9 7A DE DE DE C9 BB 9E

DE EB DE DE DE EB FF

FFC02A FFC02D FFC02E FFC030 FFC032 FFC034 FFC037 FFC038 FFC03A

P P PP P P P P P

: Indicates the locations of the instruction queue buffer that are cleared.

P : Indicates a prefetch (reading from memory into the instruction queue buffer).

319

6.1 Instruction queue bufferChapter 6 Calculation number of cycles

Content at jump
address is prefetched at
the same time the
instruction queue buffer
is cleared.

Fetch code

Instructions
under execution

Instruction
queue buffer

Address bus

Data bus (H)

Data bus (L)

Fetch

Jump address

DR : Indicates a data read.
: Indicates the locations of the instruction queue buffer that are cleared.

P : Indicates a prefetch (reading from memory into the instruction queue buffer).

Fetch
Fetch

Content at address 200116

Sample program
Address Code Instruction
FFC024 TEST_10:
FFC024 7A JMP TEST_11
FFC025 DE NOP
FFC026 DE NOP
FFC027 DE NOP
FFC028 DE NOP
FFC029 DE NOP
FFC02A DE NOP
FFC02B DE NOP
FFC02C TEST_11:
FFC02C B9FB0020 MOV.W:G 02000h,R1
FFC030 7A JMP TEST_12
FFC031 DE NOP
FFC032 DE NOP
FFC033 DE NOP
FFC034 DE NOP
FFC035 DE NOP
FFC036 DE NOP
FFC037 DE NOP
FFC038 TEST_12:

7A B9FB 7A

JMP TEST_11 MOV.W JMP TEST_12

DE

DE

DE

DE

DE

DE

DE

WR

RD

BCLK

B9

FB

00

20

7A

DE

7A

DE

DE

DE

7A

DE

DE

DE

DE

DE

DE

B9

FB

00

20

B9

FB

00

20

B9

FB

DE FB 20 DE AA DE DE FB 20

FFC02A FFC02C FFC02E FFC030 02000 FFC032 FFC034 FFC038 FFC03A

P DR PP P P P P P

0020

DE 00 7A AA DE B9 00B9 DE

Content at address 200016

Content at jump address
is prefetched at the
same time the instruction
queue buffer is cleared.

Figure 6.1.3. When executing an instruction to read from even addresses starting from an even address
(Program area: 16-bit bus without wait state; Data area: 16-bit bus without wait state)

320

6.1 Instruction queue bufferChapter 6 Calculation number of cycles

Figure 6.1.4. When executing an instruction to read from odd addresses starting from an even address
(Program area: 16-bit bus without wait state; Data area: 16-bit bus without wait state)

Content at jump
address is prefetched at
the same time the
instruction queue buffer
is cleared.

Fetch code

Instructions
under execution

Instruction
queue buffer

Address bus

Data bus (H)

Data bus (L)

Fetch

Jump address

Fetch
Fetch

Content at address 200116

7A B9FB 7A

JMP TEST_11 MOV.W JMP TEST_12

DE

DE

DE

DE

DE

DE

DE

B9

FB

01

20

7A

DE

7A

DE

DE

DE

7A

DE

DE

DE

DE

DE

DE

B9

FB

01

20

B9

FB

01

20

B9

FB

0020

Content at address 200216

Content at jump address
is prefetched at the
same time the instruction
queue buffer is cleared.

Sample program
Address Code Instruction
FFC024 TEST_10:
FFC024 7A JMP TEST_11
FFC025 DE NOP
FFC026 DE NOP
FFC027 DE NOP
FFC028 DE NOP
FFC029 DE NOP
FFC02A DE NOP
FFC02B DE NOP
FFC02C TEST_11:
FFC02C B9FB0120 MOV.W:G 02001h,R1
FFC030 7A JMP TEST_12
FFC031 DE NOP
FFC032 DE NOP
FFC033 DE NOP
FFC034 DE NOP
FFC035 DE NOP
FFC036 DE NOP
FFC037 DE NOP
FFC038 TEST_12:

WR

RD

BCLK

DE FB 20 DE AA DE DE FB 20

DE 01 7A AA DE B9 01B9 DE

FFC02A FFC02C FFC02E FFC030 02001 FFC032 FFC034 FFC038 FFC03A02002

P DR DRP P P P P P P

7A

DE

DR : Indicates a data read.

: Indicates the locations of the instruction queue buffer that are cleared.

P : Indicates a prefetch (reading from memory into the instruction queue buffer).

321

6.1 Instruction queue bufferChapter 6 Calculation number of cycles

Figure 6.1.5. When executing an instruction to transfer data between even addresses starting from an even address
(Program area: 16-bit bus without wait state; Data area: 16-bit bus without wait state)

02

20

7A

DE

DE

DE

02

20

7A

DE

DE

DE

DE

B7

FB

00

20

B7

FB

02

20

Content at jump
address is prefetched at
the same time the
instruction queue buffer
is cleared.

Fetch code

Instructions
under execution

Instruction
queue buffer

Address bus

Data bus (H)

Data bus (L)

Fetch

Jump address

DR : Indicates a data read.

: Indicates the locations of the instruction queue buffer that are cleared.

P : Indicates a prefetch (reading from memory into the instruction queue buffer).

Fetch
Fetch

Content at address 200116

7A B9FB

JMP TEST_11 MOV.W JMP TEST_12

DE

DE

DE

DE

DE

DE

DE

B7

FB

00

20

02

20

B7

FB

00

20

0020

Content at address 200016

Content at jump address
is prefetched at the
same time the instruction
queue buffer is cleared.

BCLK

Sample program
Address Code Instruction
FFC024 TEST_10:
FFC024 7A JMP TEST_11
FFC025 DE NOP
FFC026 DE NOP
FFC027 DE NOP
FFC028 DE NOP
FFC029 DE NOP
FFC02A DE NOP
FFC02B DE NOP
FFC02C TEST_11:
FFC02C B7FB00200220 MOV.W 02000h,02002h
FFC032 7A JMP TEST_12
FFC033 DE NOP
FFC034 DE NOP
FFC035 DE NOP
FFC036 DE NOP
FFC037 DE NOP
FFC038 DE NOP
FFC039 DE NOP
FFC03A TEST_12:

02207A

WR

RD

FFC02A FFC02C FFC02E FFC030 02000 FFC034 02002 FFC03A FFC03CFFC032

P DR PP P P P P P P

DE 00 02 7A DE B7 00B7 AAAA

DE FB 20 20 AA DE AA FB 20DE

DW

DW : Indicates a data write.

322

6.1 Instruction queue bufferChapter 6 Calculation number of cycles

Content at jump
address is prefetched at
the same time the
instruction queue buffer
is cleared.

Fetch code

Instructions
under execution

Instruction
queue buffer

Address bus

Data bus (H)

Data bus (L)

Fetch

Jump address

DR : Indicates a data read.
: Indicates the locations of the instruction queue buffer that are cleared.

P : Indicates a prefetch (reading from memory into the instruction queue buffer).

Fetch
Fetch

Content at address 200116

7A B9FB 7A

JMP TEST_11 MOV.W JMP TEST_12

DE

DE

DE

DE

DE

DE

DE

WR

RD

BCLK

B9

FB

00

20

7A

DE

7A

DE

DE

DE

7A

DE

DE

DE

DE

DE

DE

B9

FB

00

20

B9

FB

00

20

B9

FB

DE FB 20 DE AA DE DE FB 20

P DR PP P P P P P

0020

DE 00 7A AA DE B9 00B9 DE

Content at address 200016

Content at jump address
is prefetched at the
same time the instruction
queue buffer is cleared.

Sample program
Address Code Instruction
FFC026 TEST_10:
FFC026 7A JMP TEST_11
FFC027 DE NOP
FFC028 DE NOP
FFC029 DE NOP
FFC02A DE NOP
FFC02B DE NOP
FFC02C DE NOP
FFC02D DE NOP
FFC02E TEST_11:
FFC02E B9FB0020 MOV.W:G 02000h,R1
FFC032 7A JMP TEST_12
FFC033 DE NOP
FFC034 DE NOP
FFC035 DE NOP
FFC036 DE NOP
FFC037 DE NOP
FFC038 DE NOP
FFC039 DE NOP
FFC03A TEST_12:

FFC02C FFC02E FFC030 FFC032 02000 FFC034 FFC036 FFC03A FFC03C

Figure 6.1.6. When executing an instruction to read from even addresses starting from an even address
(Program area: 16-bit bus without wait state; Data area: 16-bit bus with wait state)

323

6.1 Instruction queue bufferChapter 6 Calculation number of cycles

Content at jump
address is prefetched at
the same time the
instruction queue buffer
is cleared.

Fetch code

Instructions
under execution

Instruction
queue buffer

Address bus

Data bus (H)

Data bus (L)

Fetch

Jump address

DR : Indicates a data read.

: Indicates the locations of the instruction queue buffer that are cleared.

P : Indicates a prefetch (reading from memory into the instruction queue buffer).

Fetch
Fetch

7A B9FB

JMP TEST_11 MOV.W JMP TEST_12

DE

DE

DE

DE

DE

DE

DE

0080

Content at jump address
is prefetched at the
same time the instruction
queue buffer is cleared.

BCLK

7A

WR

RD

Sample program
Address Code Instruction
FFC024 TEST_10:
FFC024 7A JMP TEST_11
FFC025 DE NOP
FFC026 DE NOP
FFC027 DE NOP
FFC028 DE NOP
FFC029 DE NOP
FFC02A DE NOP
FFC02B DE NOP
FFC02C TEST_11:
FFC02C B9FB0080 MOV.W:G 08000h,R1
FFC030 7A JMP TEST_12
FFC031 DE NOP
FFC032 DE NOP
FFC033 DE NOP
FFC034 DE NOP
FFC035 DE NOP
FFC036 DE NOP
FFC037 DE NOP
FFC038 TEST_12:

B9

FB

00

80

7A

DE

7A

DE

DE

DE

7A

DE

DE

DE

DE

DE

DE

B9

FB

00

80

B9

FB

00

80

B9

FB

7A

DE

DE FB 80 DE DE DE FB 80

AADE 00 7A AA DE B9 00B9 DE

FFC02A FFC02C FFC02E FFC030 08000 FFC032 FFC034 FFC038 FFC03A08001

P DR DRP P P P P P P

Content at address 800016 Content at address 800116

Figure 6.1.7. When executing a read instruction for memory connected to 8-bit bus
(Program area: 16-bit bus without wait state; Data area: 8-bit bus without wait state)

324

6.1 Instruction queue bufferChapter 6 Calculation number of cycles

Jump address

Sample program
Address Code Instruction
FFC024 TEST_10:
FFC024 7A JMP TEST_11
FFC025 DE NOP
FFC026 DE NOP
FFC027 DE NOP
FFC028 DE NOP
FFC029 DE NOP
FFC02A DE NOP
FFC02B DE NOP
FFC02C TEST_11:
FFC02C B9FB0080 MOV.W:G 08000h,R1
FFC030 7A JMP TEST_12
FFC031 DE NOP
FFC032 DE NOP
FFC033 DE NOP
FFC034 DE NOP
FFC035 DE NOP
FFC036 DE NOP
FFC037 DE NOP
FFC038 TEST_12:

7A B9FB 7A

DE

DE

DE

WR

RD

BCLK

B9 B9

FB

00

00

80

7A

DE

00

80

7A

7A

DE

B9

FB

7A

DE

DE

7A

DE

0080

00

80

B9DE

DE

DE

B9

FB

B9

FB

00

FFC027 FFC02C FFC02D FFC02E FFC02F FFC031 08000 08001 FFC032FFC030 FFC033 FFC038 FFC039 FFC03A

80DE FB 00 7A DE AA DEB9 AA DE B9 FB 00

P P PP P P P DR DR P P P P P

Content at jump address
is prefetched at the
same time the instruction
queue buffer is cleared.

Content at jump address
is prefetched at the
same time the instruction
queue buffer is cleared.Fetch Fetch Fetch

Content at address 800016
Content at address 800116

Fetch code

Instructions
under execution

Instruction
queue buffer

Address bus

Data bus (H)

Data bus (L)

DR : Indicates a data read.

: Indicates the locations of the instruction queue buffer that are cleared.

P : Indicates a prefetch (reading from memory into the instruction queue buffer).

JMP TEST_11 MOV.W JMP TEST_12

Figure 6.1.8. When executing a read instruction for memory connected to 8-bit bus
(Program area: 8-bit bus without wait state; Data area: 8-bit bus without wait state)

Q&A-1

Q & A
Information in a Q&A form to be used to make the most of the M16C family is given below.

Usually, one question and the answer to it are given on one page; the upper section is for the

question, and the lower section is for the answer (if a pair of question and answer extends over two

or more pages, a page number is given at the lower-right corner).

Functions closely connected with the contents of a page are shown at its upper-right corner.

Q&A-2

CPU

Q

A

Only positive displacement is allowed in SB Relative Addresing, while FB Relative Address-

ing can be with positive or negative displacement.

If you write a program in C, Mitsubishi C compiler uses FB as a stack frame base register.

You can use SB and FB as intended in programming in the assembly language.

How do I distinguish between the static base register (SB) and the frame base register (FB)?

CPU

Q

A

What is the difference between the user stack pointer (USP) and the interrupt stack pointer

(ISP)?, What are their roles?

You use USP when using the OS. When several tasks run, the OS secures stack areas to

save registers of individual tasks. Also, stack areas have to be secured, task by task, to be

used for handling interrupts that occur while tasks are being executed. If you use USP and

ISP in such an instance, the stack for interrupts can be shared by these tasks; this allows

you to efficiently use stack areas.

Q&A-3

CPU

Q

A

What is the difference between the DIV instruction and the DIVX instruction?

Either of the DIV instruction and the DIVX instruction is an instruction for signed division,

the sign of the remainder is different.

The sign of the remainder left after the DIV instruction is the same as that of the dividend, on

the contrary, the sign of the remainder of the DIVX instruction is the same as that of the

divisor.

In general, the following relation among quotient, divisor, dividend, and remainder holds.

dividend = divisor quotient + remainder

Since the sign of the remainder is different between these instructions, the quotient ob-

tained either by dividing a positive integer by a negative integer or by dividing a negative

integer by a positive integer using the DIV instruction is different from that obtained using

the DIVX instruction.

For example, dividing 10 by –3 using the DIV instruction yields –3 and leaves +1, while doing

the same using the DIVX instruction yields –4 and leaves –2.

Dividing –10 by +3 using the DIV instruction yields –3 and leaves –1, while doing the same

using the DIVX instruction yields –4 and leaves +2.

Q&A-4

Interrupt

Q

A

Yes. But there can be a chance that the microcomputer runs away out of control if an inter-

rupt request occurs in changing the value of INTB. So it is not recommended to frequently

change the value of INTB while a program is being executed.

Is it possible to change the value of the interrupt table register (INTB) while a program is

being executed?

Symbol-1

Table of symbols
Symbols used in this software manual are explained below. They are good in this manual only.

Symbol-2

Symbol Meaning

Transposition from the right side to the left side

Interchange between the right side and the left side

Addition

Subtraction

Multiplication

Division

Logical conjunction

Logical disjunction

Exclusive disjunction

Logical negation

dsp24 24-bit displacement

dsp16 16-bit displacement

dsp8 8-bit displacement

EVA() An effective address indicated by what is enclosed in ()

EXTS() Sign extension indicated by what is enclosed in ()

EXTZ() Zero extension indicated by what is enclosed in ()

(HH) Higher-order byte of higher-order word of a register or memory (highest byte)

H4: Four higher-order bits of an 8-bit register or 8-bit memory

(HL) Lower-order byte of higher-order word of a register or memory

Absolute value

(LH) Higher-order byte of lower-order word of a register or memory

(LL) Lower-order byte of lower-order word of a register or memory (lowest byte)

L4: Four lower-order bits of an 8-bit register or 8-bit memory

LSB Least Significant Bit

M() Content of memory indicated by what is enclosed in ()

MSB Most Significant Bit

PCH Higher-order byte of the program counter

PCML Middle-order byte and lower-order byte of the program counter

FLGH Four higher-order bits of the flag register

FLGL Eight lower-order bits of the flag register

[] Indirect addressing

<

<

 A

Glossary-1

Glossary
Technical terms used in this software manual are explained below. They are good in this manual only.

Glossary-2

borrow Tomove a digit to the next lower position. carry

carry Tomove a digit to the next higher position. borrow

context Registers that a program uses.

decimal addition An addition in terms of decimal system.

displacement The difference between the initial position and later

position.

effective address An after-modification address to be actually used.

LSB Abbreviation for Least Significant Biit MSB

The bit occupying the lowest-order position of a data item.

Term Meaning Related word

Glossary-3

Term Meaning Related word

MSB

operand

operation

operation code

overflow

pack

SFR area

Abbreviation for Most Significant Bit

The bit occupying the highest-order position of a

data item.

A part of instruction code that indicates the object on

which an operation is performed.

A generic term for move, comparison, bit processing,

shift, rotation, arithmetic, logic, and branch.

A part of instruction code that indicates what sort of

operation the instruction performs.

To exceed the maximum expressible value as a result

of an operation.

To join data items.

Used to mean to form two 4-bit data items into one 8-

bit data item, to form two 8-bit data items into one 16-

bit data item, etc.

Abbreviation for Special Function Area. An area in

which control bits of peripheral circuits embodied in a

microcomputer and control registers are located.

LSB

operation code

operand

unpack

Glossary-4

Term Meaning Related word

shift out

sign bit

sign extension

stack frame

string

unpack

zero extension

To move the content of a register either to the right or

left until fully overflowed.

A bit that indicates either a positive or a negative (the

highest-order bit).

To extend a data length in which the higher-order to be

extended are made to have the same sign of the sign

bit. For example, sign-extending FF16 results in

FFFF16, and sign-extending 0F16 results in 000F16.

An area for automatic variables the functions of the C

language use.

A sequence of characters.

To restore combined items or packed information to

the original form. Used to mean to separate 8-bit

information into two parts — 4 lower-order bits and

four higher-order bits, to separate 16-bit information

into two parts — 8 lower-order bits and 8 higher-order

bits, or the like.

To extend a data length by turning higher-order bits to

0's. For example, zero-extending FF16 to 16 bits

results in 00FF16.

pack

Index-1

Index
A

A0 and A1 ••• 5

A1A0 ••• 5

Address register ••• 5

Address space ••• 3

Addressing mode ••• 22

B

B flag ••• 6

Byte (8-bit) data ••• 16

C

C flag ••• 6

Carry flag ••• 6

Cycles ••• 139

D

D flag ••• 6

Data arrangement in memory ••• 17

Data arrangement in Register ••• 16

Data register ••• 4

Data type ••• 10

Debug flag ••• 6

Description example ••• 37

dest ••• 18

F

FB ••• 5

Fixed vector table ••• 19

Flag change ••• 37

Flag register ••• 5

FLG ••• 5

Frame base register ••• 5

Function ••• 37

I

Interrupt table register ••• 5

I flag ••• 6

Instruction code ••• 139

Instruction Format ••• 18

Instruction format specifier ••• 35

INTB ••• 5

Integer ••• 10

Interrupt enable flag ••• 6

Interrupt stack pointer ••• 5

Interrupt vector table ••• 19

IPL ••• 7

ISP ••• 5

L

Long word (32-bit) data ••• 16

M

Maskable interrupt ••• 248

Memory bit ••• 12

Mnemonic ••• 35, 38

N

Nibble (4-bit) data ••• 16

Nonmaskable interrupt ••• 248

O

O flag ••• 6

Operand ••• 35, 38

Index-2

Operation ••• 37

Overflow flag ••• 6

P

PC ••• 5

Processor interrupt priority level ••• 7

Program counter ••• 5

R

R0, R1, R2, and R3 ••• 4

R0H, R1H ••• 4

R0L, R1L ••• 4

R2R0 ••• 4

R3R1 ••• 4

Register bank ••• 8

Register bank select flag ••• 6

Register bit ••• 12

Related instruction ••• 37

Reset ••• 9

S

S flag ••• 6

SB ••• 5

Selectable src / dest (label) ••• 37

Sign flag ••• 6

Size specifier ••• 35

Software interrupt number ••• 20

Special page number ••• 19

Special page vector table ••• 19

src ••• 18

Stack pointer ••• 5

Stack pointer select flag ••• 6

Static base register ••• 5

String ••• 15

Syntax ••• 35, 38

U

U flag ••• 6

User stack pointer ••• 5

USP ••• 5

V

Variable vector table ••• 20

W

Word (16-bit) data ••• 16

Z

Z flag ••• 6

Zero flag ••• 6

Revision history-1

Contents for change
Revision

date

Version

Revision history
M16C/80 Series

Software Manual

Revision History

'99.1.26Chapter 5 addition

• Page 20 line 20

(IPL) --> (ISP)

• Page 32 Absolute

000FFF16 --> 000FFFF16

• Page 95 JMPS Operation

FFFFFE16 --> FFFE16

• Page 96 JSR Operation

SP - 1 --> SP - 2

• Page 98 JMRS Operation

FFFFFE16 --> FFFE16

• Page 133 SCMPU Operation

temp --> tmp

• Page 276 SCCnd dest An

--- --> ---/A0/---

--- --> ---/A1/---

• Page 4 line 2

13 registers --> 28 registers

• Page 89 INDEXType

[Description Example]

INDEXB R0 --> INDEXB.W R0

INDEXLS [A0] --> INDEXLS.B [A0]

• Page 138-143 SIN, SMOVB, SMOVF, SOUT, SSTR

[Operation]

Delate 'Repeat' and 'Until ...'

• Page 62- BRK, BRK2, ENTER, EXITD, INT, INTO, POPC, POPM, REIT, RTS, UND

Note for PCH, FBH and M(SP) is added.

• Page 120 PUSH

*2 The 8 high-order bits are 0 --> indeterminate

• Page 133 SCMPU

 • When the size specifier (.size) is (.W)

If M(A)=M(A1) then M(A0+1)–M(A1+1) -->

If M(A)=M(A1) and M(A0)≠0 then M(A0+1)–M(A1+1)

• Page 135 SHA

[Flag change] O

• Page 173 (4) Table of cycles

• Page 268 PUSHM [Byte number/ cycle number]

1/m --> 2/m

• Page 5 (9) Save flag register

24 bits --> 16 bits

REV.C

'99.1.26

'99.3.12

'99.712

Revision History

Revision history-2

Contents for change
Revision

date

Version

Revision history
M16C/80 Series

Software Manual

Revision History

99.10.25REV.D Chapter 6 addition

• Page 5 (9) Save flag register (SVF)

24 bit --> 16 bit

• Page 10 1.6 Internal State after Reset is Cleared

• Save flag register (SVF) : indeterminate --> addition

• Save PC register (SVP) : indeterminate --> addition

• Vector register (VCT) : indeterminate --> addition

• Page 69 CLIP [Function]

• Src1 and src2 are set "src1<src2". --> addition

• Page 99 LDC [Function]

*3 SP and ISP --> SP, ISP and INTB

• Page 118 POPC [Operation]

*3 --> addition

• Page 120 PUSH [Operation]

*2 ..., the 8 high-order bits become indeterminate. --> become 0

• Page 120 PUSHC [Operation]

*3 --> addition

• Page 149 SUB [Function] Line 10
When src is the address register, src is zero-extended to perform operation in 32
bits. --> addition

• Page 193 BNTST [Number of Bytes/Number of Cycles]

dest --> src

• Page 196 BSET [Number of Bytes/Number of Cycles]

dest --> src

• Page 229 JMP

dsp = address indicated by label - (start address of instruction +2) --> Delete

[Number of Bytes/Number of Cycles] 1/4 --> 1/3

• Page 231 JMPI [Number of Bytes/Number of Cycles]

dest --> src

• Page 232 JMPI [Number of Bytes/Number of Cycles] dest --> src

• Page 234 JSRI (1) and (2) [Number of Bytes/Number of Cycles] dest --> src

• Page 231 JMPI (2)

d4 d3 d2 d1 d0 --> s4 s3 s2 s1 s0

• Page 257 MULEX [Number of Bytes/Number of Cycles] dest --> src

• Page 120 PUSH [Operation]

*2 When src is address register(A0, A1), the 8 high-order bits become indetermi-

nate. --> ... become 0.

• Page 234 (2)JSRI.A

d4 d3 d2 d1 d0 --> s4 s3 s2 s1 s0

• Page 303(2) Overflow interrupt

CMPX addition

99.10.28

00.03.02REV.D1

Keep safety first in your circuit designs!

Notes regarding these materials

● Mitsubishi Electric Corporation puts the maximum effort into making semiconductor
products better and more reliable, but there is always the possibility that trouble may
occur with them. Trouble with semiconductors may lead to personal injury, fire or
property damage. Remember to give due consideration to safety when making your
circuit designs, with appropriate measures such as (i) placement of substitutive,
auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any
malfunction or mishap.

● These materials are intended as a reference to assist our customers in the selection
of the Mitsubishi semiconductor product best suited to the customer's application;
they do not convey any license under any intellectual property rights, or any other
rights, belonging to Mitsubishi Electric Corporation or a third party.

● Mitsubishi Electric Corporation assumes no responsibility for any damage, or
infringement of any third-party's rights, originating in the use of any product data,
diagrams, charts, programs, algorithms, or circuit application examples contained in
these materials.

● All information contained in these materials, including product data, diagrams, charts,
programs and algorithms represents information on products at the time of publication
of these materials, and are subject to change by Mitsubishi Electric Corporation
without notice due to product improvements or other reasons. It is therefore
recommended that customers contact Mitsubishi Electric Corporation or an authorized
Mitsubishi Semiconductor product distributor for the latest product information before
purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical
errors. Mitsubishi Electric Corporation assumes no responsibility for any damage,
liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Mitsubishi Electric Corporation
by various means, including the Mitsubishi Semiconductor home page (http://
www.mitsubishichips.com).

● When using any or all of the information contained in these materials, including
product data, diagrams, charts, programs, and algorithms, please be sure to evaluate
all information as a total system before making a final decision on the applicability of
the information and products. Mitsubishi Electric Corporation assumes no
responsibility for any damage, liability or other loss resulting from the information
contained herein.

● Mitsubishi Electric Corporation semiconductors are not designed or manufactured
for use in a device or system that is used under circumstances in which human life is
potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized
Mitsubishi Semiconductor product distributor when considering the use of a product
contained herein for any specific purposes, such as apparatus or systems for
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

● The prior written approval of Mitsubishi Electric Corporation is necessary to reprint
or reproduce in whole or in part these materials.

● If these products or technologies are subject to the Japanese export control
restrictions, they must be exported under a license from the Japanese government
and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan
and/or the country of destination is prohibited.

● Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semicon
ductor product distributor for further details on these materials or the products con
tained therein.

MITSUBISHI SEMICONDUCTORS

M16C SOFTWARE MANUAL Rev.D1

March First Edition 2000

Editioned by

 Committee of editing of Mitsubishi Semiconductor

 SOFTWARE MANUAL

Published by

 Mitsubishi Electric Corp., Kitaitami Works

This book, or parts thereof, may not be reproduced in any form without

permission of Mitsubishi Electric Corporation.

©2000 MITSUBISHI ELECTRIC CORPORATION

	Using This Manual
	M16C Family-related document list
	Table of Contents
	Quick Reference in Alphabetic Order
	Chapter 1
	1.1 Features of M16C/80 series
	1.2 Address Space
	1.3 Register Configuration
	1.4 Flag Register (FLG)
	1.5 Register Bank
	1.6 Internal State after Reset is Cleared
	1.7 Data Types
	1.8 Data Arrangement
	1.9 Instruction Format
	1.10 Vector Table

	Chapter 2
	2.1 Addressing Modes
	2.2 Guide to This Chapter
	2.3 General Instruction Addressing
	2.4 Indirect Instruction Addressing
	2.5 Special Instruction Addressing
	2.6 Bit Instruction Addressing
	2.7 Read and write operations with 24-bit registers

	Chapter 3
	3.1 Guide to This Chapter
	ABS
	ADC
	ADCF
	ADD
	ADDX
	ADJNZ
	AND
	BAND
	BCLR
	BITINDEX
	BMCnd
	BNAND
	BNOR
	BNOT
	BNTST
	BNXOR
	BOR
	BRK
	BRK2
	BSET
	BTST
	BTSTC
	BTSTS
	BXOR
	CLIP
	CMP
	CMPX
	DADC
	DADD
	DEC
	DIV
	DIVU
	DIVX
	DSBB
	DSUB
	ENTER
	EXITD
	EXTS
	EXTZ
	FCLR
	FREIT
	FSET
	INC
	INDEXType
	INT
	INTO
	JCnd
	JMP
	JMPI
	JMPS
	JSR
	JSRI
	JSRS
	LDC
	LDCTX
	LDIPL
	MAX
	MIN
	MOV
	MOVA
	MOVDir
	MOVX
	MUL
	MULEX
	MULU
	NEG
	NOP
	NOT
	OR
	POP
	POPC
	POPM
	PUSH
	PUSHA
	PUSHC
	PUSHM
	REIT
	RMPA
	ROLC
	RORC
	ROT
	RTS
	SBB
	SBJNZ
	SCCnd
	SCMPU
	SHA
	SHL
	S IN
	SMOVB
	SMOVF
	SMOVU
	SOUT
	SSTR
	STC
	STCTX
	STNZ
	STZ
	STZX
	SUB
	SUBX
	TST
	UND
	WAIT
	XCHG
	XOR
	3.3 Index instructions

	Chapter 4
	4.1 Guide to This Chapter
	ABS
	ADC
	ADCF
	ADD
	ADDX
	ADJNZ
	AND
	BAND
	BCLR
	BITINDEX
	BMcnd
	BNAND
	BNOR
	BNOT
	BNTST
	BNXOR
	BOR
	BRK
	BRK2
	BSET
	BTST
	BTSTC
	BTSTS
	BXOR
	CLIP
	CMP
	CMPX
	DADC
	DADD
	DEC
	DIV
	DIVU
	DIVX
	DSBB
	DSUB
	ENTER
	EXITD
	EXTS
	EXTZ
	FCLR
	FREIT
	FSET
	INC
	INDEXB
	INDEXBD
	INDEXBS
	INDEXL
	INDEXLD
	INDEXLS
	INDEXW
	INDEXWD
	INDEXWS
	INT
	INTO
	Jcnd
	JMP
	JMPI
	JMPS
	JSR
	JSRI
	JSRS
	LDC
	LDCTX
	LDIPL
	MAX
	MIN
	MOV
	MOVA
	MOVDir
	MOVX
	MUL
	MULEX
	MULU
	NEG
	NOT
	OR
	POP
	POPC
	POPM
	PUSH
	PUSHA
	PUSHC
	PUSHM
	REIT
	RMPA
	ROLC
	RORC
	ROT
	RTS
	SBB
	SBJNZ
	SCCnd
	SCMPU
	SHA
	SHL
	SIN
	SMOVB
	SMOVF
	SMOVU
	SOUT
	SSTR
	STC
	STCTX
	STNZ
	STZ
	STZX
	SUB
	SUBX
	TST
	UND
	WAIT
	XCHG
	XOR

	Chapter 5
	5.1 Outline of Interrupt
	5.2 Interrupt Control
	5.3 Interrupt Sequence
	5.4 Return from Interrupt Routine
	5.5 Interrupt Priority
	5.6 Multiple Interrupts
	5.7 Precautions for Interrupts
	5.8 Exit from Stop Mode and Wait Mode

	Chapter 6
	6.1 Instruction queue buffer

	Q & A
	Table of symbols
	Glossary
	Index
	Revision History

