
ADVANCED AND EVER ADVANCING MITSUBISHI ELECTRIC

MITSUBISHI 16-BIT SINGLE-CHIP MICROCOMPUTER
M16C FAMILY

M16C/80
SERIES

<Sample program>

MITSUBISHI
ELECTRIC

Application note

Keep safety first in your circuit designs!

Notes regarding these materials

● Mitsubishi Electric Corporation puts the maximum effort into making semiconductor
products better and more reliable, but there is always the possibility that trouble
may occur with them. Trouble with semiconductors may lead to personal injury, fire
or property damage. Remember to give due consideration to safety when making
your circuit designs, with appropriate measures such as (i) placement of substitutive,
auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any
malfunction or mishap.

● These materials are intended as a reference to assist our customers in the
selection of the Mitsubishi semiconductor product best suited to the customer’s
application; they do not convey any license under any intellectual property rights, or
any other rights, belonging to Mitsubishi Electric Corporation or a third party.

● Mitsubishi Electric Corporation assumes no responsibility for any damage, or
infringement of any third-party’s rights, originating in the use of any product data,
diagrams, charts or circuit application examples contained in these materials.

● All information contained in these materials, including product data, diagrams and
charts, represent information on products at the time of publication of these
materials, and are subject to change by Mitsubishi Electric Corporation without
notice due to product improvements or other reasons. It is therefore recommended
that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for the latest product information before
purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical
errors. Mitsubishi Electric Corporation assumes no responsibility for any damage,
liability or other loss rising from these inaccuracies or errors.

● Mitsubishi Electric Corporation semiconductors are not designed or manufactured
for use in a device or system that is used under circumstances in which human life
is potentially at stake. Please contact Mitsubishi Electric Corporation or an autho-
rized Mitsubishi Semiconductor product distributor when considering the use of a
product contained herein for any specific purposes, such as apparatus or systems
for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

● The prior written approval of Mitsubishi Electric Corporation is necessary to reprint
or reproduce in whole or in part these materials.

● If these products or technologies are subject to the Japanese export control
restrictions, they must be exported under a license from the Japanese government
and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of
Japan and/or the country of destination is prohibited.

● Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for further details on these materials or the
products contained therein.

Chapter 2 Collection of General-purpose Programs ___________________________ 22

Chapter 3 Program Collection of Mathematic/Trigonometric Functions ____________ 33

Chapter 1 Guide to Using This Manual _____________________________________ 11

M16C Family-related document list

Usages

(Microcomputer development flow)

Outline design
of system

Selection of
microcomputer

Detail design
of system

Hard-
ware
devel-
opment

System
evaluation

Soft-
ware
devel-
opment

Contents

Hardware specifications (pin assignment,
memory map, specifications of peripheral func-
tions, electrical characteristics, timing charts)

Detailed description about hardware specifica-
tions, operation, and application examples
(connection with peripherals, relationship with
software)

Method for creating programs using assembly
and C languages

Detailed description about operation of each
instruction (assembly language)

H
ar

dw
ar

e

 Type of document

Data sheet and
data book

User’s manual
S

of
tw

ar
e

M16C Family M16C/80 Series M16C/80 Group

M16C/60 Series M16C/60 Group

M16C/61 Group

M16C/62 Group

M16C/20 Series M16C/20 Group

M16C/21 Group

M16C Family Line-up

Programming
manual

Software manual

Table of contents

Chapter 1 Guide to Using This Manual
1.1 Program Configuration...2

1.2 Guide to Using Programs ..10

Chapter 2 Collection of General-purpose Programs
Function List .. 14

2.1 Clearing RAM ..16

2.2 Transferring Blocks ..20

2.3 Transferring Strings ...24

2.4 Comparing Strings ...28

2.5 Changing Blocks ..32

2.6 Indirect Subroutine Call ...36

2.7 Compressing BCD ...41

2.8 Selecting Maximum ...45

2.9 Selecting Minimum ..49

2.10 Selecting Maximum or Minimum..53

2.11 Calculating Sum-of-Products ...57

2.12 Processing Bits ..61

2.13 Comparing 32 Bits ...65

2.14 Adding 32 Bits..70

2.15 Subtracting 32 Bits...75

2.16 Multiplying 32 Bits ..80

2.17 Dividing 32 Bits ..84

2.18 Dividing 64 Bits ..88

2.19 Adding BCD ...92

2.20 Subtracting BCD ..97

2.21 Multiplying BCD ...102

2.22 Dividing BCD ...106

2.23 Converting from HEX Code to BCD Code ...110

2.24 Converting from HEX Code to BCD Code ...114

2.25 Converting from BCD Code to HEX Code ...118

2.26 Converting from BCD Code to HEX Code ...122

2.27 Converting from Floating-point Number to Binary Number..126

2.28 Converting from Binary Number to Floating-point Number..130

2.29 Sorting ...134

2.30 Searching Array ...138

2.31 Converting from Lowercase Alphabet to Uppercase Alphabet ..142

2.32 Converting from Uppercase Alphabet to Lowercase Alphabet ..146

2.33 Converting from ASCII to Hexadecimal Data ..150

2.34 Converting from Hexadecimal Data to ASCII Code ...154

2.35 Example for Initial Setting Assembler ..158

2.36 Special Page Subroutine ...162

2.37 Special Page Jump ..164

2.38 Variable Vector Table ..166

2.39 Saving and Restoring Context ...169

Chapter 3 Program Collection of Mathematic/Trigonometric Functions
Function List ... 174

3.1 Single-precision, Floating-point Format ...175

3.2 Addition ..178

3.3 Subtraction...180

3.4 Multiplication ..182

3.5 Division ..184

3.6 Sine Function ...186

3.7 Cosine Function ...188

3.8 Tangent Function ...190

3.9 Inverse Sine Function ..192

3.10 Inverse Cosine Function ..194

3.11 Inverse Tangent Function ..196

3.12 Square Root ...198

3.13 Power ...200

3.14 Exponential Function ...202

3.15 Natural Logarithmic Function ...204

3.16 Common Logarithmic Function ..206

3.17 Data Comparison ...208

3.18 Conversion from FLOAT Type to WORD Type ...210

3.19 Conversion from WORD Type to FLOAT Type ...212

3.20 Program List ..214

Chapter 1

Guide to Using This Manual

1.1 Program Configuration

1.2 Guide to Using Programs

2

1 Guide to Using This Manual
1.1 Program Configuration

1. Guide to Using This Manual
This manual contains sample programs in Chapter 2, “Collection of General-purpose Programs,” and arith-

metic libraries in Chapter 3, “Collection of Mathematic/Trigonometric Programs.” These programs are ex-

pected to provide you with useful materials that can be referenced when developing M16C/80 series pro-

grams. When actually using the sample programs or arithmetic libraries contained in this manual, please be

sure to verify the operation of your program before putting it to work in your application.

1.1 Program Configuration
Each sample program contained in this manual consists of the following four items:

The arithmetic libraries each consist of items (1) and (2) above.

The next pages show you how to read each item (1) through (4).

(1) Outline

(2) Explanation

(3) Flowchart

(4) Program list

Sample program

3

1 Guide to Using This Manual
1.1 Program Configuration

1.1.1 Outline
The following shows the format of the item “Outline” and how to read it.

(1)

(2)

(5)(3)

(4)

(8)

2

65

 Usage precautions

Input

 Subroutine name :

 Interrupt during execution:Accepted

3 bytes ROM capacity :

R3

A1

Z/C flag

2.13 Comparing 32 Bits
2.13.1 Outline

R1

R0

COMP32

Register/memory

None Number of stacks used :

Usage condition

This program compares 32-bit data between registers.

This program compares 32-bit data between memory locations.

A0

Unused

Output

(1) 32-bit comparison (register)

Unused

Compared data

R2

Upper half of compareddata

Lower half of compareddata

Lower half of data

Upper half of comparing data

Does not change

Does not change

Does not change

Does not change

Collection of General-purpose Program
2.13 Comparing 32 Bits

compari gn

(6)

(10)(7)

(11)

(9)

4

1 Guide to Using This Manual
1.1 Program Configuration

(1) Function name

It indicates the name of the function performed.

(2) Outline

It indicates the outline function of the program.

(3) Number of execution cycles

It indicates the number of execution cycles required when the program is executed.

(4) Interrupt during execution

It indicates whether an interrupt will be accepted during program execution. If it indicates “Unac-

cepted,” be sure to disable interrupts before you start executing the program.

(5) ROM capacity

It indicates the ROM capacity required for the program.

(6) Number of stacks used

It indicates the number of stacks required for the program. It does not include the stack capacity

necessary to call the program as a subroutine.

Allocate the stack capacity shown below before executing the program.

(7) Register/memory

It indicates the registers and memory locations used in the program. Memory locations are allocated

by the names shown here.

Examples: (3), (4), (5), and (6)

 Interrupt during execution:Accepted

3 bytes ROM capacity : Subroutine name : COMP32

None Number of stacks used :

5

1 Guide to Using This Manual
1.1 Program Configuration

(8) Input

It indicates the input arguments required when executing the program. If any input argument is re-

quired, store the data in the register or memory location to be operated on before executing the

program. If there is no input argument required, a dash “-” will be indicated here.

(9) Output

It indicates the register and memory status after executing the program.

“-”: No register or memory is used.

“Does not change”: The input data stored before executing the program is retained.

“Indeterminate”: The register or memory content is destroyed by executing the program.

(Returned value): The output return value (result) is stored by executing the program.

(10) Usage condition

It indicates the purpose of use for which a register or memory is used. If an arrow “ ” is shown here,

see the input and output columns.

(11) Usage precautions

It indicates the precautions to be observed for the purposes of data processing.

Examples: (7), (8), (9), (10), and (11)

 Usage precautions

Input

R3

A1

Z/C flag

R1

R0

Register/memory Usage condition

A0

Unused

Output

Unused

Compared data

R2

Upper half of compareddata

Lower half of compareddata

Lower half of compar data

Upper half of comparing data

Does not change

Does not change

Does not change

Does not change

ing

6

1 Guide to Using This Manual
1.1 Program Configuration

1.1.2 Explanation
The following shows the format of the item “Explanation”.

(1)

(2)

(1) Function name

It indicates the name of the function performed.

(2) Explanation

It indicates how the program operates.

2 Collection of General-purpose Program
2.13 Comparing 32 Bits

This program compares 32-bit data between registers. Set the comparing data in R2 and R0 and

the compared data in R3 and R1 beginning with the upper half, respectively. The comparison

result is output to the Z and C flags.

This program compares 32-bit data between memory locations. Set the least significant memory

address of the comparing data and that of the compared data in the address registers. The com-

parison result is output to the Z and C flags.

2.13.2 Explanation

C Z Meaning

1 0

1 1

0 0

Comparing data < compared data

Comparing data = compared data

Comparing data > compared data

7

1 Guide to Using This Manual
1.1 Program Configuration

1.1.3 Flowchart
The following shows the format of the item “Flowchart”.

(1) Function name

It indicates the name of the function performed.

(2) Flowchart

It indicates the flowchart of the program.

(1)

(2)

2 Collection of General-purpose Program
2.13 Comparing 32 Bits

2.13.3 Flowchart

ENTER

EXIT

Compare

8

1 Guide to Using This Manual
1.1 Program Configuration

1.1.4 Program list
The following shows the format of the item “Program list” and how to read it.

(1)

(2)

(3)

(4)

(4)

(3)

2 Collection of General-purpose Program
2.13 Comparing 32 Bits

2.13.4 Program List
;**
; *
; M16C Program Collection No. 13 *
; CPU : M16C/80 Series *
; *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM
; ;
;==
; Title: Comparing 32 bits
; Outline: Compares 32-bit data between registers
; Input: ------------------------------> Output:
; R0 (Lower halfofcomparing data) R0 (Does not change)
; R1 (Lowerhalfofcompared data) R1 (Does not change)
; R2 (Upper halfofcomparing data) R2 (Does not change)
; R3 (Upper halfofcompared data) R3 (Does not change)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
; Stack amount used: None
; Notes: Result is returned by Z and C flags
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
COMP32: ;

CMP.L R2R0,R3R1 ; Compares
RTS

;
; ;
;==
; Title: Comparing 32 bits
; Outline: Compares 32 bits between memory locations
; Input: ------------------------------> Output:
; R0 () R0 (Unused)
; R1 () R1 (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 (Address of comparing data) A0 (Does not change)
; A1 (Address of compared data) A1 (Does not change)
; Stack amount used: None
; Notes: Result is returned by Z and C flags
;==
COMPmemory32: ;

CMP.L [A0],[A1] ; Compares
RTS ;

; ;
.END ;

69

9

1 Guide to Using This Manual
1.1 Program Configuration

(1) Function name

It indicates the name of the function performed.

(2) Initial setup section

This is the program’s initial setup section. Following settings are made here as necessary:

• Declares the start address of a memory area.

• Declares the start address of the program.

• Defines symbols.

• Allocates the memory area.

(3) Specification explanation section

This is the program’s specification explanation section. Program specifications are explained here in

order of the following:

• Title

• Outline

• Storage places and contents of input arguments and output return values

• Stack amount used

• Notes

(4) Program section

Comments about the program are written on the right side of the program list.

10

1 Guide to Using This Manual
1.2 Guide to Using Programs

1.2 Guide to Using Programs
This manual contains programs in subroutine form and those in routine form. (Refer to Chapter 2, “Func-

tion List”.) Use the programs in subroutine form by calling them from your application program following

the procedure shown below. Use the programs in routine form after incorporating them into your applica-

tion program.

JSR FSIN

FSIN

RTS

User program

Saving registers

Setting arguments

Calling subroutine

Processing results

Restoring registers

Procedure for calling a subroutine

SIN calculation
(single-precision floating-point form)

11

1 Guide to Using This Manual
1.2 Guide to Using Programs

User program

MOV.W WORK1[SB],R0

MOV.W WORK2[SB],R2

JSR FSIN

JC SIN_ERR

Processing result

Processing error

..........

........
SIN_ERR:

........ Calls the program as subroutine.

........ Result error? (When in error, jumps to

SIN_ERR.)

........ Sets arguments.

Example of a subroutine call

12

1 Guide to Using This Manual
1.2 Guide to Using Programs

MEMO

Chapter 2

Collection of General-purpuse Programs

14

2 Collection of General-purpose Programs
Function List

 Function List

Form

Routine

Routine

Routine

Routine

Routine

SubRoutine

Routine

Routine

Routine

Routine

Routine

Routine

SubRoutine

SubRoutine

SubRoutine

SubRoutine

SubRoutine

SubRoutine

SubRoutine

SubRoutine

SubRoutine

SubRoutine

Page

16

20

24

28

32

36

41

45

49

53

57

61

65

70

75

80

84

88

92

97

102

106

Item No.

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

Function

Clearing RAM

Transferring block

Transferring Characters

Comparing Characters

Changing blocks

Indirect subroutine call

Compressing BCD

Selecting maximum

Selecting minimum

Selecting maximum or minimum

Caluculating sum-of-products

Processing bits

Comparing 32 bits

Adding 32 bits

Subtracting 32 bits

Multiplying 32 bits

Dividing 32 bits

Dividing 64 bits

Adding BCD

Subtracting BCD

Multiplying BCD

Dividing BCD

15

2 Collection of General-purpose Programs
Function List

Function

Converting from HEX code (1 byte) to BCD code (2 bytes)

Converting from HEX code (4 bytes) to BCD code (5 bytes)

Converting from BCD code (1 byte) to HEX code (1 byte)

Converting from BCD code (4 bytes) to BCD code (4 bytes)

Converting from floating number to binary-point number

Converting from binary number to floating-point number

Sorting

Searching array

Converting from lowercase alphabets to uppercase alphabets

Converting from uppercase alphabets to lowercase alphabets

Converting from ASCII code to hexadecimal data

Converting from hexadecimal code to ASCII data

Example for initial setting assembler

Special page subroutine

Special page jump

Variable vector table

Saving/restoring context

Item No.

2.23

2.24

2.25

2.26

2.27

2.28

2.29

2.30

2.31

2.32

2.33

2.34

2.35

2.36

2.37

2.38

2.39

Page

110

114

118

122

126

130

134

138

142

146

150

154

158

162

164

166

169

Form

Subroutine

Subroutine

Subroutine

Subroutine

Subroutine

Subroutine

Subroutine

Subroutine

Subroutine

Subroutine

Subroutine

Subroutine

Descrption example

Descrption example

Descrption example

Descrption example

Descrption example

16

2
2.1 Clearing RAM

Collection of General-purpose Programs

Usage precautions

Input

Unused

 Subroutine name :

 Interrupt during execution: Accepted

11 bytes ROM capacity :

R3

A0

A1

Specified area

Unused

2.1 Clearing RAM
2.1.1 Outline

R2

R1

R0 " 000016 " Transfer data

Unused

Number of transfers performed" 000016 "

Transfer data

Destination address Last address at destination

Register/memory

None Number of stacks used :

Output Usage condition

This program initializes memory by using a block constant setup instruction (SSTR).

Memory is initialized in units of words.

17

2
2.1 Clearing RAM

Collection of General-purpose Programs

This program stores 0s in memory in units of words by using a block constant setup instruction (SSTR).

The program sets the transfer data (0H) in R0, the number of transfers performed (half the number of

bytes of the area to be initialized) in R3, and the start address at destination in A1 before executing the

SSTR instruction.

2.1.2 Explanation

18

2
2.1 Clearing RAM

Collection of General-purpose Programs

2.1.3 Flowchart

ENTER

Set transfer conditions

Excute transfer

EXIT

19

2
2.1 Clearing RAM

Collection of General-purpose Programs

2.1.4 Program List
;**
; *
; M16C Program Collection No. 1 *
; CPU : M16C/80 series *
; *
;**
VramTOP .EQU 000400H ; Declares start address of RAM
VramEND .EQU 002C00H ; Declares end address of RAM
VromTOP .EQU 0FE0000H ; Declares start address of ROM
; ;
;==
; Title: Clearing RAM
; Outline: Clears RAM using block constant setup instruction
; Input: ------------------------------> Output:
; R0 () R0 (Transfer data)
; R1L () R1L (Unused)
; R1H () R1H (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Indeterminate)
; A0 () A0 (Unused)
; A1 () A1 (Indeterminate)
; Stack amount used: None
; Notes:
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
MOV.W #0,R0 ; Sets transfer data
MOV.W #((VramEND+1)-VramTOP)/2,R3 ; Sets number of transfers performed
MOV.W #VramTOP,A1 ; Sets destination address
SSTR.W ; Executes clearing of RAM

; ;
.END ;

20

2
2.2 Transferring Blocks

Collection of General-purpose Programs

Usage precautions

Input

Unused

 Subroutine name :

 Interrupt during execution: Accepted

14 bytes ROM capacity :

R2

A0

A1

BLOCK1

Destination address

2.2 Transferring Blocks
2.2.1 Outline

R1L

R1H

R0

Unused

Unused

Number of transfers performed" 000016 "

Content of BLOCK1

 Does not change

Register/memory

None Number of stacks used :

Usage condition

This program transfers memory contents from one location to another by using a block transfer instruc-

tion (SMOVF).

R3

Source address Last address at source

 Last address at destination

BLOCK2

Content of BLOCK1

Content of BLOCK2

Output

Unused

21

2
2.2 Transferring Blocks

Collection of General-purpose Programs

This program transfers memory contents from one location to another by using a block transfer instruc-

tion (SMOVF).

The program sets the number of transfers performed in R3, the source’s start address in A0, and the

destinations’s start address in A1 before executing the SMOVF instruction.

2.2.2 Explanation

22

2
2.2 Transferring Blocks

Collection of General-purpose Programs

2.2.3 Flowchart

ENTER

Set transfer conditions

Excute transfer

EXIT

23

2
2.2 Transferring Blocks

Collection of General-purpose Programs

2.2.4 Program List
;**
; *
; M16C Program Collection No. 2 *
; CPU : M16C/80 series *
; *
;**
VramTOP .EQU 000400H ; Declares start address of RAM
VromTOP .EQU 0FE0000H ; Declares start address of ROM
; ;

.SECTION RAM,DATA

.ORG VramTOP ; RAM area
LENGTH .EQU 10 ; Length of area
BLOCK1: .BLKB LENGTH ; Source area of transfer
BLOCK2: .BLKB LENGTH ; Destination area of transfer
; ;
;==
; Title: Transferring blocks
; Outline: Example for using block transfer instruction
; Input: ------------------------------> Output:
; R0L () R0L (Unused)
; R0H () R0H (Unused)
; R1L () R1L (Unused)
; R1H () R1H (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Indeterminate)
; A0 () A0 (Indeterminate)
; A1 () A1 (Indeterminate)
; Stack amount used: None
; Notes:
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
MOV.W #LENGTH,R3 ; Sets number of transfers performed
MOV.L #BLOCK1,A0 ; Sets source address
MOV.L #BLOCK2,A1 ; Sets destination address
SMOVF.B ; Executes transfer of blocks

; ;
.END ;

24

2
2.3 Transferring strings

Collection of General-purpose Programs

 Usage precautions

R1

R0

Input Output Usage condition

2.3 Transferring strings
2.3.1 Outline

Unused

10 bytes

 Number of stacks :

 ROM capacity :

None

 Subroutine name :

 Interrupt during execution : Accepted

Register/memory

Content of STRING1

STRING1

A1

A0

R3

Content of STRING2

Indeterminate

Does not change

Source address

Unused

STRING2

Indeterminate

Content of STRING1

R2 Unused

Destination address

Unused

This program transfers memory contents(string data) from one location to another by using a string trans-

fer instruction (SMOVU).

25

2
2.3 Transferring strings

Collection of General-purpose Programs

2.3.2 Explanation
This program transfers memory contents(string data) from one location to another by using a string trans-

fer instruction (SMOVU).

The program sets the source’s start address in A0, and the destinations’s start address in A1 before

executing the SMOVU instruction.

26

2
2.3 Transferring strings

Collection of General-purpose Programs

2.3.3 Flowchart

ENTER

Set transfer conditions

Execute transfer

EXIT

27

2
2.3 Transferring strings

Collection of General-purpose Programs

2.3.4 Program L ist
;**
; *
; M16C Program Collection No. 3 *
; CPU : M16C/80 series *
; *
;**
VramTOP .EQU 000400H ; Declares start address of RAM
VromTOP .EQU 0FE0000H ; Declares start address of ROM
; ;

.SECTION RAM,DATA

.ORG VramTOP ; RAM area
LENGTH .EQU 16 ; Length of area
STRING1: .BLKB LENGTH ; Source area of string transfer
STRING2: .BLKB LENGTH ; Destination area of string transfer
; ;
;==
; Title: Transferring strings
; Outline: Example for using string transfer instruction
; Input: ------------------------------> Output:
; R0L () R0L (Unused)
; R0H () R0H (Unused)
; R1L () R1L (Unused)
; R1H () R1H (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 () A0 (Indeterminate)
; A1 () A1 (Indeterminate)
; Stack amount used: None
; Notes:
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
MOV.L #STRING1,A0 ; Sets source address
MOV.L #STRING2,A1 ; Sets destination address
SMOVU.B ; Executes transfer of strings

; ;
.END ;

28

2
2.4 Comparing strings

Collection of General-purpose Programs

 Usage precautions

R1

R0

Input Output Usage condition

2.4 Comparing strings
2.4.1 Outline

Unused

10 bytes

 Number of stacks used :

 ROM capacity :

None

 Subroutine name :

 Interrupt during execution : Accepted

Register/memory

Result of compareZ flag

Does not change

STRING1

A1

A0

R3

Content of STRING2

Indeterminate

Does not change

Source address

Unused

STRING2

Indeterminate

Content of STRING1

R2 Unused

Destination address

Unused

This program compares memory contents(string data) from one locatione to another by using a string

compar instruction(SCMPU).

29

2
2.4 Comparing strings

Collection of General-purpose Programs

2.4.2 Explanation
This program compares memory contents(string data) from one location to another by using a string

compare instruction(SCMPU).

The program sets the source's start address in A0, and the destinations's start address in A1 before

executing the SCMPU instruction.

 Z Meaning

 0 Mismatch

 1 Match

30

2
2.4 Comparing strings

Collection of General-purpose Programs

2.4.3 Flowchart

ENTER

Set compare conditions

Execute compare

EXIT

31

2
2.4 Comparing strings

Collection of General-purpose Programs

2.4.4 Program List

;**
; *
; M16C Program Collection No. 4 *
; CPU : M16C/80 series *
; *
;**
VramTOP .EQU 000400H ; Declares start address of RAM
VromTOP .EQU 0FE0000H ; Declares start address of ROM
; ;

.SECTION RAM,DATA

.ORG VramTOP ; RAM area
LENGTH .EQU 16 ; Length of area
STRING1: .BLKB LENGTH ; Source area of string compare
STRING2: .BLKB LENGTH ; Destination area of string compare
; ;
;==
; Title: Comparing strings
; Outline: Example for using string compare instruction
; Input: ------------------------------> Output:
; R0L () R0L (Unused)
; R0H () R0H (Unused)
; R1L () R1L (Unused)
; R1H () R1H (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 () A0 (Indeterminate)
; A1 () A1 (Indeterminate)
; Stack amount used: None
; Notes:
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
MOV.L #STRING1,A0 ; Sets source address
MOV.L #STRING2,A1 ; Sets destination address
SCMPU.B ; Executes compare of strings

; ;
.END ;

32

2
2.5 Changing Blocks

Collection of General-purpose Programs

Usage precautions

Input

Unused

 Subroutine name :

 Interrupt during execution: Accepted

18 bytes ROM capacity :

R2

A0

A1

BLOCK1

Unused

2.5 Changing Blocks
2.5.1 Outline

R1

R0H

R0L Last data of BLOCK2

Unused

Unused

Unused

Content of BLOCK1

Content of BLOCK2

Register/memory

None Number of stacks used :

Usage condition

This program changes memory contents consisting of the same number of bytes with each other

memory location.

R3

Number of transfers performed " 000016 "

BLOCK2

Content of BLOCK1

Content of BLOCK2

Output

Register used for change

Memory contents are changed in bytes.

33

2
2.5 Changing Blocks

Collection of General-purpose Programs

This program changes memory contents consisting of the same number of bytes with each other memory

location. An add and conditional branch instruction (ADJNZ) is used to count the number of transfers

performed.

In this program, memory contents basically are changed in bytes. However, if the memory contents to be

changed consist of even bytes, they can be changed in words for increased speed of processing.

2.5.2 Explanation

34

2
2.5 Changing Blocks

Collection of General-purpose Programs

2.5.3 Flowchart

ENTER

Set the number of transfers
performed

Change data

EXIT

Number of transfers
set completed?

Yes

No

35

2
2.5 Changing Blocks

Collection of General-purpose Programs

2.5.4 Program List
;**
; *
; M16C Program Collection No.5 *
; CPU : M16C/80 series *
; *
;**
VramTOP .EQU 000400H ; Declares start address of RAM
VromTOP .EQU 0FE0000H ; Declares start address of ROM
; ;

.SECTION RAM,DATA

.ORG VramTOP ; RAM area
LENGTH .EQU 10 ; Length of area
BLOCK1: .BLKB LENGTH ; Area 1
BLOCK2: .BLKB LENGTH ; Area 2
; ;
;==
; Title: Changing blocks
; Outline: Changes data in units of blocks.
; Input: ------------------------------> Output:
; R0L () R0L (Indeterminate)
; R0H () R0H (Unused)
; R1L () R1L (Unused)
; R1H () R1H (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 () A0 (Indeterminate)
; A1 () A1 (Unused)
; Stack amount used: None
; Notes:
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
MOV.B #LENGTH,A0 ; Sets number of transfers performed

LOOP: ;
MOV.B BLOCK1-1[A0],R0L ;
XCHG.B R0L,BLOCK2-1[A0] ; Changes data
MOV.B R0L,BLOCK1-1[A0] ;
ADJNZ.W #-1,A0,LOOP ; --> Looped for the number of transfers performed

; ;
.END ;

36

2
2.6 Indirect Subroutine Call

Collection of General-purpose Programs

Usage precautions

Input

Unused

 Subroutine name :

 Interrupt during execution:Accepted

20 bytes ROM capacity :

R3

A1

MODE

2.6 Indirect Subroutine Call
2.6.1 Outline

R1

R0

Unused

Unused

SUBIND_W

Register/memory

3 bytes Number of stacks used :

Usage condition

This program executes an indirect subroutine call instruction after setting the relative jump address for

indirect jump. It also executes an indirect subroutine call instruction by using a 24-bit absolute address.

A0

Processing relative address

Output

Unused

The indirect jump address set here is a relative address.

(1) Indirect subroutine call (relative)

Processing status

Current processing status Next processing status

Indeterminate

Indeterminate

R2

37

2
2.6 Indirect Subroutine Call

Collection of General-purpose Programs

Usage precautions

Input

Unused

 Subroutine name :

 Interrupt during execution: Accepted

27 bytes ROM capacity :

R3

A1

MODE

R2

R1

R0

Unused

Unused

SUBIND_A

Register/memory

3 bytes Number of stacks used :

Usage condition

A0

Unused

Output

Unused

The indirect jump address set here is a 24-bit absolute address.

(2) Indirect subroutine call (absolute)

Indeterminate

Current processing status Next processing status

Address pointer

38

2
2.6 Indirect Subroutine Call

Collection of General-purpose Programs

For indirect jump based on relative addresses, this program uses an transfer instruction (MOV) to set the

relative jump address for the indirect jump. In this program, since relative addresses are within the range

that can be represented with 8 bits, “.B (byte size)” is used to set the offset data.

For indirect jump based on absolute addresses, this program adds the content of the address register,

with its sign ignored, to the start address of the memory area where 24-bit absolute addresses are stored

and jumps to the memory location (24-bit absolute address) indicated by the result. The memory area in

which to store 24-bit absolute addresses is allocated in units of 3 bytes.

2.6.2 Explanation

39

2
2.6 Indirect Subroutine Call

Collection of General-purpose Programs

2.6.3 Flowchart

ENTER

Set status

Set processed addresses

EXIT

Processing 1 Processing 2

40

2
2.6 Indirect Subroutine Call

Collection of General-purpose Programs

2.6.4 Program List
;**
; M16C Program Collection No. 6 *
; CPU : M16C/80 series *
;**
VramTOP .EQU 000400H ; Declares start address of RAM
VromTOP .EQU 0FE0000H ; Declares start address of ROM
Vsb .EQU 0400H ; Sets SB

.SECTION RAM,DATA

.ORG VramTOP ; RAM area
MODE: .BLKB 1 ; Processing status
MD_0 .EQU 0 ; Status No. 0
MD_1 .EQU 1 ; Status No. 1
;==
; Title: Indirect subroutine call
; Outline: Branches processing using an indirect subroutine call (relative)
; Input: ------------------------------> Output:
; R0 () R0 (Unused)
; R1 () R1 (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 () A0 (Indeterminate)
; A1 () A1 (Indeterminate)
; Stack amount used: 3 bytes
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area

.SB Vsb ; Declares SB register value

.SBSYM MODE ;
SUBIND_W: ;

MOV.B MODE,A0 ;
MOV.B JUMPaddress[A0],A1 ; Sets jump address

JUMP_offset: ;
JSRI.W A1 ; Jumps to each processing
RTS ;

MODE_0: ;
MOV.B #MD_1,MODE ;
RTS ;

MODE_1: ;
MOV.B #MD_0,MODE ;
RTS ;

JUMPaddress: ;
.BYTE MODE_0-JUMP_offset ;
.BYTE MODE_1-JUMP_offset ;

;==
; Title: Indirect subroutine call
; Outline: Branches processing using an indirect subroutine call (absolute).
; Input: ------------------------------> Output:
; R0 () R0 (Unused)
; R1 () R1 (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 () A0 (Indeterminate)
; A1 () A1 (Unused)
; Stack amount used: 3 bytes
;==
SUBIND_A:

MOV.B MODE,A0 ;
SHL.W #1,A0 ;
ADD.B MODE,A0 ; Sets jump pointer
JSRI.A JSRaddress[A0] ; Jumps to each processing
RTS ;

JSR_0: ;
MOV.B #MD_1,MODE ;
RTS ;

JSR_1: ;
MOV.B #MD_0,MODE ;
RTS ;

JSRaddress: ;
.ADDR JSR_0 ;
.ADDR JSR_1 ;
.END

41

2
2.7 Compressing BCD

Collection of General-purpose Programs

Usage precautions

Input

Unused

Upper half of unpacked BCD

 Subroutine name :

 Interrupt during execution: Accepted

10 bytes ROM capacity :

R2

R3

A0

A1

Unused

Does not change

Packed BCD

2.7 Compressing BCD
2.7.1 Outline

R1

R1H

R0L Packed BCD Used to create data

Unused

Unused

Unused

Register/memory

None Number of stacks used :

Output Usage condition

This program converts 2-digit unpacked BCD data into 1-digit packed BCD.

UNPACK_BCDhi

PACK_BCD

UNPACK_BCDlow Lower half of unpacked BCD Does not change

Unused

42

2
2.7 Compressing BCD

Collection of General-purpose Programs

This program converts 2-digit unpacked BCD data into 1-digit packed BCD. Set the 2-digit unpacked

BCD data in a variable area (UNPACK_BCDhi, UNPACK_BCDlow). When the program is executed, 1-

digit packed BCD data is output to a variable area (PACK_BCD).

The program transfers the low-order 4 bits of the upper digit and the low-order 4 bits of the lower digit of

the unpacked BCD in the high-order and the low-order bits of a data creation register by using a 4-bit

manipulating instruction as it creates packed BCD.

2.7.2 Explanation

43

2
2.7 Compressing BCD

Collection of General-purpose Programs

2.7.3 Flowchart

ENTER

Transfer low-order 4 bits of the
upper digit of unpacked BCD in
high-order bits of register

Transfer low-order 4 bits of the
lower digit of unpacked BCD in
low-order bits of register

Transfer the result to
packed BCD area

EXIT

44

2
2.7 Compressing BCD

Collection of General-purpose Programs

2.7.4 Program List
;**
; *
; M16C Program Collection No. 7 *
; CPU : M16C/80 series *
; *
;**
VramTOP .EQU 000400H ; Declares start address of RAM
VromTOP .EQU 0FE0000H ; Declares start address of ROM
Vsb .EQU 0400H ; Sets SB
; ;

.SECTION RAM,DATA

.ORG VramTOP ; RAM area
UNPACK_BCDhi: .BLKB 1 ; Upper digit of unpacked BCD
UNPACK_BCDlow: .BLKB 1 ; Lower digit of unpacked BCD
PACK_BCD: .BLKB 1 ; Packed BCD
; ;
;==
; Title: Compressing BCD
; Outline: Converts 2-digit unpacked BCD to 1-digit packed BCD.
; Input: ------------------------------> Output:
; R0L () R0L (Packed BCD)
; R0H () R0H (Unused)
; R1L () R1L (Unused)
; R1H () R1H (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
; Stack amount used: None
; Notes:
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area

.SB Vsb ; Declares SB register value

.SBSYM UNPACK_BCDhi ;

.SBSYM UNPACK_BCDlow;

.SBSYM PACK_BCD ;
MOVLH UNPACK_BCDhi,R0L ;
MOVLL UNPACK_BCDlow,R0L ;
MOV.B R0L,PACK_BCD ;

; ;
.END

45

2
2.8 Selecting maximum

Collection of General-purpose Programs

Usage precautions

R1

R0

Input Output Usage condition

2.8 Selecting maximum
2.8.1 Outline

Unused

7 bytes

 Number os stacks used :

 ROM capacity :

None

 Subroutine name :

 Interrupt during execution : Accepted

Register/memory

Result of max select

W_DATA1

A1

A0

R3

Word data 2

Indeterminate

Unused

Unused

W_DATA2

Word data 1

R2 Unused

Unused

Unused

This program selects maximum from 2 values by using a max. select instruction(MAX).

46

2
2.8 Selecting maximum

Collection of General-purpose Programs

2.8.2 Explanation
This program selects maximum from 2 values by using a max. select instruction(MAX).

47

2
2.8 Selecting maximum

Collection of General-purpose Programs

2.8.3 Flowchart

ENTER

Execute max select

EXIT

48

2
2.8 Selecting maximum

Collection of General-purpose Programs

2.8.4 Program List

;**
; *
; M16C Program Collection No. 8 *
; CPU : M16C/80 series *
; *
;**
VramTOP .EQU 000400H ; Declares start address of RAM
VromTOP .EQU 0FE0000H ; Declares start address of ROM
; ;

.SECTION RAM,DATA

.ORG VramTOP ; RAM area
W_DATA1: .BLKW 1 ; Source area of max select
W_DATA2: .BLKW 1 ; Destination area of max select
; ;
;==
; Title: Selecting maximum
; Outline: Example for using max select instruction
; Input: ------------------------------> Output:
; R0L () R0L (Unused)
; R0H () R0H (Unused)
; R1L () R1L (Unused)
; R1H () R1H (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
; Stack amount used: None
; Notes:
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
MAX.W W_DATA1,W_DATA2 ; Executes max select

;
.END ;

49

2
2.9 Selecting minimum

Collection of General-purpose Programs

Usage precautions

R1

R0

Input Output Usage condition

2.9 Selecting minimum
2.9.1 Outline

Unused

7 bytes

 NUmber of stacks used :

 ROM capacity :

None

 Subroutine name :

 Interrupt during execution : Accepted

Register/memory

Result of min select

W_DATA1

A1

A0

R3

Word data 2

Indeterminate

Unused

Unused

W_DATA2

Word data 1

R2 Unused

Unused

Unused

This program selects minimum from 2 values by using a min. select instruction(MIN).

50

2
2.9 Selecting minimum

Collection of General-purpose Programs

2.9.2 Explanation
This program selects minimum from 2 values by using a min. select instruction(MIN).

51

2
2.9 Selecting minimum

Collection of General-purpose Programs

2.9.3 Flowchart

ENTER

Execute min select

EXIT

52

2
2.9 Selecting minimum

Collection of General-purpose Programs

2.9.4 Program List
;**
; *
; M16C Program Collection No. 9 *
; CPU : M16C/80 series *
; *
;**
VramTOP .EQU 000400H ; Declares start address of RAM
VromTOP .EQU 0FE0000H ; Declares start address of ROM
; ;

.SECTION RAM,DATA

.ORG VramTOP ; RAM area
W_DATA1: .BLKW 1 ; Source area of min select
W_DATA2: .BLKW 1 ; Destination area of min select
; ;
;==
; Title: Selecting minimum
; Outline: Example for using minselect instruction
; Input: ------------------------------> Output:
; R0L () R0L (Unused)
; R0H () R0H (Unused)
; R1L () R1L (Unused)
; R1H () R1H (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
; Stack amount used: None
; Notes:
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
MIN.W W_DATA1,W_DATA2 ; Executes min select

;
.END ;

53

2
2.10 Selectiong maximum or minimum

Collection of General-purpose Programs

Usage precautions

R1

R0

Input Output Usage condition

2.10 Selecting maximum or minimum
2.10.1 Outline

Unused

9 bytes

 Number of stacks used :

 ROM capacity :

None

 Subroutine name :

 Interrupt during execution : Accepted

Register/memory

W_DATA

A1

A0

R3

Result of select max or min

Unused

Unused

Word data

R2 Unused

Unused

Unused

This program selects maximum or minimum by using CLIP instruction.

54

2
2.10 Selectiong maximum or minimum

Collection of General-purpose Programs

2.10.2 Explanation
This program selects maximum or minimum by using CLIP instruction.

CLIP.B/W immediate1,immediate2,dest

Singed compares immediate1 and dest and stores the content of immediate1 in dest if immediate1 is

greater than dest. Next, signed compares immediate2 and dest and stores of immediate2 in dest if imme-

diate2 is smmaller than dest. When immediate1 < dest < immediate2, dest is not changed.

55

2
2.10 Selectiong maximum or minimum

Collection of General-purpose Programs

2.10.3 Flowchart

ENTER

Execute max or min select

EXIT

56

2
2.10 Selectiong maximum or minimum

Collection of General-purpose Programs

2.10.4 Program List
;**
; *
; M16C Program Collection No. 10 *
; CPU : M16C/80 series *
; *
;**
VramTOP .EQU 000400H ; Declares start address of RAM
VromTOP .EQU 0FE0000H ; Declares start address of ROM
; ;

.SECTION RAM,DATA

.ORG VramTOP ; RAM area
W_DATA: .BLKW 1 ; Destination area of max or min select
; ;
;==
; Title: Selecting maximum or minimum
; Outline: Example for using max or min select instruction
; Input: ------------------------------> Output:
; R0L () R0L (Unused)
; R0H () R0H (Unused)
; R1L () R1L (Unused)
; R1H () R1H (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
; Stack amount used: None
; Notes:
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
CLIP.W #-1,#1,W_DATA ; Executes max or min select

;
.END ;

57

2
2.11 Calculating Sum-of-Products

Collection of General-purpose Programs

Usage precautions

Input

Used for calculation

 Subroutine name :

 Interrupt during execution: Accepted

23 bytes ROM capacity :

R3

A0

A1

DATA11 to 13

Multiplicand address

2.11 Calculating Sum-of-Products
2.11.1 Outline

R2

R1

R0 Result of sum-of-products calculation Used for calculation

Used for calculation

Number of some-of-products" 000016 "

Does not change

Multiplier address Last address of multiplier

Register/memory

None Number of stacks used :

Output Usage condition

This program calculates a sum of products using a sum-of-products calculating instruction (RMPA).

DATA21 to 23

ANS

 Last address of multiplicand

Does not change

Result of sum-of-products calculation

Multiplier

 Multiplicand

Result of sum-of-products calculation

Result of sum-of-products calculation

58

2
2.11 Calculating Sum-of-Products

Collection of General-purpose Programs

This program calculates a sum of products using a sum-of-products calculating instruction (RMPA). Set

the multiplier in a variable area (DATA11-13) and the multiplicand in a variable area (DATA21-23). The

result of sum-of-products calculation is output to a variable area (ANS).

The program sets the number of sum-of-products in R3, the multiplicand address in A0, and the multiplier

address in A1 before executing the RMPA instruction.

2.11.2 Explanation

59

2
2.11 Calculating Sum-of-Products

Collection of General-purpose Programs

2.11.3 Flowchart

ENTER

Set sum-of-products
calculation condition

Execute sum-of-products
calculation

Set calculation result

EXIT

60

2
2.11 Calculating Sum-of-Products

Collection of General-purpose Programs

2.11.4 Program List
;**
; *
; M16C Program Collection No. 11 *
; CPU : M16C/80 series *
; *
;**
VramTOP .EQU 000400H ; Declares start address of RAM
VromTOP .EQU 0FE0000H ; Declares start address of ROM
Vsb .EQU 0400H ; Sets SB
; ;

.SECTION RAM,DATA

.ORG VramTOP ; RAM area
DATA11: .BLKB 1 ; Multiplicand 1
DATA12: .BLKB 1 ; Multiplicand 2
DATA13: .BLKB 1 ; Multiplicand 3
DATA21: .BLKB 1 ; Multiplier 1
DATA22: .BLKB 1 ; Multiplier 2
DATA23: .BLKB 1 ; Multiplier 3
ANS: .BLKB 6 ; Result of sum-of-products calculation
; ;
;==
; Title: Calculating sum-of-products
; Outline: Calculates a sum of products.
; Input: ------------------------------> Output:
; R0 () R0 (Calculation result)
; R1 () R1 (Calculation result)
; R2 () R2 (Calculation result)
; R3 () R3 (Indeterminate)
; A0 () A0 (Indeterminate)
; A1 () A1 (Indeterminate)
; Stack amount used: None
; Notes:
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area

.SB Vsb ; Declares SB register value

.SBSYM ANS ;
MOV.L #0,R2R0 ; Initializes calculation area
MOV.W #0,R1 ;
MOV.W #3,R3 ; Sets number of sum-of-products
MOV.L #DATA11,A0 ; Multiplicand address
MOV.L #DATA21,A1 ; Multiplier address
RMPA.B ; Executes sum-of-products calculation
MOV.L R2R0,ANS ; Sets calculation result
MOV.W R3,ANS+4 ;

; ;
.END ;

61

2
2.12 Processing Bits

Collection of General-purpose Programs

Usage precautions

Input

Unused

 Subroutine name :

 Interrupt during execution: Accepted

33 bytes ROM capacity :

R3

A0

A1

Unused

2.12 Processing Bits
2.12.1 Outline

R2

R1

R0 Unused

Unused

Unused

Unused

Register/memory

None Number of stacks used :

Output Usage condition

This program processes bits.

62

2
2.12 Processing Bits

Collection of General-purpose Programs

This program uses bit processing instructions (BTSTC, BTST, BNTST) and condition store instructions

(STZ, STZX) to perform its function. When it is executed, a value is output to PORT1, or PORT2 that

corresponds to the bit content of a variable area (FLAG1).

2.12.2 Explanation

63

2
2.12 Processing Bits

Collection of General-purpose Programs

2.12.3 Flowchart

ENTER

EXIT

Output "FFH" to PORT1

Requested?
(Request cleared)

Content of F_IOdata1

O_IOd ata1 ‹ 0
O_IOd ata1 ‹ 1

Content of F_IOdata2

Content of F_IOdata3

 Output "55H" to PORT2 Output "AAH" to PORT2

No

Yes

 0

 1

 0

 1

 1

 0

64

2
2.12 Processing Bits

Collection of General-purpose Programs

2.12.4 Program List
;**
; *
; M16C Program Collection No. 12 *
; CPU : M16C/80 series *
; *
;**
VramTOP .EQU 000400H ; Declares start address of RAM
VromTOP .EQU 0FE0000H ; Declares start address of ROM
; ;

; SFR area
PORT0 .EQU 003E0H ; PORT0
O_IOdata1 .BTEQU 0,PORT0 ;
PORT1 .EQU 003E1H ; PORT1
PORT2 .EQU 003E4H ; PORT2
; ;

.SECTION RAM,DATA

.ORG VramTOP ; RAM area
FLAG1: .BLKB 1 ;
F_REQ .BTEQU 0,FLAG1 ; Output request flag
F_IOdata1 .BTEQU 1,FLAG1 ;
F_IOdata2 .BTEQU 2,FLAG1 ;
F_IOdata3 .BTEQU 3,FLAG1 ;
; ;
;==
; Title: Setting bit after accepting event
; Outline: Outputs memory content only when requested by other process
; Input: ------------------------------> Output:
; R0L () R0L (Unused)
; R0H () R0H (Unused)
; R1L () R1L (Unused)
; R1H () R1H (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
; Stack amount used: None
; Notes:
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
BTSTC F_REQ ; Confirms and clears request
JEQ BITsetEXIT ; --> No request

;
BTST F_IOdata1 ; Checks memory content
BMC O_IOdata1 ; Outputs memory content

;
BNTST F_IOdata2 ; Checks memory content
STZ.B #0FFH,PORT1 ; Outputs “FF” if memory content = 1

;
BTST F_IOdata3 ; Checks memory content
STZX.B #055H,#0AAH,PORT2 ; Outputs “55” : memory content = 0 , “AA” : memory content = 1

BITsetEXIT:
; ;

.END ;

65

2 Collection of General-purpose Programs
2.13 Comparing 32 Bits

Usage precautions

Input

 Subroutine name :

 Interrupt during execution: Accepted

3 bytes ROM capacity :

R3

A1

Z/C flag

2.13 Comparing 32 Bits
2.13.1 Outline

R1

R0

COMP32

Register/memory

None Number of stacks used :

Usage condition

This program compares 32-bit data between registers.

This program compares 32-bit data between memory locations.

A0

Unused

Output

(1) 32-bit comparison (register)

Unused

Compared data

R2

Upper half of compared data

Lower half of compared data

Lower half of comparing data

Upper half of comparing data

Does not change

Does not change

Does not change

Does not change

66

2 Collection of General-purpose Programs
2.13 Comparing 32 Bits

Usage precautions

Input

Unused

 Subroutine name :

 Interrupt during execution:Accepted

3 bytes ROM capacity :

R3

A1

Memory indicated by A0

R2

R1

R0

Unused

Unused

 COMPmemory32

Register/memory

None Number of stacks used :

Usage condition

A0

Output

Unused

(2) 32-bit comparison (memory)

Does not change

Comparing Does not change

Memory indicated by A1

Z/C flag

Address of comparing data

Address of compared data

Compared

Does not change

Does not change

Comparison result

67

2 Collection of General-purpose Programs
2.13 Comparing 32 Bits

This program compares 32-bit data between registers. Set the comparing data in R2 and R0 and the

compared data in R3 and R1 beginning with the upper half, respectively. The comparison result is output

to the Z and C flags.

This program compares 32-bit data between memory locations. Set the least significant memory address

of the comparing data and that of the compared data in the address registers. The comparison result is

output to the Z and C flags.

2.13.2 Explanation

C Z Meaning

1 0

1 1

0 0

Comparing data < compared data

Comparing data = compared data

Comparing data > compared data

68

2 Collection of General-purpose Programs
2.13 Comparing 32 Bits

2.13.3 Flowchart

ENTER

EXIT

Compare

69

2 Collection of General-purpose Programs
2.13 Comparing 32 Bits

2.13.4 Program List
;**
; *
; M16C Program Collection No. 13 *
; CPU : M16C/80 series *
; *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM
; ;
;==
; Title: Comparing 32 bits
; Outline: Compares 32-bit data between registers.
; Input: ------------------------------> Output:
; R0 (Lower half of comparing data) R0 (Does not change)
; R1 (Lower half of compared data) R1 (Does not change)
; R2 (Upper half of comparing data) R2 (Does not change)
; R3 (Upper half of compared data) R3 (Does not change)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
; Stack amount used: None
; Notes: Result is returned by Z and C flags.
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
COMP32: ;

CMP.L R2R0,R3R1 ; Compares
RTS ;

; ;
;==
; Title: Comparing 32 bits
; Outline: Compares 32 bits between memory locations.
; Input: ------------------------------> Output:
; R0 () R0 (Unused)
; R1 () R1 (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 (Address of comparing data) A0 (Does not change)
; A1 (Address of compared data) A1 (Does not change)
; Stack amount used: None
; Notes: Result is returned by Z and C flags.
;==
COMPmemory32: ;

CMP.L [A0],[A1] ; Compares
RTS ;

; ;
.END ;

70

2 Collection of General-purpose Programs
2.14 Adding 32 Bits

Usage precautions

Input

 Subroutine name :

 Interrupt during execution:Accepted

 3 bytes ROM capacity :

R3

A1

C flag

2.14 Adding 32 Bits
2.14.1 Outline

R1

R0

ADDITION32

Register/memory

None Number of stacks used :

Usage condition

This program performs a 32-bit addition using registers.

This program performs a 32-bit addition between memory locations.

A0

Unused

Output

 The augend is destroyed as a result of program execution.

(1) 32-bit addition (register)

Unused

Carry information

R2

Lower half of augend Lower half of addition result

Lower half of addend Does not change

Upper half of augend

Lower half of addend

Upper half of addition result

 Does not change

71

2 Collection of General-purpose Programs
2.14 Adding 32 Bits

Usage precautions

Input

Unused

 Subroutine name :

 Interrupt during execution: Accepted

3 bytes ROM capacity :

R3

A1

 Memory indicated by A0

R2

R1

R0

Unused

Unused

ADDITIONmemory32

Register/memory

None Number of stacks used :

Usage condition

A0

Output

Unused

The augend is destroyed as a result of program execution.

(2) 32-bit addition (memory)

Does not change

Augend Result of addition

 Memory indicated by A1

C flag

Augend address

Addend address

Addend

Does not change

Carry information

Does not change

72

2 Collection of General-purpose Programs
2.14 Adding 32 Bits

This program performs a 32-bit addition using registers. Set the augend in R2 and R0 and the addend in

R3 and R1 beginning with the upper half, respectively. The addition result is output to R2 and R0 begin-

ning with the upper half and carry information to the C flag, respectively.

This program performs a 32-bit addition between memory locations. Set the least significant memory

address of the augend and that of the addend in the address registers. The addition result is output to the

augend’s memory location and carry information to the C flag, respectively.

2.14.2 Explanation

C Meaning

0 Without carry

1 With carry

73

2 Collection of General-purpose Programs
2.14 Adding 32 Bits

2.14.3 Flowchart

ENTER

EXIT

Add

74

2 Collection of General-purpose Programs
2.14 Adding 32 Bits

2.14.4 Program List
;**
; *
; M16C Program Collection No. 14 *
; CPU : M16C/80 series *
; *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM
; ;
;==
; Title: Adding 32 bits
; Outline: Adds 32-bit data using registers.
; Input: ------------------------------> Output:
; R0 (Lower half of augend) R0 (Lower half of addition result)
; R1 (Lower half of addend) R1 (Does not change)
; R2 (Upper half of augend) R2 (Upper half of addition result)
; R3 (Upper half of addend) R3 (Does not change)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
; Stack amount used: None
; Notes: Carry information in C flag
; R2R0 + R3R1
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
ADDITION32: ;

ADD.L R3R1,R2R0 ; Adds
RTS ;

; ;
;==
; Title: Adding 32 bits
; Outline: Adds 32-bit data between memory locations
; Input: ------------------------------> Output:
; R0 () R0 (Unused)
; R1 () R1 (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 (Augend address) A0 (Does not change)
; A1 (Addend address) A1 (Does not change)
; Stack amount used: None
; Notes: Carry information in C flag
; (A0) + (A1)
;==
ADDITIONmemory32: ;

ADD.L [A1],[A0] ; Adds
RTS ;

; ;
.END ;

75

2 Collection of General-purpose Programs
2.15 Subtracting 32 Bits

Usage precautions

Input

 Subroutine name :

 Interrupt during execution:Accepted

 3 bytes ROM capacity :

R3

A1

C flag

2.15 Subtracting 32 Bits
2.15.1 Outline

R1

R0

SUBTRACT32

Register/memory

None Number of stacks used :

Usage condition

This program performs a 32-bit subtraction using registers.

This program performs a 32-bit subtraction between memory locations.

A0

Unused

Output

 The minuend is destroyed as a result of program execution.

(1) 32-bit subtraction (register)

Unused

Borrow information

R2

Lower half of minuend Lower half of subtraction result

Lower half of subtrahend Does not change

Upper half of minuend

Upper half of subtrahend

Upper half of subtraction result

 Does not change

76

2 Collection of General-purpose Programs
2.15 Subtracting 32 Bits

Usage precautions

Input

Unused

 Subroutine name :

 Interrupt during execution: Accepted

3 bytes ROM capacity :

R3

A1

 Memory indicated by A0

R2

R1

R0

Unused

Unused

SUBTRACTmemory32

Register/memory

None Number of stacks used :

Usage condition

A0

Output

Unused

 The minuend is destroyed as a result of program execution.

(2) 32-bit subtraction (memory)

Does not change

Minuend Subtraction result

 Memory indicated by A1

C flag

Minuend address

Subtrahend address

Subtrahend

Does not change

Borrow information

Does not change

77

2 Collection of General-purpose Programs
2.15 Subtracting 32 Bits

This program performs a 32-bit subtraction using registers. Set the minuend in R2 and R0 and the

subtrahend in R3 and R1 beginning with the upper half, respectively. The subtraction result is output to

R2 and R0 beginning with the upper half and borrow information to the C flag, respectively.

This program performs a 32-bit subtraction between memory locations. Set the least significant memory

address of the minuend and that of the subtrahend in the address registers. The subtraction result is

output to the minuend’s memory location and borrow information to the C flag, respectively.

2.15.2 Explanation

C Meaning

0 With borrow

1 Without borrow

78

2 Collection of General-purpose Programs
2.15 Subtracting 32 Bits

2.15.3 Flowchart

ENTER

EXIT

Subtract

79

2 Collection of General-purpose Programs
2.15 Subtracting 32 Bits

2.15.4 Program List
;**
; *
; M16C Program Collection No. 15 *
; CPU : M16C/80 series *
; *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM
; ;
;==
; Title: Subtracting 32 bits
; Outline: Subtracts 32-bit data using registers.
; Input: ------------------------------> Output:
; R0 (Lower half of minuend) R0 (Lower half of subtraction result)
; R1 (Lower half of subtrahend) R1 (Does not change)
; R2 (Upper half of minuend) R2 (Upper half of addition result)
; R3 (Upper half of subtrahend) R3 (Does not change)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
; Stack amount used: None
; Notes: Borrow information in C flag
; R2R0 - R3R1
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
SUBTRUCT32: ;

SUB.L R3R1,R2R0 ; Subtracts
RTS ;

; ;
;==
; Title: Subtracting 32 bits
; Outline: Subtracts 32-bit data between memory locations
; Input: ------------------------------> Output:
; R0 () R0 (Unused)
; R1 () R1 (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 (Minuend address) A0 (Does not change)
; A1 (Subtrahend address)A1 (Does not change)
; Stack amount used: None
; Notes: Borrow information in C flag
; (A0) - (A1)
;==
SUBTRACTmemory32: ;

SUB.L [A1],[A0] ; Subtracts
RTS ;

; ;
.END ;

80

2
2.16 Multiplying 32 Bits

Collection of General-purpose Programs

Usage precautions

Input

 Subroutine name :

 Interrupt during execution: Accepted

39 bytes ROM capacity :

R3

A1

2.16 Multiplying 32 Bits
2.16.1 Outline

R1

R0

MULTIPLE32

Register/memory

6 bytes Number of stacks used :

Usage condition

This program performs a 32-bit unsigned multiplication using registers.

A0

Used for storing data

Output

Used for storing data

R2

Upper half of multiplier

Lower half of multiplier

Lower half of multiplicand

Upper half of multiplicand

Lower part of multiplication result

Upper part of multiplication result

Middle part of multiplication result

Most significant part of multiplication result

Indeterminate

Indeterminate

The multiplication result is output to R3, R1, R2, and R0 beginning with its most significant part.

Both multiplier and multiplicand are destroyed as a result of program execution.

81

2
2.16 Multiplying 32 Bits

Collection of General-purpose Programs

This program performs a 32-bit unsigned multiplication using registers. Set the multiplicand in R2 and R0

beginning with the upper half and the multiplier in R3 and R1, respectively. The multiplication result is

output to R3, R1, R2, and R0 beginning with its most significant part.

In this program, both multiplier and multiplicand are divided into the upper and lower halves (16 bits each)

as they are multiplied. The results are added to produce a 64-bit calculation result.

2.16.2 Explanation

82

2
2.16 Multiplying 32 Bits

Collection of General-purpose Programs

2.16.3 Flowchart

ENTER

EXIT

Add calculation result to
intermediate calculation value

Multiply lower half of multiplicand by
lower half of multiplier

Multiply lower half of multiplicand by
upper half of multiplier

Add calculation result to
intermediate calculation value

Multiply upper half of multiplicand
by upper half of multiplier

 Save multiplier

Multiply upper half of multiplicand by
lower half of multiplier

Add carry to the most
significant bit

Move calculation result to
intermediate calculation value

83

2
2.16 Multiplying 32 Bits

Collection of General-purpose Programs

2.16.4 Program List
;**
; *
; M16C Program Collection No. 16 *
; CPU : M16C/80 series *
; *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM
; ;
;==
; Title: Multiplying 32 bits
; Outline: Multiplies 32-bit data together using registers
; Input: ------------------------------> Output:
; R0 (Lower half of multiplicand) R0 (Lower part of multiplication result)
; R1 (Lower half of multiplier) R1 (Upper part of multiplication result)
; R2 (Upper half of multiplicand) R2 (Middle part of multiplication result)
; R3 (Upper half of multiplier) R3 (Most significant part of multiplication result)
; A0 () A0 (Indeterminate)
; A1 () A1 (Indeterminate)
; Stack amount used: 6 bytes
; Notes: R2R0 X R3R1
; Calculation result is output in order of R3, R1, R2, and R0 beginning with the most

significant bits.
;==

.SECTION PROGRAM,CODE

.org VromTOP ; ROM area
MULTIPLE32: ;

PUSH.W R1 ; Saves lower half of multiplier
PUSH.W R3 ; Saves upper half of multiplier
PUSH.W R3 ; Saves upper half of multiplier
MULU.W R2,R1 ; Multiplies upper half of multiplicand by lower half of multiplier
MOV.W R3,A1 ; Saves calculation result
MOV.W R1,A0 ;
POP.W R1 ; Restores upper half of multiplier
MULU.W R0,R1 ; Multiplies lower half of multiplicand by upper half of multiplier
ADD.W R1,A0 ; Adds to intermediate calculation value and saves result
ADC.W R3,A1 ; Holds carry until next addition is made
POP.W R1 ; Restores upper half of multiplier
MULU.W R2,R1 ; Multiplies upper half of multiplicand by upper half of multiplier
ADCF.W R3 ; Adds carry to the most significant bit
POP.W R2 ; Restores lower half of multiplier
MULU.W R2,R0 ; Multiplies lower half of multiplicand by lower half of multiplier
ADD.W A0,R2 ; Adds intermediate value to middle part
ADC.W A1,R1 ; Adds intermediate value to upper part
ADCF.W R3 ; Adds carry to the most significant bit
RTS ;

; ;
.END ;

84

2
2.17 Dividing 32 Bits

Collection of General-purpose Programs

Usage precautions

Input

 Subroutine name :

 Interrupt during execution:Accepted

 47 bytes ROM capacity :

R3

A1

CNT

2.17 Dividing 32 Bits
2.17.1 Outline

R1

R0

DIVIDE32

Register/memory

3 bytes Number of stacks used :

Usage condition

This program performs a 32-bit unsigned division using registers.

A0

Number of shifts performed

Output

CNT is allocated in a stack area by configuring a stack frame as a temporary variable area in the

program. Therefore, the value of CNT when program execution is completed is indeterminate.

The dividend is destroyed as a result of program execution.

Zero divide information

R2

Lower half of dividend Lower half of quotient

 Lower half of divisor Does not change

Upper half of dividend

Upper half of divisor

Upper half of quotient

 Does not change

 Lower half of remainder

Indeterminate

Z flag

 Upper half of remainder

85

2
2.17 Dividing 32 Bits

Collection of General-purpose Programs

This program performs a 32-bit unsigned division using registers. Set the dividend in R2 and R0 and the

divisor in R3 and R1 beginning with the upper half, respectively. The quotient and the remainder are

output to R2 and R3, and to A1 and A0 beginning with the upper half, respectively. The zero divide

information is output to the Z flag.

In this program, the dividend is pushed out one bit at a time beginning with the most significant bit as the

program creates a dividend for calculation purposes and the divisor is subtracted from that data to get the

quotient beginning with the most significant bit. The quotient and the remainder are obtained by repeat-

ing this operation as many times as the number of bits in the dividend.

2.17.2 Explanation

Z Meaning

0 Quotient and remainder are valid.

1 Quotient and remainder are invalid because division by zero is attempted.

86

2
2.17 Dividing 32 Bits

Collection of General-purpose Programs

2.17.3 Flowchart

ENTER

EXIT

Division succeeded
Clear Z flag

Create shift dividend and
carry quotient

Shift dividend - divisor
--> Shift dividend

Set quotient

Sets number of shifts to be
performed

Shift dividend + divisor
--> Shift dividend

Zero division?

Could be subtracted?

Number of shifts set
completed?

Initialize remainder area

No

No

Yes

Yes

No

Yes

87

2
2.17 Dividing 32 Bits

Collection of General-purpose Programs

2.17.4 Program List
;**
; *
; M16C Program Collection No. 17 *
; CPU : M16C/80 series *
; *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
;==
; Title: Dividing 32 bits
; Outline: Divides 32-bit data together using registers
; Input: ------------------------------> Output:
; R0 (Lower half of dividend) R0 (Lower half of quotient)
; R1 (Lower half of divisor) R1 (Lower half of divisor)
; R2 (Upper half of dividend) R2 (Upper half of quotient)
; R3 (Upper half of divisor) R3 (Upper half of divisor)
; A0 () A0 (Lower half of remainder)
; A1 () A1 (Upper half of remainder)
; Stack amount used: 3 bytes
; Notes: R2R0 ‚ R3R1
; Division by zero is returned by Z flag.
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area

.FB FBcnst ; Assumes FB register value
DIVIDE32: ;
;--- ;
; Declaration of temporary variable ;
;--- ;
CNT .EQU -1 ; Shift count counter

ENTER #1 ; Sets stack frame
MOV.B #0,A0 ; Initializes remainder area
MOV.B #0,A1 ;
CMP.W #0,R1 ;
JNE DIVIDE32_10 ;
CMP.W #0,R3 ;
JEQ DIVIDE32exit ; --> Division by zero

DIVIDE32_10: ;
MOV.B #32,CNT[FB] ; Sets number of shifts performed (32 times)

DIVIDE32_20: ;
SHL.W #1,R0 ; Pushes dividend and carry quotient
ROLC.W R2 ;
ROLC.W A0 ; Creates dividend
ROLC.W A1 ;
SUB.W R1,A0 ; Subtracts divisor
SBB.W R3,A1 ;
BMC 0,R0L ; Sets quotient
JC DIVIDE32_30 ; --> Subtraction of divisor succeeded
ADD.W R1,A0 ; Restored to original data because

; subtraction of divisor failed
ADC.W R3,A1 ;

DIVIDE32_30: ;
ADJNZ.B #-1,CNT[FB],DIVIDE32_20 ; --> Executes next digit
FCLR Z ; Division succeeded

DIVIDE32exit: ;
EXITD ; Clears stack frame

; ;
.END ;

88

2
2.18 Dividing 64 Bits

Collection of General-purpose Programs

Usage precautions

Input

 Subroutine name :

 Interrupt during execution:Accepted

 76 bytes ROM capacity :

R3

A1

CNT

2.18 Dividing 64 Bits
2.18.1 Outline

R1

R0

DIVIDE64

Register/memory

8 bytes Number of stacks used :

Usage condition

This program performs an unsigned division on a 64-bit dividend and a 32-bit divisor using registers.

A0

Number of shifts performed

Output

CNT and JYOUYO are allocated in a stack area by configuring stack frames as temporary variable

areas in the program. Therefore, the values of CNT and JYOUYO when program execution is

completed are indeterminate. The dividend is destroyed as a result of program execution.

Zero divide information

R2

Lower part of dividend Lower part of quotient

 Upper part of dividend Upper part of quotient

Middle part of dividend

Most significant part of dividend

Middle part of quotient

Most significant part of quotient

 Lower half of remainder

Indeterminate

Z flag

 Upper half of remainder

JYOUYO Shift dividend used for calculationIndeterminate

Lower half of divisor

Upper half of divisor

89

2
2.18 Dividing 64 Bits

Collection of General-purpose Programs

This program performs an unsigned division on a 64-bit dividend and a 32-bit divisor using registers. Set

the dividend in R3, R1, R2, and R0 beginning with the most significant part, and the divisor in A1 and A0

beginning with the upper half. The quotient and the remainder are output to R3, R1, R2, and R0, and A1

and A0, respectively. The zero divide information is output to the Z flag.

In this program, the dividend is pushed out one bit at a time beginning with the most significant bit as the

program creates a dividend for calculation purposes and the divisor is subtracted from that data to get the

quotient beginning with the most significant bit. The quotient and the remainder are obtained by repeat-

ing this operation as many times as the number of bits in the dividend.

2.18.2 Explanation

Z Meaning

0 Quotient and remainder are valid.

1 Quotient and remainder are invalid because division by zero is attempted.

90

2
2.18 Dividing 64 Bits

Collection of General-purpose Programs

2.18.3 Flowchart

ENTER

EXIT

Division succeeded
Clear Z flag

Create shift dividend
and carry quotient

Set quotient

Shift dividend - divisor
--> Shift dividend

Sets number of shifts to be
performed

Shift dividend + divisor
--> Shift dividend

Zero division?

Could be subtracted?

Number of shifts
set completed?

Initialize remainder area

Set remainder

Yes

Yes

No

Yes

No

No

91

2
2.18 Dividing 64 Bits

Collection of General-purpose Programs

2.18.4 Program List
;**
; M16C Program Collection No. 18 *
; CPU : M16C/80 series *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
;==
; Title: Dividing 64 bits
; Outline: Divides 64-bit dividend by 32-bit divisor
; Input: ------------------------------> Output:
; R0 (Lower part of dividend) R0 (Lower part of quotient)
; R1 (Upper part of dividend) R1 (Upper part of quotient)
; R2 (Middle part of dividend) R2 (Middle part of quotient)
; R3 (Most significant part of dividend) R3 (Most significant part of quotient)
; A0 (Lower half of divisor) A0 (Lower half of remainder)
; A1 (Upper half of divisor) A1 (Upper half of remainder)
; Stack amount used: 8 bytes
; Notes: Division by zero is returned by Z flag.
; R3R1R2R0 ‚ A1A0 = R3R1R2R0 remainder A1A0
;===

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area

.FB FBcnst ; Assumes FB register value
DIVIDE64: ;
;--- ;
; Declaration of temporary variables ;
;--- ;
JYOUYO .EQU -6 ; Used for remainder calculation
CNT .EQU -1 ; Shift count counter

ENTER #6 ; Sets stack frame
MOV.W #0,JYOUYO[FB] ; Initializes remainder area
MOV.W #0,JYOUYO+2[FB] ;
MOV.B #0,JYOUYO+4[FB] ;
CMP.W #0,A0 ;
JNE DIVIDE64_10 ;
CMP.W #0,A1 ;
JEQ DIVIDE64exit ; --> Division by zero

DIVIDE64_10: ;
MOV.B #64,CNT[FB] ; Sets number of shifts performed (64 times)

DIVIDE64_20: ;
SHL.W #1,R0 ; Pushes divided and carry quotient
ROLC.W R2 ;
ROLC.W R1 ;
ROLC.W R3 ;
ROLC.W JYOUYO[FB] ; Creates dividend
ROLC.W JYOUYO+2[FB] ;
ROLC.B JYOUYO+4[FB] ;
SUB.W A0,JYOUYO[FB] ; Subtracts divisor
SBB.W A1,JYOUYO+2[FB] ;
SBB.B #0,JYOUYO+4[FB] ;
BMC 0,R0L ; Sets quotient
JC DIVIDE64_30 ; --> Subtraction of divisor succeeded
ADD.W A0,JYOUYO[FB] ; Restored to original data because

; subtraction of divisor failed
ADC.W A1,JYOUYO+2[FB] ;
ADCF.B JYOUYO+4[FB] ;

DIVIDE64_30: ;
ADJNZ.B #-1,CNT[FB],DIVIDE64_20 ; --> Executes next digit
MOV.W JYOUYO[FB],A0 ; Sets lower half of remainder
MOV.W JYOUYO+2[FB],A1 ; Sets upper half of remainder
FCLR Z ; Division succeeded

DIVIDE64exit: ;
EXITD ; Clears stack frame

; ;
.END ;

92

2 Collection of General-purpose Programs
2.19 Adding BCD

Usage precautions

Input

 Subroutine name :

 Interrupt during execution:Accepted

 15 bytes ROM capacity :

R3

A1

C flag

2.19 Adding BCD
2.19.1 Outline

R1

R0

BCD_ADDITION8

Register/memory

None Number of stacks used :

Usage condition

This program adds 8 digits of BCD data together by using registers.

This program adds 8 digits of BCD data together between memory locations.

A0

Unused

Output

 The augend is destroyed as a result of program execution.

(1) BCD addition (register)

Unused

Carry information

R2

Lower half of augend Lower half of addition result

Lower half of addend Does not change

Upper half of augend

Upper half of addend

Upper half of addition result

 Does not change

93

2 Collection of General-purpose Programs
2.19 Adding BCD

Usage precautions

Input

Unused

 Subroutine name :

 Interrupt during execution: Accepted

22 bytes ROM capacity :

R3

A1

 Memory indicated by A0

R2

R1

R0

Used for calculation

Unused

BCD_ADDITIONmemory8

Register/memory

None Number of stacks used :

Usage condition

A0

Output

Used for calculation

The augend is destroyed as a result of program execution.

(2) BCD addition (memory)

Does not change

Augend Result of addition

 Memory indicated by A1

C flag

Augend address

Addend address

Addend

Does not change

Carry information

Does not change

Indeterminate

Indeterminate

94

2 Collection of General-purpose Programs
2.19 Adding BCD

This program adds 8 digits of BCD data between registers by using a decimal add instruction (DADD).

Set the augend in R2 and R0 and the addend in R3 and R1 beginning with the upper half, respectively.

The addition result is output to R2 and R0 beginning with the upper half. The carry information is output

to the C flag.

This program adds 8 digits of BCD data between memory locations by using a decimal add instruction

(DADD). Set the least significant memory address of the augend and that of the addend in the address

registers. The addition result is output to the augend’s memory location. The carry information is output

to the C flag.

2.19.2 Explanation

C Meaning

0 Without carry

1 With carry

95

2 Collection of General-purpose Programs
2.19 Adding BCD

2.19.3 Flowchart

ENTER

Add low-order bits

EXIT

Move added data

Add high-order bits including
carry

Move added data

96

2 Collection of General-purpose Programs
2.19 Adding BCD

2.19.4 Program List
;**
; *
; M16C Program Collection No. 19 *
; CPU : M16C/80 series *
; *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM
; ;
;==
; Title: Adding 8-digit BCD.
; Outline: Adds 8-digit BCD together using registers.
; Input: ------------------------------> Output:
; R0 (Lower half of augend) R0 (Lower half of addition result)
; R1 (Lower half of addend) R1 (Does not change)
; R2 (Upper half of augend) R2 (Upper half of addition result)
; R3 (Upper half of augend) R3 (Does not change)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
; Stack amount used: None
; Notes: Result is returned by C flag
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
BCD_ADDITION8: ;

DADD.W R1,R0 ; Adds low-order bits
XCHG.W R2,R0 ; Moves added data
XCHG.W R3,R1 ;
DADC.W R1,R0 ; Adds high-order bits
XCHG.W R2,R0 ; Moves added data
XCHG.W R3,R1 ;
RTS ;

; ;
;==
; Title: Adding 8-bit BCD
; Outline: Adds 8-bit BCD between memory locations
; Input: ------------------------------> Output:
; R0 () R0 (Indeterminate)
; R1 () R1 (Indeterminate)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 (Augend address) A0 (Does not change)
; A1 (Addend address) A1 (Does not change)
; Stack amount used: None
; Notes: Result is returned by C flag
;==
BCD_ADDITIONmemory8: ;

MOV.W [A0],R0 ;
MOV.W [A1],R1 ;
DADD.W R1,R0 ; Adds low-order bits
MOV.W R0,[A0] ;
MOV.W 2[A0],R0 ;
MOV.W 2[A1],R1 ;
DADC.W R1,R0 ; Adds high-order bits
MOV.W R0,2[A0] ;
RTS ;

; ;
.END ;

97

2
2.20 Subtracting BCD

Collection of General-purpose Programs

Usage precautions

Input

 Subroutine name :

 Interrupt during execution:Accepted

 15 bytes ROM capacity :

R3

A1

C flag

2.20 Subtracting BCD
2.20.1 Outline

R1

R0

BCD_SUBTRACT8

Register/memory

None Number of stacks used :

Usage condition

This program subtracts 8-digit BCD data using registers.

This program subtracts 8-digit BCD data between memory locations.

A0

Unused

Output

 The minuend is destroyed as a result of program execution.

(1) BCD subtraction (register)

Unused

Borrow information

R2

Lower half of minuend Lower half of subtraction result

 Lower half of subtrahend Does not change

Upper half of minuend

Upper half of subtrahend

Upper half of subtraction result

 Does not change

98

2
2.20 Subtracting BCD

Collection of General-purpose Programs

Usage precautions

Input

Unused

 Subroutine name :

 Interrupt during execution: Accepted

22 bytes ROM capacity :

R3

A1

 Memory indicated by A0

R2

R1

R0

Used for calculation

Unused

BCD_SUBTRACTmemory8

Register/memory

None Number of stacks used :

Usage condition

A0

Output

Used for calculation

 The minuend is destroyed as a result of program execution.

(2) BCD subtraction (memory)

Does not change

Minuend data Subtraction result

 Memory indicated by A1

C flag

Minuend address

Subtrahend address

Subtrahend data

Does not change

Borrow information

Does not change

Indeterminate

Indeterminate

99

2
2.20 Subtracting BCD

Collection of General-purpose Programs

This program subtracts 8-digit BCD data between registers by using a decimal subtract instruction

(DSUB). Set the minuend in R2 and R0 and the subtrahend in R3 and R1 beginning with the upper half,

respectively. The subtraction result is output to R2 and R0 beginning with the upper half. The borrow

information is output to the C flag.

This program subtracts 8-digit BCD data between memory locations by using a decimal subtract instruc-

tion (DSUB). Set the least significant memory address of the minuend and that of the subtrahend in the

address registers. The subtraction result is output to the minuend’s memory location. The borrow infor-

mation is output to the C flag.

2.20.2 Explanation

C Meaning

0 With borrow

1 Without borrow

100

2
2.20 Subtracting BCD

Collection of General-purpose Programs

2.20.3 Flowchart

ENTER

Subtract low-order bits

EXIT

Move subtracted data

Subtract high-order bits
including borrow

Move subtracted data

101

2
2.20 Subtracting BCD

Collection of General-purpose Programs

2.20.4 Program List
;**
; *
; M16C Program Collection No. 20 *
; CPU : M16C/80 series *
; *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM
; ;
;==
; Title: Subtracting 8-digit BCD
; Outline: Subtracts 8-digit BCD using registers
; Input: ------------------------------> Output:
; R0 (Lower half of minuend) R0 (Lower half of subtraction result)
; R1 (Lower half of subtrahend) R1 (Does not change)
; R2 (Upper half of minuend) R2 (Upper half of addition result)
; R3 (Upper half of subtrahend) R3 (Does not change)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
; Stack amount used: None
; Notes: Borrow information in C flag
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
BCD_SUBTRACT8: ;

DSUB.W R1,R0 ; Subtracts low-order bits
XCHG.W R2,R0 ; Moves subtracted data
XCHG.W R3,R1 ;
DSBB.W R1,R0 ; Subtracts high-order bits
XCHG.W R2,R0 ; Moves subtracted data
XCHG.W R3,R1 ;
RTS ;

; ;
;==
; Title: Subtracting 8-digit BCD
; Outline: Subtracts 8-digit BCD between memory locations
; Input: ------------------------------> Output:
; R0 () R0 (Indeterminate)
; R1 () R1 (Indeterminate)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 (Minuend address) A0 (Does not change)
; A1 (Subtrahend address) A1 (Does not change)
; Stack amount used: None
; Notes: Borrow information in C flag
;==
BCD_SUBTRACTmemory8: ;

MOV.W [A0],R0 ;
MOV.W [A1],R1 ;
DSUB.W R1,R0 ; Subtracts low-order bits
MOV.W R0,[A0] ;
MOV.W 2[A0],R0 ;
MOV.W 2[A1],R1 ;
DSBB.W R1,R0 ; Subtracts high-order bits
MOV.W R0,2[A0] ;
RTS ;

; ;
.END ;

102

2
2.21 Multiplying BCD

Collection of General-purpose Programs

Usage precautions

Input

 Subroutine name :

 Interrupt during execution: Accepted

38 bytes ROM capacity :

R3

A1

2.21 Multiplying BCD
2.21.1 Outline

R1

R0

BCD_MULTIPLE4

Register/memory

None Number of stacks used :

Usage condition

This program multiplies 4-digit BCD using registers.

A0

Addition count

Output

Number of digits counter

R2

Multiplier

Multiplicand

Lower part of multiplication result

Does not change

Upper part of multiplication result

Indeterminate

" 000016 "

" 000016 "

The multiplier is destroyed as a result of program execution.

103

2
2.21 Multiplying BCD

Collection of General-purpose Programs

This program multiplies 4-digit BCD together by using registers. Set the multiplicand in R1 and the

multiplier in R3, respectively. The multiplication result is output to R2 and R0 beginning with the upper

half.

In this program, data for BCD calculation is loaded from the multiplier 4 high-order bits at a time to set an

addition count and the multiplicand is added to the multiplication result. The carry deriving from multipli-

cation is shifted in units of 4 bits to the next high-order digit.

2.21.2 Explanation

104

2
2.21 Multiplying BCD

Collection of General-purpose Programs

2.21.3 Flowchart

ENTER

EXIT

Carry of multiplication result

One digit of multiplier -->
Addition count

Set number of digits to be multiplied

Multiplicand + multiplier -->
Multiplication result

Addition count = 0?

Addition count finished?

Initialize multiplication result area

Specified number of
digits completed?

Yes

No

Yes

No

No

Yes

105

2
2.21 Multiplying BCD

Collection of General-purpose Programs

2.21.4 Program List
;**
; *
; M16C Program Collection No. 21 *
; CPU : M16C/80 series *
; *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM
; ;
;==
; Title: Multiplying 4-digit BCD
; Outline: Multiplies 4-digit BCD using registers.
; Input: ------------------------------> Output:
; R0 () R0 (Lower half of multiplication result)
; R1 (Multiplicand) R1 (Does not change)
; R2 () R2 (Upper half of multiplication result)
; R3 (Multiplier) R3 (Indeterminate)
; A0 () A0 (Indeterminate)
; A1 () A1 (Indeterminate)
; Stack amount used: None
; Notes:
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
BCD_MULTIPLE4: ;
; ;

MOV.L #0,R2R0 ; Clears multiplication result area
MOV.B #4,A0 ; Sets number of digits to be multiplied

BCD_MULTIPLE4_10: ;
SHL.L #4,R2R0 ; Carry processing
MOV.W #0001000000000000B,A1 ; Specifies for 4 bits to be loaded

BCD_MULTIPLE4_20: ;
SHL.W #1,R3 ; Loads 4 bits
ROLC.W A1 ; Loads addition count
JNC BCD_MULTIPLE4_20 ; --> Taking 4 bits not completed
JEQ BCD_MULTIPLE4_40 ; --> Zero (no addition)

BCD_MULTIPLE4_30: ;
DADD.W R1,R0 ;
XCHG.W R2,R0 ; Moves high-order data
DADC.W #0,R0 ; Adds C flag to next high-order digit for carry
XCHG.W R2,R0 ; Moves high-order data
ADJNZ.W #-1,A1,BCD_MULTIPLE4_30 ; --> Specified addition count not completed

BCD_MULTIPLE4_40: ;
ADJNZ.W #-1,A0,BCD_MULTIPLE4_10 ; --> Specified digit count to be multiplied not completed
RTS ;

; ;
.END ;

106

2
2.22 Dividing BCD

Collection of General-purpose Programs

Usage precautions

Input

 Subroutine name :

 Interrupt during execution:Accepted

 67 bytes ROM capacity :

R3

A1

CNT

2.22 Dividing BCD
2.22.1 Outline

R1

R0

BCD_DIVIDE8

Register/memory

3 bytes Number of stacks used :

Usage condition

This program divides 8-digit BCD by using registers.

A0

Output

CNT is allocated in a stack area by configuring a stack frame as a temporary variable area in the

program. Therefore, the value of CNT when program execution is completed is indeterminate.

The dividend is destroyed as a result of program execution.

R2

Lower half of remainder

 Lower half of divisor Does not change

Upper half of divisor

Upper half of remainder

 Does not change

 Lower half of quotient

Z flag

 Upper half of quotient

Shift countIndeterminate

Lower half of dividend

Upper half of dividend

Zero divide information

107

2
2.22 Dividing BCD

Collection of General-purpose Programs

This program divides 8-digit BCD together by using registers. Set the dividend in A1 and A0 and the

divisor in R3 and R1 beginning with the upper half, respectively. The quotient and the remainder are

output to A1 and A0, and to R2 and R0, beginning with the upper half, respectively. The zero divide

information is output to the Z flag.

In this program, data for BCD calculation is loaded from the dividend 4 high-order bits at a time to create

the dividend to be operated on and the divisor count can be subtracted is counted to obtain the quotient.

A carry deriving from the divide operation is shifted in units of 4 bits to the next high-order digit.

2.22.2 Explanation

Z Meaning

0 Quotient and remainder are valid.

1 Quotient and remainder are invalid because division by zero is attempted.

108

2
2.22 Dividing BCD

Collection of General-purpose Programs

2.22.3 Flowchart

ENTER

EXIT

Set shift count

Initialize remainder area

Create shift dividend and carry 1 into next
position of quotient (done in units of 4 bits
because of BCD)

Count quotient

Yes

No

Yes

No

No

Yes

Zero division?

Shift dividend - divisor
--> Shift divided

Subtraction succeeded?

Correct quotient

Shift dividend + divisor
--> Shift divided

Shift count finished?

Division succeeded
Clear Z flag

109

2
2.22 Dividing BCD

Collection of General-purpose Programs

2.22.4 Program List
;**
; M16C Program Collection No. 22 *
; CPU : M16C/80 series *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
;==
; Title: Dividing 8-digit BCD
; Outline: Divides 8-digit BCD using registers
; Input: ------------------------------> Output:
; R0 () R0 (Lower half of remainder)
; R1 (Lower half of divisor) R1 (Lower half of divisor)
; R2 () R2 (Upper half of remainder)
; R3 (Upper half of divisor) R3 (Upper half of divisor)
; A0 (Lower half of dividend) A0 (Lower half of quotient)
; A1 (Upper half of dividend) A1 (Upper half of quotient)
; Stack amount used: 3 bytes
; Notes: A1A0 ‚ R3R1

Zero division is returned by Z flag
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area

.FB FBcnst ; Sets provisional FB register value
BCD_DIVIDE8: ;
;-- ;
; Declaration of temporary variables ;
;-- ;
CNT .EQU -1 ; Shift count counter

ENTER #1 ; Sets stack frame
MOV.L #0,R2R0 ; Initializes remainder area
CMP.L #0,R3R1 ;
JEQ BCD_DIVIDE8exit ; --> Zero division

BCD_DIVIDE8_10: ;
MOV.B #8,CNT[FB] ; Sets number of digits to be divided

BCD_DIVIDE8_20: ;
OR.W #1000H,R2 ; Specifies 4-bit carry

BCD_DIVIDE8_30: ;
SHL.W #1,A0 ; Pushes dividend and carries 1 in quotient
ROLC.W A1 ; Pushes dividend and carries 1 in quotient
ROLC.W R0 ; Creates dividend
ROLC.W R2 ;
JNC BCD_DIVIDE8_30 ; --> 4-bit carry not completed

BCD_DIVIDE8_40: ;
ADD.L:S #1,A0 ; Quotient + 1
DSUB.W R1,R0 ; Subtraction by divisor
XCHG.W R2,R0 ; Moves data
XCHG.W R3,R1 ;
DSBB.W R1,R0 ;
XCHG.W R2,R0 ; Moves data
XCHG.W R3,R1 ;
JGEU BCD_DIVIDE8_40 ; --> Subtraction by divisor succeeded
DEC.W A0 ; Quotient corrected
DADD.W R1,R0 ; Restored to original data because divisor subtraction failed
XCHG.W R2,R0 ; Moves data
XCHG.W R3,R1 ;
DADC.W R1,R0 ;
XCHG.W R2,R0 ; Moves data
XCHG.W R3,R1 ;
ADJNZ.B #-1,CNT[FB],BCD_DIVIDE8_20 ; --> Executes next digit
FCLR Z ; Division succeeded

BCD_DIVIDE8exit: ;
EXITD ; Clears stack frame

; ;
.END ;

110

2
2.23 Converting from HEX Code to BCD Code

Collection of General-purpose Programs

Usage precautions

Input

Unused

 Subroutine name :

 Interrupt during execution: Accepted

18 bytes ROM capacity :

R2

A0

A1

2.23 Converting from HEX Code to BCD Code
2.23.1 Outline

R1L

R1H

R0

" 0016 " Loop count

Unused

Register/memory

None Number of stacks used :

Usage condition

This program converts 1-byte HEX code into 2-byte BCD code.

R3

Output

HEXtoBCD_1byte

Unused

 HEX code

 BCD code

 Indeterminate

 Indeterminate Used to save data

HEX code is destroyed as a result of program execution.

111

2
2.23 Converting from HEX Code to BCD Code

Collection of General-purpose Programs

This program converts 1-byte HEX code into 2-byte BCD code. Set the HEX code in R1L. The BCD code

is output to R0.

In this program, the HEX code is doubled by decimal calculation sequentially beginning with the most

significant bit and the results are added. This operation is repeated by a specified number of bits as the

HEX code is converted into BCD code.

2.23.2 Explanation

112

2
2.23 Converting from HEX Code to BCD Code

Collection of General-purpose Programs

2.23.3 Flowchart

ENTER

EXIT

Shift most significant bit to C flag

Save register

Set loop count

Restore register

Loop count finished?

Initialize BCD area

BCD area x 2 + C flag -->
BCD area

No

Yes

113

2
2.23 Converting from HEX Code to BCD Code

Collection of General-purpose Programs

2.23.4 Program List
;**
; *
; M16C Program Collection No. 23 *
; CPU : M16C/80 series *
; *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM
; ;
;==
; Title: Converting from HEX code to BCD code
; Outline: Converts 1-byte HEX code into 2-byte BCD code
; Input: ------------------------------> Output:
; R0L () R0 (BCD code)
; R0H ()
; R1H (HEX code) R1L (Indeterminate)
; R1H () R1H (Indeterminate)
; R2 () R2 (Indeterminate)
; R3 () R3 (Unused)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
; Stack amount used: None
; Notes:
;==

SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area

HEXtoBCD_1byte: ;
MOV.W #0,R0 ; Initializes BCD area
MOV.B #8,R1H ; Sets loop count

HEXtoBCD_1byte_10: ;
SHL.L #1,R1L ; Shifts most significant bit to C flag
XCHG.W R1,R2 ; Saves register
MOV.W R0,R1 ;
DADC.W R1,R0 ; Doubled by decimal calculation + C flag
XCHG.W R1,R2 ; Restores register
ADJNZ.W #-1,R1H,HEXtoBCD_1byte_10 ; --> Executes next digit
RTS ;

; ;
.END ;

114

2
2.24 Converting from HEX Code to BCD Code

Collection of General-purpose Programs

Usage precautions

Input

 Subroutine name :

 Interrupt during execution: Accepted

39 bytes ROM capacity :

R3

A1

2.24 Converting from HEX Code to BCD Code
2.24.1 Outline

R2

R1

R0

" 000016 "

Register/memory

2 bytes Number of stacks used :

Usage condition

This program converts 4-byte HEX code into 5-byte BCD code.

A0

Output

HEXtoBCD_4byte

Number of digits counter

 Lower part of BCD code

 Indeterminate

 Indeterminate

The HEX code is destroyed as a result of program execution.

 Middle part of BCD code

 Upper part of BCD code

Lower half of HEX code

Upper half of HEX code

115

2
2.24 Converting from HEX Code to BCD Code

Collection of General-purpose Programs

This program converts 4-byte HEX code into 5-byte BCD code. Set the HEX code in R3 and R1 begin-

ning with the upper half. The BCD code is output to A1, R2, and R0 beginning with the most significant

part.

In this program, the HEX code is doubled by decimal calculation sequentially beginning with the most

significant bit and the results are added. This operation is repeated by a specified number of bits as the

HEX code is converted into BCD code.

2.24.2 Explanation

116

2
2.24 Converting from HEX Code to BCD Code

Collection of General-purpose Programs

2.24.3 Flowchart

ENTER

EXIT

Shift most significant bit to C flag

Save register

Set loop count

Restore register

Loop count finished?

Initialize BCD area

BCD area x 2 + C flag -->
BCD area

No

Yes

117

2
2.24 Converting from HEX Code to BCD Code

Collection of General-purpose Programs

2.24.4 Program List
;**
; *
; M16C Program Collection No. 24 *
; CPU : M16C/80 series *
; *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM
; ;
;==
; Title: Converting from HEX code to BCD code
; Outline: Converts 4-byte HEX code into 5-byte BCD code
; Input: ------------------------------> Output:
; R0 () R0 (Lower part of BCD)
; R1 (Lower half of HEX code) R1 (Indeterminate)
; R2 () R2 (Middle part of BCD)
; R3 (Upper half of HEX code) R3 (Indeterminate)
; A0 () A0 (Indeterminate)
; A1 () A1 (Upper part of BCD)
; Stack amount used: 2bytes
; Notes:
;==

SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area

HEXtoBCD_4byte: ;
MOV.L #0,R2R0 ; Initializes BCD area
MOV.W #0,A1 ;
MOV.B #32,A0 ; Sets loop count

HEXtoBCD_4byte_10: ;
SHL.L #1,R3R1 ; Shifts most significant bit to C flag
PUSH.W R1 ; Saves register
MOV.W R0,R1 ;
DADC.W R1,R0 ; Doubled by decimal calculation + C flag
XCHG.W R2,R0 ;
MOV.W R0,R1 ;
DADC.W R1,R0 ; Doubled by decimal calculation + carry
XCHG.W R0,A1 ;
MOV.W R0,R1 ;
DADC.W R1,R0 ; Doubled by decimal calculation + carry
XCHG.W R0,A1 ;
XCHG.W R2,R0 ;
POP.W R1 ; Restores register
ADJNZ.W #-1,A0,HEXtoBCD_4byte_10 ; --> Executes next digit
RTS ;

; ;
.END ;

118

2
2.25 Converting from BCD Code to HEX Code

Collection of General-purpose Programs

Usage precautions

Input

 Subroutine name :

 Interrupt during execution: Accepted

19 bytes ROM capacity :

R1H

R3

2.25 Converting from BCD Code to HEX Code
2.25.1 Outline

R1L

R0H

R0L

" 0016 "

Register/memory

None Number of stacks used :

Usage condition

This program converts 1-byte BCD code into 1-byte HEX code.

R2

Output

BCDtoHEX_1byte

Loop count

 HEX code

 Indeterminate

The BCD code is destroyed as a result of program execution.

BCD code

A1

A0

Unused

Unused

Unused

Unused

Unused

119

2
2.25 Converting from BCD Code to HEX Code

Collection of General-purpose Programs

This program converts 1-byte BCD code into 1-byte HEX code. Set the BCD code in R0H. The HEX

code is output to R0L.

In this program, the BCD code is divided by 2 (shifted right) and the remainder is loaded into the register

as HEX code. If a significant bit is transferred from the BCD’s high-order digit to the low-order digit,

numeric correction is applied.

2.25.2 Explanation

120

2
2.25 Converting from BCD Code to HEX Code

Collection of General-purpose Programs

2.25.3 Flowchart

ENTER

EXIT

Set remainder of BCD code vid.
2 to MSB of HEX data

Correct BCD code

Set loop count

Loop count finished?

Initialize HEX area

No

Yes

121

2
2.25 Converting from BCD Code to HEX Code

Collection of General-purpose Programs

2.25.4 Program List
;**
; *
; M16C Program Collection No. 25 *
; CPU : M16C/80 series *
; *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM
; ;
;==
; Title: Converting from BCD code to HEX code
; Outline: Converts 1-byte BCD code into 1-byte HEX code
; Input: ------------------------------> Output:
; R0L () R0L (HEX code)
; R0H (BCD code) R0H (Indeterminate)
; R1L () R1L (Indeterminate)
; R1H () R1H (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
; Stack amount used: None
; Notes:
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
BCDtoHEX_1byte: ;

MOV.B #0,R0L ; Initializes HEX area
MOV.B #8,R1L ; Sets loop count

BCDtoHEX_1byte_10: ;
SHL.B #-1,R0H ; Shifts most significant bit
RORC.B R0L ;
BTST 3,R0H ;
JEQ BCDtoHEX_1byte_20 ;
SUB.B #3,R0H ;

BCDtoHEX_1byte_20: ;
ADJNZ.B #-1,R1L,BCDtoHEX_1byte_10 ; --> Executes next BCD digit
RTS ;

; ;
.END ;

122

2
2.26 Converting from BCD Code to HEX Code

Collection of General-purpose Programs

Usage precautions

Input

 Subroutine name :

 Interrupt during execution: Accepted

41 bytes ROM capacity :

R3

A1

2.26 Converting from BCD Code to HEX Code
2.26.1 Outline

R2

R1

R0

" 000016 "

Register/memory

None Number of stacks used :

Usage condition

This program converts 4-byte BCD code into 4-byte HEX code.

A0

Output

BCDtoHEX_4byte

Number of digits counter

 Upper part of HEX code

 Indeterminate

 Indeterminate

The BCD code is destroyed as a result of program execution.

 Lower part of HEX code

" 000016 "

Lower half of BCD code

Upper half of BCD code

Loop count

123

2
2.26 Converting from BCD Code to HEX Code

Collection of General-purpose Programs

This program converts 4-byte BCD code into 4-byte HEX code. Set the BCD code in R2 and R0 begin-

ning with the upper half. The HEX code is output to R3 and R1 beginning with the upper half.

In this program, the BCD code is divided by 2 (shifted right) and the remainder is loaded into the register

as HEX code. If a significant bit is transferred from the BCD’s high-order digit to the low-order digit,

numeric correction is applied.

2.26.2 Explanation

124

2
2.26 Converting from BCD Code to HEX Code

Collection of General-purpose Programs

2.26.3 Flowchart

ENTER

EXIT

Change upper and lower halves
for each other

Execute 1-digit correction
processing

Set loop count

Change upper and lower halves
for each other

4th digit finished?

Conversion of all
digits finished?

Initialize HEX area

Set loop count

Change digits

All digits finished?
No

Yes

No

Yes

Yes

No

Set remainder of BCD code vid.
2 to MSB of HEX data

125

2
2.26 Converting from BCD Code to HEX Code

Collection of General-purpose Programs

2.26.4 Program List
;**
; *
; M16C Program Collection No. 26 *
; CPU : M16C/80 series *
; *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM
; ;
;==
; Title: Converting from BCD code to HEX code
; Outline: Converts 4-byte BCD code into 4-byte HEX code
; Input: ------------------------------> Output:
; R0 (Lower half of BCD code) R0 (Indeterminate)
; R1 () R1 (Lower part of HEX)
; R2 (Upper half of HEX code) R2 (Indeterminate)
; R3 () R3 (Upper part of HEX)
; A0 () A0 (Indeterminate)
; A1 () A1 (Indeterminate)
; Stack amount used: None
; Notes:
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
BCDtoHEX_4byte: ;

MOV.L #0,R3R1 ; Initializes HEX area
MOV.B #32,A0 ; Sets loop count

BCDtoHEX_4byte_10: ;
SHL.W #-1,R2 ; Shifts most significant bit
RORC.W R0 ;
RORC.W R3 ;
RORC.W R1 ;
MOV.B #8,A1 ; Sets loop count
XCHG.W R2,R0 ; Changes upper/lower halves for each other

BCDtoHEX_4byte_20: ;
BTST 3,R0L ;
JEQ BCDtoHEX_4byte_30 ; --> Correction not required
SUB.W #3,R0 ; Executes correction

BCDtoHEX_4byte_30: ;
ROT.W #-4,R0 ; Changes digits
CMP.B #5,A1 ; Determines whether high-order correction is completed
JNE BCDtoHEX_4byte_40 ; --> Change of upper/lower halves not required
XCHG.W R2,R0 ; Changes upper/lower halves for each other

BCDtoHEX_4byte_40: ;
ADJNZ.W #-1,A1,BCDtoHEX_4byte_20 ; --> Processes next digit correction
ADJNZ.W #-1,A0,BCDtoHEX_4byte_10 ; --> Executes next digit
RTS ;

; ;
.END ;

126

2
2.27 Converting from Floating-point Number to Binary Number

Collection of General-purpose Programs

Usage precautions

Input

 Subroutine name :

 Interrupt during execution: Accepted

69 bytes ROM capacity :

R3

A1

2.27 Converting from Floating-point Number to Binary Number
2.27.1 Outline

R2

R1

R0

Register/memory

None Number of stacks used :

Usage condition

This program converts a single-precision, floating- point number into a 32-bit singed binary number.

A0

Output

FLOATINGtoBIN

Unused

 Upper half of signed binary

 Indeterminate

 Indeterminate

If the magnitude of a single-precision, floating-point number is equal to or greater than "231", the

program outputs the maximum value of the same sign; if less than "1", the program outputs a "0".

The floating-point data is destroyed as a result of program execution.

 Lower half of signed binary

Mid and lower parts of mantissa

Exponent, upper part of mantissa

Used to save sign bit Indeterminate

127

2
2.27 Converting from Floating-point Number to Binary Number

Collection of General-purpose Programs

This program converts a single-precision, floating- point number into a 32-bit singed binary number. Set

the single-precision, floating-point number in R2 and R0. A signed binary number is output to R3 and R1

beginning with the upper half.

In this program, after confirming that the single- precision, floating-point number is convertible, the data is

loaded into the registers while shifting the mantissa data left, and this operation is repeated as many

times as dictated by the exponent to create a binary number. Finally, the resulting data is adjusted to

make it matched to the sign bit of the input data.

If the magnitude of a single-precision, floating-point number is equal to or greater than "231", the program

outputs the maximum value of the same sign; if less than "1", the program outputs a "0". In either case,

the result is output to R3 and R1.

2.27.2 Explanation

R3 , R1 Meaning

7FFFFFFFH Magnitude of a single-precision, floating-point number is equal to
or greater than "231" (sign +)

80000000H Magnitude of a single-precision, floating-point number is equal to
or greater than "231" (sign -)

00000000H Magnitude of a single-precision, floating-point number is less than "1"

128

2
2.27 Converting from Floating-point Number to Binary Number

Collection of General-purpose Programs

2.27.3 Flowchart

EXIT

Save sign bit

Initialize binary area

ENTER

Shift mantissa data 1 bit
left

Load binary data into
register

Positive number?

 Set 2's complement
Set maximum value of
the same sign

Number of times
equal to exponent +
1 finished?

Less than 1?

0?

No

Yes

Yes

No

No

No

Yes

Yes

No

Yes

Within range of binary
numbers represented
with 31 bits?

Create exponent and
mantissa data

129

2
2.27 Converting from Floating-point Number to Binary Number

Collection of General-purpose Programs

2.27.4 Program List
;**
; *
; M16C Program Collection No. 27 *
; CPU : M16C/80 series *
; *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM
; ;
;==
; Title: Converting from single-precision, floating-point number to binary number
; Outline: Converts single-precision, floating-point number into 32-bit signed binary number
; Input: ------------------------------> Output:
; R0 (Mid and lower parts of mantissa) R0 (Indeterminate)
; R1 () R1 (Lower half of signed binary)
; R2 (Exponent, upper part of mantissa) R2 (Indeterminate)
; R3 () R3 (Upper half of signed binary)
; A0 () A0 (Indeterminate)
; A1 () A1 (Unused)
; Stack amount used: None
; Notes:
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
FLOATINGtoBIN: ;

XCHG.W R0,R2 ; Changes registers
MOV.L #0,R3R1 ; Initializes binary area
MOV.B R0H,A0 ; Saves sign bit
BCLR 7,R0H ; Clears sign
CMP.W #0,R0 ;
JNE FLOATINGtoBIN_10 ;
CMP.W #0,R2 ;
JEQ FLOATINGtoBIN_EXIT ; --> Zero

FLOATINGtoBIN_10: ;
BTSTS 7,R0 ; Sets LSB of exponent to C flag

; and adds 1.0 to mantissa
ROLC.B R0H ; Creates exponent
SUB.B #7FH,R0H ; Determines whether magnitude is less than 1
JNC FLOATINGtoBIN_EXIT ; --> Sets 0 because magnitude is less than 1
CMP.B #31,R0H ; Determines whether number is within representation range
JLTU FLOATINGtoBIN_20 ; --> Number is within binary representation range
OR.W #08000H,R3 ; Initial sets maximum value of the same sign
BTST 7,A0 ; Checks sign bit
JNE FLOATINGtoBIN_EXIT ; --> Negative number (80000000)
NOT.W R1 ; Positive number (7FFFFFFF)
NOT.W R3 ;
JMP.B FLOATINGtoBIN_EXIT ;

FLOATINGtoBIN_20: ;
INC.B R0H ; Adjusts loop count

FLOATINGtoBIN_30: ;
SHL.W #1,R2 ; Pushes mantissa data
ROLC.B R0L ;
ROLC.W R1 ; Loads result into register
ROLC.W R3 ;
ADJNZ.B #-1,R0H,FLOATINGtoBIN_30 ; --> Conversion loop
BTST 7,A0 ; Checks sign bit
JEQ FLOATINGtoBIN_EXIT ; --> Positive number
NOT.W R1 ; Takes 2’s complement
NOT.W R3 ;
ADD.L #1,R3R1 ;

FLOATINGtoBIN_EXIT: ;
RTS ;

; ;
.END ;

130

2
2.28 Converting from Binary Number to Floating-point Number

Collection of General-purpose Programs

Usage precautions

Input

 Subroutine name :

 Interrupt during execution: Accepted

60 bytes ROM capacity :

R3

A1

2.28 Converting from Binary Number to Floating-point Number
2.28.1 Outline

R2

R1

R0

Register/memory

None Number of stacks used :

Usage condition

This program converts a 32-bit signed binary number into a single-precision, floating-point number.

A0

Output

BINtoFLOATING

Unused

 Indeterminate

 Mid and lower parts of mantissa

 Exponent, upper part of mantissa

 Indeterminate

Lower half of signed binary

Upper half of signed binary

Unused

Used for format conversion

Used to save sign bit

131

2
2.28 Converting from Binary Number to Floating-point Number

Collection of General-purpose Programs

This program converts a 32-bit signed binary number into a single-precision, floating-point number. Set

the 32-bit signed binary number in R2 and R0 beginning with the upper half. A single-precision, floating-

point number is output to R2 and R0.

In this program, after confirming whether the input data is "0" and adjusting the data by the sign, a

maximum value is set to the exponent part that can be represented by a 32-bit signed binary number.

Next, the input data is shifted left while calculating (subtracting) the exponent part to create mantissa

data. Finally, the resulting data is adjusted to suit the format of single-precision, floating-point numbers.

2.28.2 Explanation

132

2
2.28 Converting from Binary Number to Floating-point Number

Collection of General-purpose Programs

2.28.3 Flowchart

ENTER

Zero ?

Save sign bit

Positive number ?

Yes

No

Create 2's complement

Yes

No

Set maximum value to exponent part

EXIT

Set exponent data by searching for
maximum bit position

Set floating-point format

Set exponent part

Set sign bit

133

2
2.28 Converting from Binary Number to Floating-point Number

Collection of General-purpose Programs

2.28.4 Program List
;**
; *
; M16C Program Collection No. 28 *
; CPU : M16C/80 series *
; *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM
; ;
;==
; Title: Converting from binary number to single-precision, floating-point number
; Outline: Converts 32-bit signed binary number into single-precision, floating-point number
; Input: ------------------------------> Output:
; R0 (Lower half of signed binary) R0 (Mid and lower parts of mantissa)
; R1 () R1 (Indeterminate)
; R2 (Upper half of signed binary) R2 (Exponent, upper part of mantissa)
; R3 () R3 (Unused)
; A0 () A0 (Indeterminate)
; A1 () A1 (Unused)
; Stack amount used: None
; Notes:
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
BINtoFLOATING: ;

XCHG.W R2,R0 ; Changes data
CMP.L #0,R2R0 ;
JEQ BINtoFLOATING_EXIT ; --> ZERO

BINtoFLOATING_10: ;
MOV.B R0H,A0 ; Saves sign bit
BTST 7,R0H ; Checks sign
JEQ BINtoFLOATING_20 ; --> Positive number
NOT.W R2 ; Takes 2’s complement
NOT.W R0 ;
ADD.W #1,R2 ;
ADCF.W R0 ;

BINtoFLOATING_20: ;
MOV.B #9DH+1,R1L ; Sets maximum value to exponent part

BINtoFLOATING_30: ;
BTST 7,R0H ; Search of maximum bit position
JNE BINtoFLOATING_40 ; --> Finds maximum bit
SHL.W #1,R2 ; Pushes for search of maximum bit position
ROLC.W R0 ;
SUB.B #1,R1L ; Counts down exponent
JMP BINtoFLOATING_30 ;

BINtoFLOATING_40: ;
MOV.B #7,R1H ; Number of shifts to adjust mantissa position

BINtoFLOATING_50: ;
SHL.W #-1,R0 ; Adjusts mantissa position
RORC.W R2 ;
ADJNZ.B #-1,R1H,BINtoFLOATING_50 ; --> Adjustment not completed
MOV.B R1L,R0H ; Sets exponent
SHL.W #-1,R0 ; Adjusts format
RORC.W R2 ;
BTST 7,A0 ; Sets sign bit
BMC 7,R0H ;

BINtoFLOATING_EXIT: ;
XCHG.W R2,R0 ; Changes data
RTS

; ;
.END ;

134

2
2.29 Sorting

Collection of General-purpose Programs

Usage precautions

Input

 Subroutine name :

 Interrupt during execution: Accepted

29 bytes ROM capacity :

R1H

R3

2.29 Sorting
2.29.1 Outline

R1L

R0H

R0L

Indeterminate

Register/memory

None Number of stacks used :

Usage condition

This program sorts data consisting of a specified number of bytes (sizes in bytes) in ascending order.

R2

Output

SORT

Register used for change

 Indeterminate

 Indeterminate

The number of bytes that can be specified is 2 to 256 bytes.

Number of compare bytes - 1

A1

A0

Unused

Unused

Unused

Compared address

Compare address

Compare bytes counter

Compare bytes counter

Start address Indeterminate

Indeterminate

Sorting succeeded/failedZ flag

135

2
2.29 Sorting

Collection of General-purpose Programs

This program sorts data consisting of a specified number of bytes (sizes in bytes) in ascending order

beginning with a specified address. Set the “number of bytes to be compared - 1” in R0L and the start

address of the data in A0.

2.29.2 Explanation

 Z

 0

 1

Meaning

Sorting succeeded

Sorting failed

136

2
2.29 Sorting

Collection of General-purpose Programs

2.29.3 Flowchart

ENTER

Number of bytes to
be sorted = 0 ?

Set compare address and
number of compare bytes

Change compare address

Compare data
compare data ?

Yes

No

Change compared data and
compare data for each other

Number of bytes of
compare data?

Yes

No

Yes

No

Change compared address

Number of bytes of
compared data?

Yes

No

EXIT

137

2
2.29 Sorting

Collection of General-purpose Programs

2.29.4 Program List
;**
; *
; M16C Program Collection No. 29 *
; CPU : M16C/80 series *
; *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM
; ;
;==
; Title: Sorting
; Outline: Sorts given data (2 to 256 bytes) in ascending order
; Input: ------------------------------> Output:
; R0L (Compare bytes - 1) R0L (Indeterminate)
; R0H () R0H (Indeterminate)
; R1L () R1L (Indeterminate)
; R1H () R1H (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 (Start address) A0 (Indeterminate)
; A1 () A1 (Indeterminate)
; Stack amount used: None
; Notes: Success or failure of sorting is returned by Z flag
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
SORT: ;

CMP.B #0,R0L ;
JEQ SORT_EXIT ; --> Number of compare bytes not set

SORT_10: ;
MOV.B R0L,R0H ; Sets number of compare bytes
MOV.W A0,A1 ; Sets compare address

SORT_20: ;
ADD.L:S #1,A1 ; Changes compare address
CMP.B [A0],[A1] ; Compare data to see if large or small
JGEU SORT_30 ; --> Sorting unnecessary
MOV.B [A0],R1L ; Changes compared and compare data for each other
XCHG.B R1L,[A1] ;
MOV.B R1L,[A0] ;

SORT_30: ;
ADJNZ.B #-1,R0H,SORT_20 ; --> Looped for compare data
ADD.L:S #1,A0 ; Changes compared address
ADJNZ.B #-1,R0L,SORT_10 ; --> Looped for compared data
FCLR Z ; Sorting completed

SORT_EXIT: ;
RTS ;

; ;
.END ;

138

2
2.30 Searching Array

Collection of General-purpose Programs

Usage precautions

Input

 Subroutine name :

 Interrupt during execution: Accepted

41 bytes ROM capacity :

R1H

R3

2.30 Searching Array
2.30.1 Outline

R1L

R0H

R0L

Does not change

Register/memory

2 bytes Number of stacks used :

Usage condition

This program searches for specified data from a two-dimensional array of a given size (maximum 255 x

255 bytes).

R2

Output

ARRANGE

Search data

 Row element of coincidence data

 Column element of coincidence data

Row size of array

A1

A0

Used to save column size

Unused

Unused

Used to save start address

Column size of array

Start address of array Address of coincidence data

Indeterminate

Sorting succeeded/failedZ flag

Indeterminate

139

2
2.30 Searching Array

Collection of General-purpose Programs

This program searches for specified data from a two-dimensional array of a given size (maximum 255 x

255 bytes). Set the start address of the array in A0, the row size of the array in R0L, the column size of the

array in R0H, and the search data in R1L. The address, the row element, and the column element of the

coincidence data are output to A0, R0L, and R0H, respectively. Information on whether the search has

succeeded or failed is output to the Z flag.

In this program, the overall size of the array is calculated, the specified data is searched from the entire

array region, and a difference from the start address to the search address is obtained before decompos-

ing the coincidence data into row and column elements.

2.30.2 Explanation

Z Meaning

0 Search succeeded

1 Search failed (no coincidence data found, row setting of array = 0, or column setting of array = 0)

140

2
2.30 Searching Array

Collection of General-purpose Programs

2.30.3 Flowchart

ENTER

EXIT

Calculate entire area of array

 Column setting of array
= 0?

Search failed
Set Z flag

Row setting of array = 0?

Coincidence data?

 Move to next data
Set address difference from start to

coincidence data

Decompose coincidence data
into row and column elements

Search finished?

Search succeeded
Clear Z flag

Yes

Yes

No

Yes

No

Yes

No

No

141

2
2.30 Searching Array

Collection of General-purpose Programs

2.30.4 Program List
;**
; *
; M16C Program Collection No. 30 *
; CPU : M16C/80 series *
; *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM
; ;
;==
; Title: Searching array
; Outline: Searches for data from two-dimensional array of given size (within 255 x 255 bytes)
; Input: ------------------------------> Output:
; R0L (Row size of array) R0L (Row element of coincidence data)
; R0H (Column size of array) R0H (Column element of coincidence data)
; R1L (Search data) R1L (Does not change)
; R1H () R1H (Indeterminate)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 (Start address of array) A0 (Address of coincidence data)
; A1 () A1 (Indeterminate)
; Stack amount used: 2 bytes
; Notes: Success or failure of search is returned by Z flag
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
ARRANGE: ;

CMP.B #0,R0L ;
JEQ ARRANGE_NG ; --> No rows of array are set
MOV.B R0H,R1H ; Saves columns
JEQ ARRANGE_NG ; --> No columns of array are set
MOV.W A0,A1 ;
MULU.B R0H,R0L ; Calculates array size

ARRANGE_10: ;
CMP.B R1L,[A0] ;
JEQ ARRANGE_20 ; --> Coincidence data found
ADD.L:S #1,A0 ;
ADJNZ.W #-1,R0,ARRANGE_10 ; --> Checks next data

ARRANGE_NG: ;
FSET Z ; Search failed
JMP ARRANGE_EXIT ;

ARRANGE_20: ;
PUSH.W A0 ; Saves address of coincidence data
SUB.W A1,A0 ; Creates address difference from start

; to coincidence data
MOV.W A0,R0 ;
DIVU.B R1H ; Decomposes coincidence data into

; row and column elements
INC.B R0L ; Corrects rows
INC.B R0H ; Corrects columns
POP.W A0 ; Restores address of coincidence data
FCLR Z ; Search succeeded

ARRANGE_EXIT: ;
RTS ;

; ;
.END ;

142

2
2.31 Converting from Lowercase Alphabet to Uppercase Alphabet

Collection of General-purpose Programs

Usage precautions

Input

Unused

 Subroutine name :

 Interrupt during execution: Accepted

16 bytes ROM capacity :

R2

R3

A0

A1

Unused

Conversion information

2.31 Converting from Lowercase Alphabet to Uppercase Alphabet
2.31.1 Outline

R1

R0H

R0L Uppercase alphabet (ASCII)

Unused

Unused

Unused

Register/memory

None Number of stacks used :

Output Usage condition

This program converts a lowercase English alphabet in ASCII code into an uppercase English alphabet

in ASCII code.

Unused

TOUPPER

Lowercase alphabet (ASCII)

C flag

143

2
2.31 Converting from Lowercase Alphabet to Uppercase Alphabet

Collection of General-purpose Programs

This program converts a lowercase English alphabet in ASCII code into an uppercase English alphabet in

ASCII code. Set the lowercase English alphabet in ASCII code in R0L. The converted uppercase English

alphabet in ASCII code is output to R0L. Conversion information is output to the C flag.

2.31.2 Explanation

C Meaning

0 Lowercase alphabet converted into uppercase alphabet

1 No converted because inconvertible code was input

144

2
2.31 Converting from Lowercase Alphabet to Uppercase Alphabet

Collection of General-purpose Programs

2.31.3 Flowchart

ENTER

EXIT

R0L - 20H -> R0L

R0L £ 'z' ?

R0L ‡ 'a' ?

Conversion succeeded
Clear C flag

Conversion failed
Set C flag

No

Yes

Yes

No

145

2
2.31 Converting from Lowercase Alphabet to Uppercase Alphabet

Collection of General-purpose Programs

2.31.4 Program List
;**
; *
; M16C Program Collection No. 31 *
; CPU : M16C/80 series *
; *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM

;==
; Title: Converting ASCII code lowercase alphabet into uppercase alphabet
; Contents of processing:
; The ASCII code input in R0L is converted from a lowercase English alphabet into an

uppercase English alphabet and the result is returned to R0L. No conversion is
performed if any code is input in R0L that is not a lowercase English alphabet.

; Procedure: (1) Input ASCII code in R0L.
; (2) Call the subroutine.
; (3) Converted ASCII code is loaded into R0L.
; Result: The C flag is cleared to 0 when the code was converted from a lowercase alphabet

into an uppercase alphabet. The C flag is set to 1 when the code was not converted.
; Input: ------------------------------> Output:
; R0L (ASCII code) R0L (ASCII code)
; R0H () R0H (Unused)
; R1 () R1 (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
; Stack amount used: None
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
TOUPPER: ;

CMP.B #'a',R0L ; Lowercase alphabet ‘a’ or above?
JLTU TOUPNON ; --> no (not converted)
CMP.B #'z',R0L ; Lowercase alphabet ‘z’ or below?
JGTU TOUPNON ; --> no (not converted)
SUB.B #20H,R0L ; Converts from lowercase alphabet into

; uppercase alphabet
FCLR C ; Sets “converted” information
RTS ;

TOUPNON: ;
FSET C ; Sets “not-converted” information
RTS ;

; ;
.END ;

146

2
2.32 Converting from Uppercase Alphabet to Lowercase Alphabet

Collection of General-purpose Programs

Usage precautions

Input

Unused

 Subroutine name :

 Interrupt during execution: Accepted

16 bytes ROM capacity :

R2

R3

A0

A1

Unused

Conversion information

2.32 Converting from Uppercase Alphabet to Lowercase Alphabet
2.32.1 Outline

R1

R0H

R0L Lowercase alphabet (ASCII)

Unused

Unused

Unused

Register/memory

None Number of stacks used :

Output Usage condition

This program converts an uppercase English alphabet in ASCII code into a lowercase English alphabet

in ASCII code.

Unused

TOLOWER

Uppercase alphabet (ASCII)

C flag

147

2
2.32 Converting from Uppercase Alphabet to Lowercase Alphabet

Collection of General-purpose Programs

This program converts an uppercase English alphabet in ASCII code into a lowercase English alphabet in

ASCII code. Set the uppercase English alphabet in ASCII code in R0L. The converted lowercase English

alphabet in ASCII code is output to R0L. Conversion information is output to the C flag.

2.32.2 Explanation

C Meaning

0 Uppercase alphabet converted into lowercase alphabet

1 No converted because inconvertible code was input

148

2
2.32 Converting from Uppercase Alphabet to Lowercase Alphabet

Collection of General-purpose Programs

2.32.3 Flowchart

ENTER

EXIT

R0L + 20H -> R0L

R0L £ 'Z' ?

R0L ‡ 'A' ?

Conversion succeeded
Clear C flag

Conversion failed
Set C flag

Yes

Yes

No

No

149

2
2.32 Converting from Uppercase Alphabet to Lowercase Alphabet

Collection of General-purpose Programs

2.32.4 Program List
;**
; *
; M16C Program Collection No. 32 *
; CPU : M16C/80 series *
; *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM
;
;==
; Title: Converting ASCII code uppercase alphabet into lowercase alphabet
; Contents of processing:
; The ASCII code input in R0L is converted from an uppercase English alphabet into
; a lowercase English alphabet and the result is returned to R0L. No conversion is
; performed if any code is input in R0L that is not an uppercase English alphabet.
; Procedure: (1) Input ASCII code in R0L.
; (2) Call the subroutine.
; (3) Converted ASCII code is loaded into R0L.
; Result: The C flag is cleare d to 0 when the code was converted from a uppercase alphabet

; into an lowercase alphabet. The C flag is set to 1 when the code was not
converted.
; Input: ------------------------------> Output:
; R0L (ASCII code) R0L (ASCII code)
; R0H () R0H (Unused)
; R1 () R1 (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
; Stack amount used: None
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
TOLOWER: ;

CMP.B #'A',R0L ; Uppercase alphabet ‘A’ or above?
JLTU TOLOWNON ; --> no (not converted)
CMP.B #'Z',R0L ; Uppercase alphabet ‘Z’ or below?
JGTU TOLOWNON ; --> no (not converted)
ADD.B #20H,R0L ; Converts from uppercase alphabet

; into lowercase alphabet
FCLR C ; Sets “converted” information
RTS ;

TOLOWNON: ;
FSET C ; Sets “not-converted” information
RTS ;

; ;
.END ;

150

2
2.33 Converting from ASCII to Hexadecimal Data

Collection of General-purpose Programs

Usage precautions

Input

Unused

 Subroutine name :

 Interrupt during execution: Accepted

42 bytes ROM capacity :

R2

R3

A0

A1

Unused

Conversion information

2.33 Converting from ASCII to Hexadecimal Data
2.33.1 Outline

R1

R0H

R0L Hexadecimal

Unused

Unused

Unused

Register/memory

None Number of stacks used :

Output Usage condition

This program converts ASCII code into hexadecimal data.

Unused

ATOH

ASCII code

C flag

151

2
2.33 Converting from ASCII to Hexadecimal Data

Collection of General-purpose Programs

This program converts ASCII code into hexadecimal data. The ASCII code that can be converted are

numbers from ‘0’ to ‘9’ and alphabets from ‘a’ to ‘f’ and ‘A’ to ‘F’. Set ASCII code in R0L. The converted

hexadecimal data is output to R0L. Conversion information is output to the C flag.

2.33.2 Explanation

C Meaning

0 ASCII converted into hexadecimal

1 Not converted because inconvertible code was input

152

2
2.33 Converting from ASCII to Hexadecimal Data

Collection of General-purpose Programs

ENTER

EXIT

R0L = 'A' to 'F' ?

Conversion succeeded
Clear C flag

R0L - 'A' + 10 --> R0L R0L = 'a' to 'f' ?

R0L - 'a' + 10 --> R0L R0L = '0' to '9' ?

R0L - '0' --> R0L Conversion failed
Set C flag

2.33.3 Flowchart

No

Yes

No

Yes

No

Yes

153

2
2.33 Converting from ASCII to Hexadecimal Data

Collection of General-purpose Programs

2.33.4 Program List
;**
; *
; M16C Program Collection No. 33 *
; CPU : M16C/80 series *
; *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM

;==
; Title: Converting ASCII code into hexadecimal
; Contents of processing:
; The ASCII code input in R0L is converted into hexadecimal data, which is returned
; to R0L. The valid ASCII code are 0 to 9, A to F, and a to f. No conversion is per-
; formed if invalid code is input.
; Procedure: (1) Input ASCII code in R0L.
; (2) Call the subroutine.
; (3) The converted hexadecimal data is loaded into R0L.
; Result: When converted into hexadecimal data, the C flag is cleared to 0. If not converted
; into hexadecimal data, i.e., if any code other than 0 to 9, A to F, or a to f was input,
; the C flag is set to 1.
; Input: ------------------------------> Output:
; R0L (ASCII code) R0L (Hexadecimal)
; R0H () R0H (Unused)
; R1 () R1 (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
; Stack amount used: None
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
ATOH: ;

CMP.B #'a',R0L ; ‘a’ or above?
JLTU ATOH10 ; --> no
CMP.B #'f',R0L ; ‘f’ or below?
JGTU ATOH_ERR ; --> no (not converted)
SUB.B #(61H-10),R0L ; SUB.B #'a'-10,R0L
FCLR C ; Sets “converted” information
RTS ;

ATOH10: ;
CMP.B #'A',R0L ; ‘A’ or above?
JLTU ATOH20 ; --> no
CMP.B #'F',R0L ; ‘F’ or below?
JGTU ATOH_ERR ; --> no (not converted)
SUB.B #(41H-10),R0L ; SUB.B #'A'-10,R0L
FCLR C ; Sets “converted” information
RTS ;

ATOH20: ;
CMP.B #'0',R0L ; ‘0’ or above?
JLTU ATOH_ERR ; --> no (not converted)
CMP.B #'9',R0L ; ‘9’ or below?
JGTU ATOH_ERR ; --> no (not converted)
AND.B #0FH,R0L ;
FCLR C ; Sets “converted” information
RTS ;

ATOH_ERR: ;
FSET C ; Sets “not-converted” information
RTS ;

; ;
.END ;

154

2
2.34 Converting from Hexadecimal Data to ASCII Code

Collection of General-purpose Programs

Usage precautions

Input

Unused

 Subroutine name :

 Interrupt during execution: Accepted

21 bytes ROM capacity :

R2

R3

A0

A1

Unused

Converted or not

2.34 Converting from Hexadecimal Data to ASCII Code
2.34.1 Outline

R1

R0H

R0L ASCII code

Unused

Unused

Unused

Register/memory

None Number of stacks used :

Output Usage condition

This program converts hexadecimal data into ASCII code.

Unused

HTOA

Hexadecimal

C flag

155

2
2.34 Converting from Hexadecimal Data to ASCII Code

Collection of General-purpose Programs

2.34.2 Explanation

This program converts hexadecimal data into ASCII code. The hexadecimal data that can be converted

are from “00H” to “0FH.” The converted ASCII code are numbers from ‘0’ to ‘9’ and alphabets from ‘A’ to

‘F’. Set the hexadecimal data in R0L. The converted ASCII code is output to R0L. Conversion informa-

tion is output to the C flag.

C

0

1

Meaning

Hexadecimal converted into ASCII code

Not converted because inconvertible code was input

156

2
2.34 Converting from Hexadecimal Data to ASCII Code

Collection of General-purpose Programs

2.34.3 Flowchart

ENTER

R0L £ 0FH ?

R0L ‡ 0AH ?

R0L + 'A' - 10 --> R0L

Conversion succeeded
Clear C flag

R0L + '0' --> R0L Conversion failed
Set C flag

EXIT

No

Yes

No

Yes

157

2
2.34 Converting from Hexadecimal Data to ASCII Code

Collection of General-purpose Programs

2.34.4 Program List
;**
; *
; M16C Program Collection No. 34 *
; CPU : M16C/80 series *
; *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM

;==
; Title: Converting hexadecimal into ASCII code
; Contents of processing:
; The hexadecimal data input in R0L is converted into ASCII code, which is returned
; to R0L. The valid hexadecimal data are 00 to 0F. 0A to 0F are converted into ‘A’ to
; ‘F.’ No conversion is performed if invalid code is input.
; Procedure: (1) Input hexadecimal data in R0L.
; (2) Call the subroutine.
; (3) The converted hexadecimal data is loaded into R0L.
; Result: When converted into ASCII code, the C flag is cleared to 0. If not converted into
; ASCII code, i.e., if any hexadecimal data other than 00 to 0F was input, the C flag is
; set to 1.
; Input: ------------------------------> Output:
; R0L (Hexadecimal) R0L (ASCII code)
; R0H () R0H (Unused)
; R1 () R1 (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
; Stack amount used: None
;==

SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area

HTOA: ;
CMP.B #0FH,R0L ; 0F or below?
JGTU HTOA_ERR ; --> No(not converted)
CMP.B #0AH,R0L ; 0A or above?
JGEU HTOA10 ; --> Yes (A to F set)
OR.B #'0',R0L ;
FCLR C ; Sets “converted” information
RTS ;

HTOA10: ;
ADD.B #(41H-10),R0L ; ADD.B #'A'-10,R0L
FCLR C ; Sets “converted” information
RTS ;

HTOA_ERR: ;
FSET C ; Sets “not-converted” information
RTS ;

; ;
.END ;

158

2 Collection of General-purpose Programs

2.35 Example for Initial Setting Assembler

2.35.2 Explanation

The program shown here consists of the following:

(1) Map file information output

(2) Global symbol name specification

(3) Numeric symbol definition

(4) RAM area allocation

(5) Bit symbol definition

(6) Initial setup program

 • Interrupt stack pointer setting

 • FB register setting

 • SB register setting

 • INTB register setting

 • RAM clear

(7) Main program

(8) Peripheral I/O interrupt vector table

(9) Nonmaskable interrupt fixed vector table

The following shows the range of the FB and SB relative addresses in this program.

 FB 380H to 47FH

- 128

400H

+ 127

 SB 480H to 57FH

400H

+ 255

2.35 Example for Initial Setting Assembler
2.35.1 Outline

This program is an example of initial settings accomplished by using the directive commands of the

assembler.

159

2 Collection of General-purpose Programs

2.35 Example for Initial Setting Assembler

2.35.3 Program List

;**
; *
; M16C Program Collection No. 35 *
; CPU : M16C/80 series *
; *
;**
;==
; Title: Initial settings using assembler’s directive commands
; Outline:
; (1) Assemble control
; (2) Address control
; (3) Link control
; (4) List control
; (5) Branch instruction optimization control
; Notes:
;==
;//
; Map file information output
;//

.VER 'Ver1.02' ; ‘Ver1.02’ is output when generating map file
;
;//
; Global symbol name specification
;//

; [Global symbol specification]
.GLB ROUTINE ; Externlly referenced symbol
.GLB MAIN ; Public symbol

;
; [Global bit symbol specification]

.BTGLB P2_4 ; Externally referenced symbol

.BTGLB P0_7 ; Public symbol
;
;//
; Numeric symbol definition
;//
VramTOP .EQU 000400H ; Declares start address of RAM
VramEND .EQU 002BFFH ; Declares last address of RAM
VIstack .EQU 002C00H ; Interrupt stack pointer
VproTOP .EQU 0FE0000H ; Declares start address of program
Vintbase.EQU .EQU 0FFFD00H ; Declares start address of variable vector table
Vvector .EQU 0FFFFDCH ; Declares fixed interrupt vector address
;
CNT125ms .EQU 125 ; Sets 125 in CNT125ms
;
AUTOchar .EQU -8 ; Sets -8 in AUTOchar
;

.FORM 45,160 ; [List output control instruction]
; Specifies 45 lines, 160 columns per page of list file

.LIST ON ; [List output control]
; Outputs assembler list

.PAGE 'RAM' ; [List page break and title specification]

.SECTION MEMORY,DATA ; [Section name specification]
; Declares DATA attribute section of section name “MEMORY”

.ORG VramTOP ; [Absolute address setting]
; Sets location to 400H

160

2 Collection of General-purpose Programs

2.35 Example for Initial Setting Assembler

;//
; RAM area allocation
;//

; [RAM area 1-byte allocation]
CHAR: .BLKB 10 ; Allocates 10-byte area
;

; [RAM area 2-byte allocation]
SHORT: .BLKW 10 ; Allocates 20-byte area
;

; [RAM area 3-byte allocation]
ADDR: .BLKA 10 ; Allocates 30-byte area
;

; [RAM area 4-byte allocation]
LONG: .BLKL 10 ; Allocates 40-byte area
;

; [Single-precision, floating-point RAM area allocation]
SFLOAT: .BLKF 10 ; Allocates 40-byte area
;

; [Double-precision, floating-point RAM area allocation]
DFLOAT: .BLKD 10 ; Allocates 80-byte area
;
CHECK: .BLKW 10
;
;//
; Bit symbol definition
;//
BIT4 .BTEQU 4,CHAR ; Sets bit 4 of displacement CHAR to BIT4
MSB .BTEQU 15,SHORT ; Sets bit 15 of displacement SHORT to MSB
P0_7 .BTEQU 7,3E0H ; Sets bit 7 at address 3E0 to P0_7
;

.SECTION PROG,CODE ; Declares CODE attribute section of section name “PROG”

.ORG VproTOP ; Sets location to FE0000H

.OPTJ OFF ; [Branch instruction optimize specification]
; Does not optimize branch instruction after this line

.FB VramTOP ; [Assumption of FB register value]
; Assumes 400H for FB register value

.SB VramTOP+80H ; [Assumption of SB register value]
; Assumes 480H for SB register value

.FBSYM SHORT ;

.SBSYM CHECK ;
;==
; Program start
;==
RESET:

LDC #VIstack,ISP ; Sets interrupt stack pointer
;

LDC #VramTOP,FB ; Sets frame base register
LDC #VramTOP+80H,SB ; Sets static base register
LDC #Vintbase,INTB ; Sets interrupt table register

;
MOV.W #0,R0 ; Sets store data (0)
MOV.W #((VramEND+1)-VramTOP)/2,R3 ; Sets number of transfers performed
MOV.W #VramTOP,A1 ; Sets address where to start storing
SSTR.W ; Executes clearing of RAM

;
FSET I ; Enables interrupt

;

161

2 Collection of General-purpose Programs

2.35 Example for Initial Setting Assembler

;===
; Main program
;===
MAIN:

MOV.W #1234H,SHORT
;
;

MOV.W #5678H,CHECK
;
;

JSR ROUTINE
BSET P0_7

ROUTINE:
(Processing)

RTS
NOTUSE:

(Processing)
REIT

.PAGE 'VECTOR'

.SECTION UINTER,ROMDATA ; Declares FOMDATA attribute section
; of section name “UINTER”

.ORG Vintbase ; Sets location to FFFD00H
;===
; Peripheral I/O interrupt vector table
;===

.LWORD NOTUSE ; Software interrupt number 0

.LWORD NOTUSE ; Software interrupt number 1

.SECTION INTER,ROMDATA ; Declares FOMDATA attribute section
; of section name “INTER”

.ORG Vvector ; Sets location to FFFFDCH
;===
; Nonmaskable interrupt fixed vector table
;===

.LWORD NOTUSE ; FFFFDC to F Undefined instruction

.LWORD NOTUSE ; FFFFE0 to 3 Overflow

.LWORD NOTUSE ; FFFFE4 to 7 BRK instruction

.LWORD NOTUSE ; FFFFE8 to B Address coincidence

.LWORD NOTUSE ; FFFFEC to F Single stepping

.LWORD NOTUSE ; FFFFF0 to 3Watchdog timer

.LWORD NOTUSE ; FFFFF4 to 7 Debugger

.LWORD NOTUSE ; FFFFF8 to B NMI

.LWORD RESET ; FFFFFC to F Reset
;//
; End of assemble direction
;//

.END
;

162

2 Collection of General-purpose Programs

2.36 Special Page Subroutine

2.36 Special Page Subroutine
2.36.1 Outline

This program is an example for using a special subroutine call.

2.36.2 Explanation
The program branches to a subroutine at an address that is the address set in one of the special page

vector tables (in 2 bytes each) plus FF0000H. The area in which control can branch to a subroutine is

from address FF0000H to address FFFFFFH.

The special page vector tables are located in an area ranging from address FFFE00H to address

FFFFDBH. The special page number at address FFFE00H is 255 and that at address FFFFDAH is 18. A

label can be used in place of a special page number.

Shown in this program are an example where labels are used for special page numbers 255 and 18 and

an example where a special page number (254) is used directly.

163

2 Collection of General-purpose Programs

2.36 Special Page Subroutine

2.36.3 Program List

;**
; *
; M16C Program Collection No. 36 *
; CPU : M16C/80 series *
; *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM
;
;==
; Title: Special page subroutine call
; Outline: Description example of special page subroutine call
; Input: ------------------------------> Output:
; R0 () R0 ()
; R1 () R1 ()
; R2 () R2 ()
; R3 () R3 ()
; A0 () A0 ()
; A1 () A1 ()
; Stack amount used: 3 bytes
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
MAIN:

JSRS \SUB1 ; Branches to subroutine at LABEL_1
JSRS #254 ; Branches to subroutine at LABEL_2
JSRS \SUB238 ; Branches to subroutine at LABEL_238

LABEL_1:
(Processing)

RTS
LABEL_2:

(Processing)
RTS

LABEL_238:
(Processing)

RTS
;

.SECTION SPECIAL,ROMDATA

.ORG 0FFFE00H ; Special page area
;--
; Special page
;--
SUB1: .WORD LABEL_1&0FFFFH ; Special page number 255

.WORD LABEL_2&0FFFFH ; Special page number 254
;

.ORG 0FFFDAH
SUB238: .WORD LABEL_238&0FFFFH ; Special page number 18
;

.END ;

164

2 Collection of General-purpose Programs

2.37 Special Page Jump

2.37 Special Page Jump
2.37.1 Outline

This program is an example for using a special page jump.

2.37.2 Explanation
Control jumps to an address that is set in one of the special page vector tables (in 2 bytes each) plus

FF0000H. The area within which control can jump is from address FF0000H to address FFFFFFH.

The special page vector tables are located in an area ranging from address FFFE00H to address

FFFFDBH. The special page number at address FFFE00H is 255 and that at address FFFFDAH is 18. A

label can be used in place of a special page number.

Shown in this program are an example where labels are used for special page numbers 255 and 18 and

an example where a special page number (254) is used directly.

165

2 Collection of General-purpose Programs

2.37 Special Page Jump

2.37.3 Program List

;**
; *
; M16C Program Collection No. 37 *
; CPU : M16C/80 series *
; *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM
;
;==
; Title: Special page subroutine call
; Outline: Description example of special page subroutine call
; Input: ------------------------------> Output:
; R0 () R0 ()
; R1 () R1 ()
; R2 () R2 ()
; R3 () R3 ()
; A0 () A0 ()
; A1 () A1 ()
; Stack amount used: None
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ;ROM area
MAIN:

JMPS \SUB1 ; Jumps to LABEL_1
JMPS #254 ; Jumps to LABEL_2
JMPS \SUB238 ; Jumps to LABEL_238

LABEL_1:
(Processing)

LABEL_2:
(Processing)

LABEL_238:
(Processing)

;
.SECTION SPECIAL,ROMDATA
.ORG 0FFFE00H ; Special page area

;--
; Special page area
;--
SUB1: .WORD LABEL_1&0FFFFH ; Special page number 255

.WORD LABEL_2&0FFFFH ; Special page number 254

.ORG 0FFFDAH
SUB238: .WORD LABEL_238&0FFFFH ; Special page number 18
;

.END ;

166

2 Collection of General-purpose Programs

2.38 Variable Vector Table

2.38 Variable Vector Table
2.38.1 Outline

This program shows an example for setting variable vector tables and an example for using software

interrupts.

2.38.2 Explanation
A variable vector table is a 256-byte interrupt vector table whose start address (IntBase) is indicated by

the content of the interrupt table register (INTB). The variable vector table in this program has its start

address at FFE000H. The variable vector table has individual vector tables each comprised of 4 bytes,

and each vector table contains the start address of an interrupt routine.

There are software interrupt numbers (0 to 63) available for each vector table. The INT instruction uses

these software interrupt numbers. No labels can be used in place of the software interrupt numbers.

Peripheral I/O interrupts are assigned software interrupt numbers 0 to 31. In this program, software

interrupt number 12 is used for timer A0 and software interrupt number 13 is used for timer A1.

Software interrupt numbers 32 to 63 are used for software interrupts. This type of interrupt is generated

by the INT instruction. Therefore, software interrupts are used in the same way as a subroutine by using

the INT instruction. The INT instruction is executed even when interrupts are disabled. After interrupts

are disabled (FCLR I) in this program, INT#44 and INT#45 are executed regardless of whether or not the

interrupt enable flag (I) is set.

167

2 Collection of General-purpose Programs

2.38 Variable Vector Table

2.38.3 Program List
;**
; *
; M16C Program Collection No. 38 *
; CPU : M16C/80 series *
; *
;**
VromTOP .EQU 0FE0000H ; Declares start address of ROM
VIstack .EQU 002C00H ; Interrupt stack pointer
Vintbase .EQU 0FFE000H ; Declares interrupt vector table address
TA0IC .EQU 006CH ; Timer A0 interrupt control register
TA1IC .EQU 008CH ; Timer A1 interrupt control register
TABSR .EQU 0340H ; Timer start flag
TA0 .EQU 0346H ; Timer A0 register
TA1 .EQU 0348H ; Timer A1 register
;
;==
; Title: Variable vector table
; Outline: Description example of variable vector table and software interrupt
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
MAIN:

LDC #VIstack,ISP ; Sets interrupt stack pointer
LDC #Vintbase,INTB ; Sets interrupt table register

;
MOV.W #100-1,TA0 ; Sets timer A0 counter
MOV.B #00000001B,TA0IC ; Sets interrupt level 1 for timer A0
MOV.W #1000-1,TA1 ; Sets timer A1 counter
MOV.B #00000010B,TA1IC ; Sets interrupt level 2 for timer A1

;
MOV.B #00000011B,TABSR ; Timers A0 and A1 start counting

;
FSET I ; Enables interrupts

;
INT #12 ; Performs timer A0 interrupt processing

; (TIMER_A0 is executed)
;

FCLR I ; Disables interrupts
;

INT #13 ; Performs timer A1 interrupt processing
; (TIMER_A1 is executed)

;
INT #44 ; Performs SOFTINT label interrupt processing

.

.

.

.

.

.
TIMER_A0:

(Processing)
REIT

TIMER_A1:
(Processing)

REIT

SOFTINT:
(Processing)

REIT

168

2 Collection of General-purpose Programs

2.38 Variable Vector Table

NOTUSE:
REIT

;
.SECTION SPECIAL,ROMDATA
.ORG Vintbase ; Variable vector table area

;--
; Peripheral I/O interrupt vector table
;--

.LWORD NOTUSE ; Software interrupt number 0

.LWORD NOTUSE ; Software interrupt number 1

;
.ORG Vintbase+48
.LWORD TIMER_A0 ; Software interrupt number 12
.LWORD TIMER_A1 ; Software interrupt number 13

;
.ORG Vintbase+176 ; Software interrupt area

;--
; Software interrupt vector table
;--

.LWORD SOFTINT ; Software interrupt number 44

.LWORD NOTUSE ; Software interrupt number 45

;
.END ;

169

2 Collection of General-purpose Programs

2.39 Saving and Restoring Context

2.39 Saving and Restoring Context
2.39.1 Outline

This program shows a usage example for saving context (STCTX instruction) and restoring context

(LDCTX instruction).

2.39.2 Explanation

Tasks are executed in the main routine and context save and restore operations are performed within

each task processing.

TASK contains a task’s execution number. The content of the table equal to twice the content of TASK in

the task execution table is executed (task execution processing). This program has three tasks to ex-

ecute. Context save and restore operations are performed within each task processing.

Vcontext indicates the table’s base address. The data stored at an address apart from the base address

by twice the content of TASK contains register information and the next address indicates a stack

pointer’s correction value.

The following shows the function of register information.

The content of the register whose bit is set (= 1) is saved to or restored from a stack. The stack pointer’s

correction value is twice the number of registers to be saved and restored.

FB SB A1 A0 R3 R2 R1 R0

b7 b6 b5 b4 b3 b2 b1 b0

170

2 Collection of General-purpose Programs

2.39 Saving and Restoring Context

2.39.3 Program List

;**
; *
; M16C Program Collection No. 39 *
; CPU : M16C/80 series *
; *
;**
VramTOP .EQU 000400H ; Declares start address of RAM
VromTOP .EQU 0FE0000H ; Declares start address of ROM
Vcontext .EQU 0FFF800H ; Table’s base address
Vsubtbl .EQU 0FFFA00H ; Declares start address of subroutine table
;

.SECTION RAM,DATA

.ORG VramTOP ; RAM area
TASK: .BLKB 1 ; Task number
;
;==
; Title: Saving/restoring context
; Outline: Example for using STCTX/LDCTX instructions
; Notes:
;==

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
MAIN:

MOV.B TASK,A0
SHL.W #2,A0 ; Subroutine pointer

;
JSRI.A Vsubtbl[A0] ; Executes task

;
INC.B TASK ; Task + 1
CMP.B #2,TASK ; Greater than number of tasks?
JLEU L_1 ; --> No
MOV.B #0,TASK ; Sets task = 0

L_1:
JMP MAIN

;
;--
; Processing of task 0
;--
TASK_0:

STCTX TASK,Vcontext ; Saves registers in order of R0, R1, R2, R3, SB, and FB
(Processing)

LDCTX TASK,Vcontext ; Restores registers in order of FB, SB, R3, R2, R1, and R0
RTS

;
;--
; Processing of task 1
;--
TASK_1:

STCTX TASK,Vcontext ; Saves registers in order of R0, R2, SB, and FB

(Processing)

LDCTX TASK,Vcontext ;Restores registers in order of FB, SB, R2, and R0
RTS

;

171

2 Collection of General-purpose Programs

2.39 Saving and Restoring Context

;--
; Processing of task 2
;--
TASK_2:

STCTX TASK,Vcontext ; Saves registers in order of R1, R3, A1, and SB

(Processing)

LDCTX TASK,Vcontext ; Restores registers in order of SB, A1, R3, and R1
RTS

;
.SECTION BASE,ROMDATA
.ORG Vcontext ; Context save/restore table area

;--
; Context information table
;--

.BYTE 11001111B ; TASK = 0 Register information

.BYTE 12 ; SP correction value
;

.BYTE 10000101B ; TASK = 1 Register information

.BYTE 6 ; SP correction value
;

.BYTE 01101010B ; TASK = 2 Register information

.BYTE 8 ; SP correction value
;

.SECTION TABLE,ROMDATA

.ORG Vsubtbl ; Subroutine table area
;--
; Subroutine table
;--

.LWORD TASK_0 ; TASK = 0 Subroutine

.LWORD TASK_1 ; TASK = 1 Subroutine

.LWORD TASK_2 ; TASK = 2 Subroutine
;

.END ;

172

2 Collection of General-purpose Programs

2.39 Saving and Restoring Context

MEMO

Chapter 3

Program Collection of Mathematic/Trigonometric Functions

174

 3
Function list

Program Collection of Mathematic/Trigonometric Functions

Function list

Function

Single-precision, floating-point format

Addition

Subtraction

Multiplication

Division

Sine function

Cosine function

Tangent function

Inverse sine function

Inverse cosine function

Inverse tangent function

Square root

Power

Exponential function

Natural logarithmic function

Common logarithmic function

Data comparison

Conversion from FLOAT type to WORD type

Conversion from WORD type to FLOAT type

Program list *

Item No.

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

3.19

3.20

Format

 –

Library

Library

Library

Library

Library

Library

Library

Library

Library

Library

Library

Library

Library

Library

Library

Library

Library

Library

 –

Page

175

178

180

182

184

186

188

190

192

194

196

198

200

202

204

206

208

210

212

214

*: This consists of a collection of the arithmetic library’s program lists.

175

3
3.1 Single-precision, Floating-point Format

Program Collection of Mathematic/Trigonometric Functions

3.1 Single-precision, Floating-point Format

es f
Bit 31 23 16 8 0

Exponent
part in 8 bits

Mantissa part in 23 bits

Decimal position of mantissa part (A)

Sign of mantissa part 0 : Positive
1 : Negative

High-order
mantissa

Mid-order
mantissa

Low-order
mantissa

Mantissa part data in 23 bits (f)
mantissa part data representation A

MSB 2 -1 LSB 2 -23

3.1.3 Mantissa Part
The mantissa part (f) consists of 23 bits of fixed-point real number, with the decimal point placed at

position A. Since the floating-point numbers handled in this library are normalized, 1s in the most signifi-

cant bit are omitted. Consequently, significant digits are always “1 + f”. The range of ‘f’ is 0 £ f < 1.

Representation of floating-point data

Mantissa part data representation

3.1.1 Outline
The floating-point data used in this arithmetic library conforms to the single-precision (4-byte), floating-

point format in IEEE standards.

All calculations in this arithmetic library are performed by replacing or referencing register contents.

Please be sure to set the necessary data in registers before calling a subroutine. Note also that although

each subroutine uses the M16C/80-series’ CPU registers to implement its processing, no measures are

taken inside the subroutine to protect the registers. Therefore, take protective measures by, for example,

saving the registers in a stack area as necessary before calling a subroutine.

3.1.2 Representation of Single-precision, Floating-point Data
This arithmetic library uses the IEEE standards single-precision data format shown below to represent

floating-point binary numbers.

176

3
3.1 Single-precision, Floating-point Format

Program Collection of Mathematic/Trigonometric Functions

The exponent part uses an 8-bit unsigned binary number to express ‘e’ of 2127 to 2–126. The data is

expressed by a value that is prebiased by adding 7F16. (However, e = 0 and e = FF16 are used as special

numbers.) Consequently, the actual exponent value and the representation of the exponent part have

the following relationship.

3.1.4 Exponent Part

 Exponent value 127 · · · · · · · · · · · · · · · · · · 1 0 –1 · · · · · · · · · · · · · · · · · –126

 Exponent part FE16 · · · · · · · · · · · · · · · · 8016 7F16 7E16 · · · · · · · · · · · · · · · · 0116

Relationship between exponent value and representation of exponent part

3.1.5 Sign of Mantissa Part

The sign of the mantissa part (s) is located at the MSB (31st bit) position of the data area. Numeral 0

denotes a positive number and numeral 1 denotes a negative number.

3.1.6 Types and Meanings of Data Representation
The table below shows the values represented by binary floating-point numbers in conformity with IEEE

standards.

Represented
value

 Sign ‘s’ Remarks

Non-numeral

Infinite

Normalized
number

0/1

0/1

0/1

0/1

11111111

11111111

11111110

00000001

00000000

to

All bits in exponent part are 1s
and any bit in mantissa part is
not 0.

Mantissa
part ‘f’

11111111
to

00000001

00000000

11111111
to

00000000

00000000

All bits in exponent part are 1s
and all bits in mantissa part are
0s.

Maximum value 3.40 x 1038

minimum value 3.40 x 10–38

All bits in exponent part and all
bits in mantissa part are 0s.

 Values represented by binary floating-point numbers

1

1

1

Sign ‘s’

0

0

0

Exponent part ‘e’ Mantissa part ‘f’

01111111

0000000 00000000 00000000

01111110

01111011

01111111

01111011

01111110

Value (decimal)

1001100 11001100 11001101

 0000000 00000000 00000000

0000000 00000000 00000000

1001100 11001100 11001101

0000000 00000000 00000000

 1

 0.1

 0.5

 –1

 –0.1

 –0.5

 Example of normalization

Absolute 0

Exponent
part ‘e’

177

3
3.1 Single-precision, Floating-point Format

Program Collection of Mathematic/Trigonometric Functions

3.1.7 Arguments and Return Values

 Bits 15 8 7 0

 Mantissa part, mid-order Mantissa part, low-order

 Bits 15 14 7 6 0

 Mantissa part, high-order Exponent part

Sign of mantissa part

R0 or R1

R2 or R3

Structure of argument and return value

This section explains the floating-point arguments and return values used in this arithmetic library.

The first operand (or the number to be operated on) of an argument is assigned to registers (R2R0) and

the second operand (or the number operating on it) is assigned to registers (R3R1). Set values in these

registers before calling a library. The return values from a library are loaded into registers (R2R0). The

diagram below shows the structure of an argument and return value.

178

3
3.2 Addition

Program Collection of Mathematic/Trigonometric Functions

Usage precautions

Input Output Remarks

Since the contents of R3 and R1 are destroyed as a result of program execution, save the registers

before calling the subroutine as necessary.

Supplementary explanation

A + B = C A: First operand; B: Second operand; C: Calculation result

Destroyed during processing

Sign, exponent, upper part of mantissa

Indeterminate

Lower half of calculation result Mid and lower parts of mantissa

Upper half of first operand

Upper half of second operand

Indeterminate

Upper half of calculation result

 Subroutine name: FADD

 Interrupt during execution: Accepted

 ROM capacity: 382 bytes

 Number of stacks used: 18 bytes

R0

R3

A0

A1

Destroyed during processing

Unused

Unused

3.2 Addition
3.2.1 Outline

Lower half of first operand

Lower half of second operandR1

Register/memory

R2

This program adds float-point numbers.

The first operand (R2R0) is added to the second operand (R3R1) and the result is stored in (R2R0).

Calculation result (R2R0) = first operand (R2R0) + second operand (R3R1)

179

3
3.2 Addition

Program Collection of Mathematic/Trigonometric Functions

Procedure:

(1) Store the first operand (normalized single-precision, floating-point number) in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

(2) Store the second operand (normalized single-precision, floating-point number) in R3 and R1.

R3 = sign, exponent, upper part of mantissa

R1 = mid and lower parts of mantissa

(3) Call the subroutine (FADD).

Calculation result:

The calculation result is placed in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

If the operation resulted in an error, one of the following values is returned.

3.2.2 Explanation

First or second operand whichever larger
(not changed)

Exponent underflow

 Maximum value of normalized number *

Minimum value of normalized number *

Non-numeral *

Absolute 0 * When calculation result = 0

Faulty data

Underflow

Overflow

MeaningContents of R2 and R0

* Refer to Section 3.1.5.

180

3
3.3 Subtraction

Program Collection of Mathematic/Trigonometric Functions

Usage precautions

 Input Output Remarks

Since the contents of R3 and R1 are destroyed as a result of program execution, save the registers

before calling the subroutine as necessary.

Supplementary explanation

A - B = C A: First operand; B: Second operand; C: Calculation result

Destroyed during processing

Sign, exponent, upper part of mantissa

Indeterminate

Lower half of calculation result Mid and lower parts of mantissa

Upper half of first operand

Upper half of second operand

Indeterminate

Upper half of calculation result

 Subroutine name: FSUB

 Interrupt during execution: Accepted

 ROM capacity: 8 bytes

 Number of stacks used: 21 bytes

R0

R3

A0

A1

Destroyed during processing

Unused

Unused

This program subtracts floating-point numbers.

The first operand (R2R0) and second operand (R3R1) are subtracted and the result is stored in (R2R0).

Calculation result (R2R0) = first operand (R2R0) – second operand (R3R1)

3.3 Subtraction
3.3.1 Outline

Lower half of first operand

Lower half of second operandR1

Register/memory

R2

181

3
3.3 Subtraction

Program Collection of Mathematic/Trigonometric Functions

Procedure:

(1) Store the first operand (normalized single-precision, floating-point number) in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

(2) Store the second operand (normalized single-precision, floating-point number) in R3 and R1.

R3 = sign, exponent, upper part of mantissa

R1 = mid and lower parts of mantissa

(3) Call the subroutine (FSUB).

Calculation result:

The calculation result is placed in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

If the operation resulted in an error, one of the following values is returned.

3.3.2 Explanation

First or second operand whichever larger (not changed) Exponent underflow

Maximum value of normalized number *

Minimum value of normalized number *

Non-numeral *

Absolute 0 * When calculation result = 0

Faulty data

Underflow

Overflow

MeaningContents of R2 and R0

* Refer to Section 3.1.5.

182

3
3.4 Multiplication

Program Collection of Mathematic/Trigonometric Functions

Usage precautions

 Input Output Remarks

Since the contents of R3 and R1 are destroyed as a result of program execution, save the registers

before calling the subroutine as necessary.

Supplementary explanation

A x B = C A: First operand; B: Second operand; C: Calculation result

 Subroutine name: FMUL

 Interrupt during execution: Accepted

 ROM capacity: 193 bytes

 Number of stacks used: 19 bytes

This program multiplies floating-point numbers.

The first operand (R2R0) and second operand (R3R1) are multiplied and the result is stored in (R2R0).

Calculation result (R2R0) = first operand (R2R0) x second operand (R3R1)

3.4 Multiplication
3.4.1 Outline

Register/memory

Destroyed during processing

Sign, exponent, upper part of mantissa

Indeterminate

Lower half of calculation result Mid and lower parts of mantissa

Upper half of first operand

Upper half of second operand

Indeterminate

Upper half of calculation result

R0

R3

A0

A1

Destroyed during processing

Unused

Unused

Lower half of first operand

Lower half of second operandR1

R2

183

3
3.4 Multiplication

Program Collection of Mathematic/Trigonometric Functions

Procedure:

(1) Store the first operand (normalized single-precision, floating-point number) in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

(2) Store the second operand (normalized single-precision, floating-point number) in R3 and R1.

R3 = sign, exponent, upper part of mantissa

R1 = mid and lower parts of mantissa

(3) Call the subroutine (FMUL).

Calculation result:

The calculation result is placed in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

If the operation resulted in an error, one of the following values is returned.

3.4.2 Explanation

Contents of R2 and R0

Minimum value of normalized number *

Non-numeral *

Absolute 0 * When calculation result = 0

Faulty data

Underflow

Overflow

Meaning

Maximum value of normalized number *

* Refer to Section 3.1.5.

184

3
3.5 Division

Program Collection of Mathematic/Trigonometric Functions

Since the contents of R3 and R1 are destroyed as a result of program execution, save the registers

before calling the subroutine as necessary.

Supplementary explanation

A ‚ B = C A: First operand; B: Second operand; C: Calculation result

 Subroutine name: FDIV

 Interrupt during execution: Accepted

 ROM capacity: 241 bytes

 Number of stacks used: 18 bytes

This program divides floating-point numbers.

The first operand (R2R0) and second operand (R3R1) are multiplied and the result is stored in (R2R0).

Calculation result (R2R0) = first operand (R2R0) ‚ second operand (R3R1)

3.5 Division
3.5.1 Outline

Usage precautions

 Input Output Remarks

Destroyed during processing

Sign, exponent, upper part of mantissa

Indeterminate

Lower half of calculation result Mid and lower parts of mantissa

Upper half of first operand

Upper half of second operand

Indeterminate

Upper half of calculation result

R0

R3

A0

A1

Destroyed during processing

Unused

Unused

Lower half of first operand

Lower half of second operandR1

Register/memory

R2

185

3
3.5 Division

Program Collection of Mathematic/Trigonometric Functions

Procedure:

(1) Store the first operand (normalized single-precision, floating-point number) in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

(2) Store the second operand (normalized single-precision, floating-point number) in R3 and R1.

R3 = sign, exponent, upper part of mantissa

R1 = mid and lower parts of mantissa

(3) Call the subroutine (FDIV).

Calculation result:

The calculation result is placed in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

If the operation resulted in an error, one of the following values is returned.

3.5.2 Explanation

Maximum value of normalized number *

Minimum value of normalized number * Underflow

Overflow

MeaningContents of R2 and R0

First or second operand whichever larger (not changed) Exponent underflow

Non-numeral *

Absolute 0 *

Faulty data

* Refer to Section 3.1.5.

When calculation result = 0

 Infinite * Division by zero

186

3
3.6 Sine Function

Program Collection of Mathematic/Trigonometric Functions

Usage precautions

Input Output Remarks

Since the contents of R3, R1 and A0 are destroyed as a result of program execution, save the

registers before calling the subroutine as necessary.

Supplementary explanation

C = SIN(A) A: Operand; C: Calculation result

Destroyed during processing

Sign, exponent, upper part of mantissa

Indeterminate

Lower half of calculation result Mid and lower parts of mantissa

Upper half of operand

Indeterminate

Upper half of calculation result

 Subroutine name: FSIN

 Interrupt during execution: Accepted

 ROM capacity: 185 bytes

 Number of stacks used: 34 bytes

R0

R3

A0

A1

Destroyed during processing

Destroyed during processing

Status of calculation result

This program finds a sine of the operand (R2R0) comprised of a single-precision, floating-point number

and stores the result in (R2R0).

(R2R0) = SIN(R2R0)

The unit is radian.

Make sure the operand is smaller than 2p.

3.6 Sine Function
3.6.1 Outline

Lower half of operand

R1

Register/memory

R2

C flag 0: Normal; 1: Erroneous

Indeterminate

Unused

187

3
3.6 Sine Function

Program Collection of Mathematic/Trigonometric Functions

Procedure:

(1) Store the operand (normalized single-precision, floating-point number) in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

(2) Call the subroutine (FSIN).

Calculation result:

The calculation result is placed in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

If the operation resulted in an error, one of the following values is returned.

3.6.2 Explanation

The status of the calculation result is set in the C flag.

Contents of R2 and R0

Maximum value of normalized number * Overflow

Meaning

Meaning

Operation completed normally

1

0

 Content of C flag

Operation resulted in error

* Refer to Section 3.1.5.

188

3
3.7 Cosine Function

Program Collection of Mathematic/Trigonometric Functions

This program finds a cosine of the operand (R2R0) comprised of a single-precision, floating-point num-

ber and stores the result in (R2R0).

(R2R0) = COS(R2R0)

The unit is radian.

Make sure the operand is smaller than 2p.

3.7 Cosine Function
3.7.1 Outline

Usage precautions

Input Output Remarks

Since the contents of R3, R1, and A0 are destroyed as a result of program execution, save the

registers before calling the subroutine as necessary.

Supplementary explanation

C = COS(A) A: Operand; C: Calculation result

Destroyed during processing

Sign, exponent, upper part of mantissa

Indeterminate

Lower half of calculation result Mid and lower parts of mantissa

Upper half of operand

Indeterminate

Upper half of calculation result

 Subroutine name: FCOS

 Interrupt during execution: Accepted

 ROM capacity: 28 bytes

 Number of stacks used: 34 bytes

R0

R3

A0

A1

Destroyed during processing

Destroyed during processing

Status of calculation result

Lower half of operand

R1

Register/memory

R2

C flag 0: Normal; 1: Erroneous

Indeterminate

Unused

189

3
3.7 Cosine Function

Program Collection of Mathematic/Trigonometric Functions

Procedure:

(1) Store the operand (normalized single-precision, floating-point number) in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

(2) Call the subroutine (FCOS).

Calculation result:

The calculation result is placed in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

If the operation resulted in an error, one of the following values is returned.

3.7.2 Explanation

The status of the calculation result is set in the C flag.

Contents of R2 and R0

Maximum value of normalized number * Overflow

Meaning

Meaning

Operation completed normally

1

0

 Content of C flag

Operation resulted in error

* Refer to Section 3.1.5.

190

3
3.8 Tangent Function

Program Collection of Mathematic/Trigonometric Functions

This program finds a tangent of the operand (R2R0) comprised of a single-precision, floating-point num-

ber and stores the result in (R2R0).

(R2R0) = TAN(R2R0)

The unit is radian.

Make sure the operand is smaller than 2p.

3.8 Tangent Function
3.8.1 Outline

Usage precautions

Input Output Remarks

Since the contents of R3, R1, and A0 are destroyed as a result of program execution, save the

registers before calling the subroutine as necessary.

Supplementary explanation

C = TAN(A) A: Operand; C: Calculation result

Destroyed during processing

Sign, exponent, upper part of mantissa

Indeterminate

Lower half of calculation result Mid and lower parts of mantissa

Upper half of operand

Indeterminate

Upper half of calculation result

 Subroutine name: FTAN

 Interrupt during execution: Accepted

 ROM capacity: 44 bytes

 Number of stacks used: 41 bytes

R0

R3

A0

A1

Destroyed during processing

Destroyed during processing

Status of calculation result

Lower half of operand

R1

Register/memory

R2

C flag 0: Normal; 1: Erroneous

Indeterminate

Unused

191

3
3.8 Tangent Function

Program Collection of Mathematic/Trigonometric Functions

3.8.2 Explanation
Procedure:

(1) Store the operand (normalized single-precision, floating-point number) in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

(2) Call the subroutine (FTAN).

Calculation result:

The calculation result is placed in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

If the operation resulted in an error, one of the following values is returned.

The status of the calculation result is set in the C flag.

Contents of R2 and R0

Maximum value of normalized number * Overflow

Meaning

Meaning

Operation completed normally

1

0

 Content of C flag

Operation resulted in error

* Refer to Section 3.1.5.

192

3
3.9 Inverse Sine Function

Program Collection of Mathematic/Trigonometric Functions

This program finds an inverse sine of the operand (R2R0) comprised of a single-precision, floating-point

number and stores the result in (R2R0).

(R2R0) = SIN–1(R2R0)

The unit is radian.

Make sure the operand is smaller than 2p.

3.9 Inverse Sine Function
3.9.1 Outline

Usage precautions

Input Output Remarks

Since the contents of R3, R1, and A0 are destroyed as a result of program execution, save the

registers before calling the subroutine as necessary.

Supplementary explanation

C = SIN–1(A) A: Operand; C: Calculation result

Destroyed during processing

Sign, exponent, upper part of mantissa

Indeterminate

Lower half of calculation result Mid and lower parts of mantissa

Upper half of operand

Indeterminate

Upper half of calculation result

 Subroutine name: FASN

 Interrupt during execution: Accepted

 ROM capacity: 124 bytes

 Number of stacks used: 60 bytes

R0

R3

A0

A1

Destroyed during processing

Destroyed during processing

Status of calculation result

Lower half of operand

R1

Register/memory

R2

C flag 0: Normal; 1: Erroneous

Indeterminate

Unused

193

3
3.9 Inverse Sine Function

Program Collection of Mathematic/Trigonometric Functions

Procedure:

(1) Store the operand (normalized single-precision, floating-point number) in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

(2) Call the subroutine (FASN).

Calculation result:

The calculation result is placed in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

If the operation resulted in an error, one of the following values is returned.

3.9.2 Explanation

Contents of R2 and R0

Maximum value of normalized number * Overflow

Meaning

Non-numeral * Argument error

* Refer to Section 3.1.5.

The status of the calculation result is set in the C flag.

Meaning

Operation completed normally

1

0

 Content of C flag

Operation resulted in error

194

3
3.10 Inverse Cosine Function

Program Collection of Mathematic/Trigonometric Functions

This program finds an inverse cosine of the operand (R2R0) consisting of a single-precision, floating-

point number and stores the result in (R2R0).

(R2R0) = COS–1(R2R0)

The unit is radian.

Make sure the operand is smaller than 2p.

3.10 Inverse Cosine Function
3.10.1 Outline

Usage precautions

Input Output Remarks

Since the contents of R3, R1, and A0 are destroyed as a result of program execution, save the

registers before calling the subroutine as necessary.

Supplementary explanation

C = COS–1(A) A: Operand; C: Calculation result

Destroyed during processing

Sign, exponent, upper part of mantissa

Indeterminate

Lower half of calculation result Mid and lower parts of mantissa

Upper half of operand

Indeterminate

Upper half of calculation result

 Subroutine name: FACN

 Interrupt during execution: Accepted

 ROM capacity: 150 bytes

 Number of stacks used: 60 bytes

R0

R3

A0

A1

Destroyed during processing

Destroyed during processing

Status of calculation result

Lower half of operand

R1

Register/memory

R2

C flag 0: Normal; 1: Erroneous

Indeterminate

Unused

195

3
3.10 Inverse Cosine Function

Program Collection of Mathematic/Trigonometric Functions

Procedure:

(1) Store the operand (normalized single-precision, floating-point number) in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

(2) Call the subroutine (FACN).

Calculation result:

The calculation result is placed in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

If the operation resulted in an error, one of the following values is returned.

3.10.2 Explanation

Contents of R2 and R0

Maximum value of normalized number * Overflow

Meaning

Non-numeral * Argument error

* Refer to Section 3.1.5.

The status of the calculation result is set in the C flag.

Meaning

Operation completed normally

1

0

 Content of C flag

Operation resulted in error

196

3
3.11 Inverse Tangent Function

Program Collection of Mathematic/Trigonometric Functions

This program finds an inverse tangent of the operand (R2R0) consisting of a single-precision, floating-

point number and stores the result in (R2R0).

(R2R0) = TAN–1(R2R0)

The unit is radian.

Make sure the operand is smaller than 2p.

3.11 Inverse Tangent Function
3.11.1 Outline

Usage precautions

Input Output Remarks

Since the contents of R3, R1, and A0 are destroyed as a result of program execution, save the

registers before calling the subroutine as necessary.

Supplementary explanation

C = TAN–1(A) A: Operand; C: Calculation result

Destroyed during processing

Sign, exponent, upper part of mantissa

Indeterminate

Lower half of calculation result Mid and lower parts of mantissa

Upper half of operand

Indeterminate

Upper half of calculation result

 Subroutine name: FATN

 Interrupt during execution: Accepted

 ROM capacity: 152 bytes

 Number of stacks used: 34 bytes

R0

R3

A0

A1

Destroyed during processing

Destroyed during processing

Status of calculation result

Lower half of operand

R1

Register/memory

R2

C flag 0: Normal; 1: Erroneous

Indeterminate

Unused

197

3
3.11 Inverse Tangent Function

Program Collection of Mathematic/Trigonometric Functions

Procedure:

(1) Store the operand (normalized single-precision, floating-point number) in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

(2) Call the subroutine (FATN).

Calculation result:

The calculation result is placed in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

If the operation resulted in an error, one of the following values is returned.

3.11.2 Explanation

Contents of R2 and R0

Maximum value of normalized number * Overflow

Meaning

* Refer to Section 3.1.5.

The status of the calculation result is set in the C flag.

Meaning

Operation completed normally

1

0

 Content of C flag

Operation resulted in error

198

3
3.12 Square Root

Program Collection of Mathematic/Trigonometric Functions

This program finds a square root of the operand (R2R0) consisting of a single-precision, floating-point

number and stores the result in (R2R0).

(R2R0) = (R2R0)

3.12 Square Root
3.12.1 Outline

Usage precautions

Input Output Remarks

Since the contents of R3, R1, and A0 are destroyed as a result of program execution, save the

registers before calling the subroutine as necessary.

Supplementary explanation

C = A A: Operand; C: Calculation result

Destroyed during processing

Sign, exponent, upper part of mantissa

Indeterminate

Lower half of calculation result Mid and lower parts of mantissa

Upper half of operand

Indeterminate

Upper half of calculation result

 Subroutine name: FSQR

 Interrupt during execution: Accepted

 ROM capacity: 10 bytes

 Number of stacks used: 53 bytes

R0

R3

A0

A1

Destroyed during processing

Destroyed during processing

Status of calculation result

Lower half of operand

R1

Register/memory

R2

C flag 0: Normal; 1: Erroneous

Indeterminate

Unused

199

3
3.12 Square Root

Program Collection of Mathematic/Trigonometric Functions

Procedure:

(1) Store the operand (normalized single-precision, floating-point number) in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

(2) Call the subroutine (FSQR).

Calculation result:

The calculation result is placed in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

If the operation resulted in an error, one of the following values is returned.

3.12.2 Explanation

* Refer to Section 3.1.5.

The status of the calculation result is set in the C flag.

Meaning

Operation completed normally

1

0

 Content of C flag

Operation resulted in error

Contents of R2 and R0

Non-numeral * Calculation error

Meaning

Maximum value of normalized number * Overflow

200

3
3.13 Power

Program Collection of Mathematic/Trigonometric Functions

3.13 Power
3.13.1 Outline

This program finds a product of the operand (R2R0) consisting of a single-precision, floating-point num-

ber raised to the power of exponent data (R3R1) and stores the result in (R2R0).

(R2R0) = (R2R0)(R3R1)

Usage precautions

Input Output Remarks

Since the contents of R3, R1, and A0 are destroyed as a result of program execution, save the

registers before calling the subroutine as necessary.

Supplementary explanation

C = AB A: Operand; B: Exponent data; C: Calculation result

Destroyed during processing

Sign, exponent, upper part of mantissa

Indeterminate

Lower half of calculation result Mid and lower parts of mantissa

Upper half of operand

Indeterminate

Upper half of calculation result

 Subroutine name: FPOW

 Interrupt during execution: Accepted

 ROM capacity: 176 bytes

 Number of stacks used: 50 bytes

R0

R3

A0

A1

Destroyed during processing

Destroyed during processing

Status of calculation result

Lower half of operand

R1

Register/memory

R2

C flag 0: Normal; 1: Erroneous

Indeterminate

Unused

201

3
3.13 Power

Program Collection of Mathematic/Trigonometric Functions

Procedure:

(1) Store the operand (normalized single-precision, floating-point number) in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

(2) Store the exponent data (normalized single-precision, floating-point number) in R3 and R1.

R3 = sign, exponent, upper part of mantissa

R1 = mid and lower parts of mantissa

(3) Call the subroutine (FPOW).

Calculation result:

The calculation result is placed in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

If the operation resulted in an error, one of the following values is returned.

3.13.2 Explanation

Contents of R2 and R0

Non-numeral * Calculation error

Meaning

Maximum value of normalized number * Overflow

* Refer to Section 3.1.5.

The status of the calculation result is set in the C flag.

Meaning

Operation completed normally

1

0

 Content of C flag

Operation resulted in error

202

3
3.14 Exponential Function

Program Collection of Mathematic/Trigonometric Functions

3.14 Exponential Function
3.14.1 Outline

This program finds an exponential function of the operand (R2R0) consisting of a single-precision, float-

ing- point number and stores the result in (R2R0).

(R2R0) = e(R2R0)

Usage precautions

Input Output Remarks

Since the contents of R3, R1, and A0 are destroyed as a result of program execution, save the

registers before calling the subroutine as necessary.

Supplementary explanation

C = eA A: Operand; C: Calculation result

Destroyed during processing

Sign, exponent, upper part of mantissa

Indeterminate

Lower half of calculation result Mid and lower parts of mantissa

Upper half of operand

Indeterminate

Upper half of calculation result

 Subroutine name: FEXP

 Interrupt during execution: Accepted

 ROM capacity: 168 bytes

 Number of stacks used: 38 bytes

R0

R3

A0

A1

Destroyed during processing

Destroyed during processing

Status of calculation result

Lower half of operand

R1

Register/memory

R2

C flag 0: Normal; 1: Erroneous

Indeterminate

Unused

203

3
3.14 Exponential Function

Program Collection of Mathematic/Trigonometric Functions

Procedure:

(1) Store the operand (normalized single-precision, floating-point number) in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

(2) Call the subroutine (FEXP).

Calculation result:

The calculation result is placed in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

If the operation resulted in an error, one of the following values is returned.

3.14.2 Explanation

Contents of R2 and R0

 Overflow or argument exceeds

 the range of -87.3 to 87.3

 including both ends

Meaning

Maximum value of normalized number *

* Refer to Section 3.1.5.

The status of the calculation result is set in the C flag.

Meaning

Operation completed normally

1

0

 Content of C flag

Operation resulted in error

204

3
3.15 Natural Logarithmic Function

Program Collection of Mathematic/Trigonometric Functions

3.15 Natural Logarithmic Function
3.15.1 Outline

This program finds a natural logarithmic function of the operand (R2R0) consisting of a single-precision,

floating-point number and stores the result in (R2R0).

(R2R0) = LN(R2R0)

Usage precautions

Input Output Remarks

Since the contents of R3, R1, and A0 are destroyed as a result of program execution, save the

registers before calling the subroutine as necessary.

Supplementary explanation

C = LN(A) A: Operand; C: Calculation result

Destroyed during processing

Sign, exponent, upper part of mantissa

Indeterminate

Lower half of calculation result Mid and lower parts of mantissa

Upper half of operand

Indeterminate

Upper half of calculation result

 Subroutine name: FLN

 Interrupt during execution: Accepted

 ROM capacity: 6 bytes

 Number of stacks used: 41 bytes

R0

R3

A0

A1

Destroyed during processing

Destroyed during processing

Status of calculation result

Lower half of operand

R1

Register/memory

R2

C flag 0: Normal; 1: Erroneous

Indeterminate

Unused

205

3
3.15 Natural Logarithmic Function

Program Collection of Mathematic/Trigonometric Functions

Procedure:

(1) Store the operand (normalized single-precision, floating-point number) in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

(2) Call the subroutine (FLN).

Calculation result:

The calculation result is placed in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

If the operation resulted in an error, one of the following values is returned.

3.15.2 Explanation

Contents of R2 and R0

Non-numeral * Calculation error

Meaning

No change Overflow

* Refer to Section 3.1.5.

The status of the calculation result is set in the C flag.

Meaning

Operation completed normally

1

0

 Content of C flag

Operation resulted in error

3
3.16 Common Logarithmic Function

Program Collection of Mathematic/Trigonometric Functions

206

3.16 Common Logarithmic Function
3.16.1 Outline

This program finds a common logarithmic function of the operand (R2R0) consisting of a single-preci-

sion, floating- point number and stores the result in (R2R0).

(R2R0) = LOG(R2R0)

Usage precautions

Input Output Remarks

Since the contents of R3, R1, and A0 are destroyed as a result of program execution, save the

registers before calling the subroutine as necessary.

Supplementary explanation

C = LOG(A) A: Operand; C: Calculation result

Destroyed during processing

Sign, exponent, upper part of mantissa

Indeterminate

Lower half of calculation result Mid and lower parts of mantissa

Upper half of operand

Indeterminate

Upper half of calculation result

 Subroutine name: FLOG

 Interrupt during execution: Accepted

 ROM capacity: 204 bytes

 Number of stacks used: 33 bytes

R0

R3

A0

A1

Destroyed during processing

Destroyed during processing

Status of calculation result

Lower half of operand

R1

Register/memory

R2

C flag 0: Normal; 1: Erroneous

Indeterminate

Unused

3
3.16 Common Logarithmic Function

Program Collection of Mathematic/Trigonometric Functions

207

Procedure:

(1) Store the operand (normalized single-precision, floating-point number) in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

(2) Call the subroutine (FLOG).

Calculation result:

The calculation result is placed in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

If the operation resulted in an error, one of the following values is returned.

3.16.2 Explanation

Contents of R2 and R0

Non-numeral * Calculation error

Meaning

No change Overflow

* Refer to Section 3.1.5.

The status of the calculation result is set in the C flag.

Meaning

Operation completed normally

1

0

 Content of C flag

Operation resulted in error

208

3
3.17 Data Comparison

Program Collection of Mathematic/Trigonometric Functions

Usage precautions

Input Output Remarks

Upper half of operand

Upper half of comparison data

=/ „ result

 Subroutine name: FCMP

 Interrupt during execution: Accepted

 ROM capacity: 35 bytes

 Number of stacks used: 32 bytes

R0

R3

A0

A1

Unused

Unused

Large/small result

1 : (R2R0) = (R3R1)

3.17 Data Comparison
3.17.1 Outline

Lower half of operand

Lower half of comparison dataR1

Register/memory

R2

C flag 1 : (R2R0) ‡ (R3R1)

This program compares the operand (R2R0) consisting of a single-precision, floating-point number with

comparison data (R3R1) and sets the result in flags.

Flag = operand (R2R0): comparison data (R3R1)

Z flag

Does not change

Does not change

Does not change

Does not change

209

3
3.17 Data Comparison

Program Collection of Mathematic/Trigonometric Functions

3.17.2 Explanation
Procedure:

(1) Store the operand (normalized single-precision, floating-point number) in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

(2) Store the comparison data (normalized single-precision, floating-point number) in R3 and R1.

R3 = sign, exponent, upper part of mantissa

R1 = mid and lower parts of mantissa

(3) Call the subroutine (FCMP).

Calculation result:

The comparison result is placed in flags.

1 (R2, R0) > (R3, R1)

(R2, R0) = (R3, R1)

C flag Z flag

1

0 0

1

0

(R2, R0) < (R3, R1)

Meaning

210

3
3.18 Conversion from FLOAT Type to WORD Type

Program Collection of Mathematic/Trigonometric Functions

Usage precautions

Input Output Remarks

Destroyed during processing

Integer

Upper half of FLOAT type

Result is zero

 Subroutine name: FTOI

 Interrupt during execution: Accepted

 ROM capacity: 98 bytes

 Number of stacks used: 1 bytes

R0

R3

A0

A1

Unused

Unused

Unused

Result overflowed or underflowed

1: Result is zero

1: Result is negative Result is negative

3.18 Conversion from FLOAT Type to WORD Type
3.18.1 Outline

Lower half of FLOAT type

R1

Register/memory

R2

C flag 1: Overflow or underflow

This program converts the content of the registers (R2R0) consisting of a single-precision, floating-point

number into an integer of the WORD (16-bit) type and stores the result in (R3R1).

Z flag

WORD type data

Since the content of R1 is destroyed as a result of program execution, save the register before

calling the subroutine as necessary.

S flag

Indeterminate

Does not change

211

3
3.18 Conversion from FLOAT Type to WORD Type

Program Collection of Mathematic/Trigonometric Functions

3.18.2 Explanation
Procedure:

(1) Store FLOAT data (normalized single-precision, floating-point number) in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

(2) Call the subroutine (FTOI).

Result:

The result is placed in R0. However, if the operation resulted in overflow or underflow, the content of R0

becomes as shown below.

Condition

Positive overflow

Underflow

Negative overflow

7FFF16

800016

Content of R0

The status of the result is set in flags.

1 Positive overflow

Negative overflow

0

Meaning

1

0

0

0

1

0

0

1

Result is zero

Result is positive

Result is negative

0

Underflow

Z flagC flag S flag

1

1

0

1

0

0

0

000016

212

3
3.19 Conversion from WORD Type to FLOAT Type

Program Collection of Mathematic/Trigonometric Functions

Usage precautions

Input Output Remarks

Destroyed during processing

Mid and lower parts of mantissa

 Subroutine name: ITOF

 Interrupt during execution: Accepted

 ROM capacity: 50 bytes

 Number of stacks used: 4 bytes

R0

R3

A0

A1

Destroyed during processing

Unused

Unused

1: Result is negative

3.19 Conversion from WORD Type to FLOAT Type
3.19.1 Outline

R1

Register/memory

R2

1: Result is zero

This program converts the content of a WORD (16-bit) type integer (R0) into a normalized single-preci-

sion, floating-point number and stores the result in (R2R0).

Since the contents of R1 and R3 are destroyed as a result of program execution, save the registers

before calling the subroutine as necessary.

Lower half of FLOAT typeWORD type data

Z flag

S flag

Result is zero

Result is negative

Indeterminate

Indeterminate

Sign, exponent, and upper part of mantissaUpper half of FLOAT type

213

3
3.19 Conversion from WORD Type to FLOAT Type

Program Collection of Mathematic/Trigonometric Functions

3.19.2 Explanation
Procedure:

(1) Store a WORD type integer in R0.

(2) Call the subroutine (ITOF).

Result:

The result is placed in R2 and R0.

R2 = sign, exponent, upper part of mantissa

R0 = mid and lower parts of mantissa

The status of the result is set in flags.

1 When result is 0

When result is positive

Meaning S flagZ flag

0

0

0

1 When result is negative

0

214

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

;***
; M16C Program Collection of Mathematic/Trigonometric Functions No. 1 *
; *
; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
;***

.GLB FADD
;

.GLB CHKDATA ; Checks non-numeral and infinity
;
VromTOP .EQU 0FE0000H ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
;
CALDAT .EQU –15 ; Calculation area (4 bytes)
SMALL .EQU –11 ; Compares magnitudes of first and second operand data
DEF .EQU –10 ; Difference between first and second operand data
SIGN .EQU –9 ; Sign of calculation result 0: plus; 1: minus
OPE .EQU –8 ; Second operand data (4 bytes)
CO_OPE .EQU –4 ; First operand data (4 bytes)
;
;==
; Title: Addition (single-precision, floating-point)
;
; Content of processing:
; This program adds first operand data (R2R0) and second operand data (R3R1) and
; stores the result in R2, R0.
; (R2R0) = (first operand data) + (second operand data)
;
; Procedure:
; (1) First operand data (normalized single-precision, floating-point number)
; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R2 and the mantissa (mid, lower) in register R0.
; (2) Second operand data (normalized single-precision, floating-point number)
; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R3 and the mantissa (mid, lower) in register R1.
; (3) Call the subroutine.
; (4) The calculation result is placed in R2, R0.
;
; Result:
; R2 (High) R2 (Low) R0H R0L
; › › › ›
; Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)
;
; If the operation resulted in an error, one of the following values is returned:
; –––
; Contents of R2, R0 Meaning
; –––
; Maximum value Overflow
; –––
; Minimum value Underflow
; –––
; Non-numeral Erroneous data
; –––
; Absolute 0 When result is 0
; –––
; First or second operand whichever larger (no change) Underflow in exponent
; –––

215

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

; Input: --->Output:
;
; R0 (Lower half of first operand data) R0 (Lower half of calculation result)
; R1 (Lower half of second operand data) R1 (Indeterminate)
; R2 (Upper half of first operand data) R2 (Upper half of calculation result)
; R3 (Upper half of second operand data) R3 (Indeterminate)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
;
; Stack amount used: 18 bytes
;==

.SECTION PROGRAM,CODE

.ORG VromTOP

.FB FBcnst ; Assumes FB register value
FADD:

ENTER #15 ; Allocates internal variables
MOV.L R2R0,CO_OPE[FB] ; Saves first operand data in variables
MOV.L R3R1,OPE[FB] ; Saves second operand data in variables

;
JSR CHKDATA ; Checks first operand data for non-numeral and infinity

;
MOV.L OPE[FB],R2R0 ; Sets second operand data
JSR CHKDATA ; Checks second operand data for non-numeral and infinity

;
JSR CHKZERO ; Checks for absolute 0
JSR CMPEXP ; Compares exponent parts

;
MOV.W CO_OPE+2[FB],R0 ; Checks signs of first and second operand data
XOR.W OPE+2[FB],R0 ; Signs are same?
JN FADDNS ; --> Signs are different
JMP FADDSAME ; --> Signs are same

;
;---
; Processing when signs are different
;---
FADDNS:

CMP.B #24,DEF[FB] ; Exponent parts differ more than 24?
JGEU UNDERSET ; --> Yes (goes to set exponent part underflow information)

;
CMP.B #0,DEF[FB] ; No difference in exponent parts?
JNE FADDNS10 ; --> no

;
; No difference in exponent parts (mantissa parts are compared)
;

MOV.B CO_OPE+2[FB],R0H
AND.B #7FH,R0H
MOV.B OPE+2[FB],R0L
AND.B #7FH,R0L
CMP.B R0H,R0L ; Compares mantissa (upper) parts
JLTU FADDNSOP ; --> Second operand data is larger
JGTU FADDNSCO ; --> First operand data is larger
MOV.W CO_OPE[FB],R0
CMP.W R0,OPE[FB] ; Compares mantissa (mid, lower) parts
JLTU FADDNSOP ; --> Second operand data is larger
JMP FADDNSCO ; --> First operand data is larger

;

216

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

FADDNS10:
CMP.B #0,SMALL[FB]
JEQ FADDNSOP ; --> Exponent part of first operand data is larger

;
; Aligning digits of first operand data
FADDNSCO:

BTST 7,OPE+3[FB] ; Checks sign of second operand data
STZX.B #0,#1,SIGN[FB] ; Sets sign of calculation result
JSR CO_OPESHF ; Aligns digits of first operand data
JMP SUBCAL ; Subtraction

;
; Aligning digits of second operand data
FADDNSOP:

BTST 7,CO_OPE+3[FB] ; Checks sign of first operand data
STZX.B #0,#1,SIGN[FB] ; Sets sign of calculation result
JSR OPESHF ; Aligns digits of second operand data

;
;--
; (R1R0) – CALDAT
;--
SUBCAL:

SUB.W CALDAT[FB],R0 ; Subtracts mantissa (mid, lower) parts together
SBB.B CALDAT+2[FB],R1L ; Subtracts mantissa parts together including borrow
JC FADDNOR ; --> No underflow in mantissa (goes to normalization processing)

;
; Setting underflow information (minimum value)

MOV.W #0000H,R0 ; Sets minimum value in mantissa (mid, lower) part
MOV.W #0100H,R2 ; Sets minimum value in exponent part and mantissa part (upper)
SHL.B #-1,SIGN[FB] ; Places sign in C flag
RORC.W R2 ; Sets sign
EXITD

;
; Normalization processing
FADDNOR:

BTST 7,R1L
JNE CALSET ; --> Normalization completed

;
SHL.W #1,R0 ; Normalizes mantissa (mid, lower) part
ROLC.B R1L ; Normalizes mantissa (upper) part
SUB.B #1,R1H ; Normalizes exponent part
JMP FADDNOR ; --> Continues normalization processing

;
;--
; Processing when signs are same
;--
FADDSAME:

CMP.B #24,DEF[FB] ; Exponent parts differ more than 24?
JLTU FADDSA10 ; --> Difference in exponent parts is 23 or less

;
;Setting exponent part underflow information (no change)
UNDERSET:

CMP.B #0,SMALL[FB] ; Which data, first or second operand, is returned “not changed”?
JEQ FADDSACO ; --> First operand data is returned “not changed”

; Second operand data is returned “not changed”
MOV.L OPE[FB],R2R0 ; Sets “no change” for second operand data
EXITD

217

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

FADDSACO:
MOV.L CO_OPE[FB],R2R0 ; Sets “no change” for first operand data
EXITD

;
FADDSA10:

BTST 7,CO_OPE+3[FB] ; Checks sign of first operand data
STZX.B #0,#1,SIGN[FB] ; Sets sign of calculation result
TST.B #0FFH,SMALL[FB]
JEQ FADDSA100 ; --> Exponent part of first operand data is larger

;
; Aligning digits of first operand data
;

JSR CO_OPESHF ; Aligns digits of first operand data
JMP ADDCAL ; Addition

;
; Aligning digits of second operand data
;
FADDSA100:

JSR OPESHF ; Aligns digits of second operand data

;--
; (R1R0) + CALDAT
;--
ADDCAL:

ADD.W CALDAT[FB],R0 ; Adds mantissa (mid, lower) parts together
ADC.B CALDAT+2[FB],R1L ; Adds mantissa (upper) parts together including carry
JNC CALSET ; --> No overflow in mantissa part (goes to set

; calculation result)
;
;Overflow check
;

ADD.B #1,R1H ; Exponent + 1
CMP.B #0FFH,R1H ; Overflow?
JGEU OVERSET ; --> Overflow (goes to set overflow information)

;
; Aligning digits
;

FSET C ; Sets overflow bit of mantissa
RORC.B R1L ; Borrows 1 from LSB in mantissa (upper) part
RORC.W R0 ; Borrows 1 from LSB in mantissa (mid, lower) part

;
;Setting calculation result
;
CALSET:

SHL.B #1,R1L ; Discards economized form bit
SHL.B #-1,SIGN[FB] ; Places sign in C flag
RORC.W R1 ; Sets sign
MOV.W R1,R2 ; Sets sign, exponent part, and mantissa (upper) part in R2
EXITD

;
; Setting overflow information (maximum value)
;
OVERSET:

MOV.W #0FFFFH,R0 ; Sets maximum value in mantissa (mid, lower) part
MOV.W CO_OPE+2[FB],R2 ; Reads exponent part and mantissa (upper) part
AND.W #8000H,R2 ; Clears exponent part and mantissa (upper) part
OR.W #7F7FH,R2 ; Sets maximum value in exponent and mantissa (upper) parts

; (without changing sign)
EXITD

;

218

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;///
; Absolute 0 Check Subroutine
;
; Function:
; When the operation results is zero, this subroutine sets absolute 0 in R2 and R0 before
; returning to the previous program location (from which FADD was called). If the result is
; other than the above, the subroutine returns to the program location from which it was called.
;///
CHKZERO:

MOV.W CO_OPE+2[FB],R0 ; Reads exponent and mantissa (upper) parts of first operand data
OR.W OPE+2[FB],R0 ; Checks exponent parts of first and second operand data
AND.W #7F80H,R0 ; Exponent parts of both are 0?
JEQ ZEROSET ; --> Sets absolute 0

;
MOV.W CO_OPE+2[FB],R0 ; Reads exponent and mantissa (upper) parts of first operand data
AND.W #7F80H,R0 ; Exponent part is 0?
JEQ OPE_ANS ; --> Returns second operand data as answer

;
MOV.W OPE+2[FB],R0 ; Reads exponent and mantissa (upper) parts of second operand data
AND.W #7F80H,R0 ; Exponent part is 0?
JEQ CO_OPE_ANS ; --> Returns first operand data as answer

;
CMP.W OPE[FB],CO_OPE[FB] ; Compares mantissa parts (mid, lower) of first and second operand data
JNE CKZRET ; --> Contents are different (not 0)
MOV.W CO_OPE+2[FB],R0 ; Reads exponent and mantissa (upper) parts of first operand data
XOR.W #8000H,R0 ; Inverts sign (to make it matched to sign of second operand data)
CMP.W OPE+2[FB],R0 ; Compares exponent and mantissa (upper) parts
JEQ ZEROSET ; --> Contents are same (goes to set absolute 0)

CKZRET:
RTS ; Returns to the program location from which FADD was called

;
;Setting second operand data
;
OPE_ANS:

MOV.L OPE[FB],R2R0 ; Sets “no change” for second operand data
JMP ZERO_EXIT

;
;Setting first operand data
;
CO_OPE_ANS:

MOV.W CO_OPE[FB],R2R0 ; Sets “no change” for first operand data
JMP ZERO_EXIT

;
;Setting absolute 0
;
ZEROSET:

MOV.W #0000H,R0 ; Sets absolute 0 in mantissa (mid, upper) part
MOV.W #0000H,R2 ; Sets absolute 0 in exponent and mantissa (upper) parts

ZERO_EXIT:
STC SP,R3R1 ; Reads stack
ADD.L #4,R3R1 ; Stack + 4 (for 2 returns)
LDC R3R1,SP ; Sets stack back again
EXITD

;

219

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;//
; Exponent Part Comparing Subroutine
;
; Function:
; This subroutine subtracts the exponent part of the second operand data from that of
; the first operand data and returns the result indicating which operand data is larger.
; When SMALL [FB] = 0, the exponent part of the first operand data is larger
; When SMALL [FB] = 1, the exponent part of the second operand data is larger
; Furthermore, the subroutine returns the difference. The difference is returned by DEF [FB].
;//
CMPEXP:

MOV.W OPE+2[FB],R0 ; Loads exponent part of second operand data into DEF
SHL.W #1,R0
MOV.B R0H,DEF[FB]

;
MOV.W CO_OPE+2[FB],R0 ; Reads exponent part of first operand data
SHL.W #1,R0

;
SUB.B DEF[FB],R0H ; Subtracts exponent part of second operand data

; from that of first operand data
JPZ CMPPLUS ; --> Exponent part of first operand data ‡ exponent

; part of second operand data
;
; Exponent of first operand data £ exponent of second operand data

MOV.B #1,SMALL[FB] ; Sets information that second operand data is larger
XOR.B #0FFH,R0H ; Changes difference in exponent parts to positive

; number (2’s complement)
INC.B R0H
MOV.B R0H,DEF[FB] ; Sets difference in exponent parts
RTS

;
CMPPLUS:

MOV.B #0,SMALL[FB] ; Sets information that first operand data is larger
MOV.B R0H,DEF[FB] ; Sets difference in exponent parts
RTS

;
;//
; Second Operand Data Digit Adjusting Subroutine
;
; Function:
; This subroutine adds a economized form bit to the second operand data,
; loads the sum into CALDAT to adjust digits, and returns the sum of the first
; operand data plus economized form bit placed in R0 and R1.
;//
OPESHF:
; Converting second operand data into calculation-purpose data and loading it into register

MOV.W OPE[FB],R0 ; Mantissa (mid, lower) part of second operand data --> R0
MOV.W OPE+2[FB],R1 ; Exponent part of second operand data --> R1H,

; Mantissa part (upper) --> R1L
SHL.W #1,R1 ; Discards sign and adjusts R1H to exponent part
FSET C ; Sets economized form bit
RORC.B R1L ; Sets mantissa (upper) part including economized

; form bit in R1L
; Digit adjust processing
OPESHT:

DEC.B DEF[FB] ; Difference in exponent part - 1
JN OPESHTSET ; Digit adjustment finished? --> Yes
ADD.B #1,R1H ; Exponent part + 1
SHL.B #-1,R1L ; Shifts mantissa (upper) part down
RORC.W R0 ; Shifts mantissa (mid, lower) part down
JMP OPESHT

220

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

; Loading digit-adjusted content into CALDAT
;
OPESHTSET:

MOV.W R0,CALDAT[FB] ; Loads mantissa (mid, lower) part
MOV.W R1,CALDAT+2[FB] ; Loads exponent and mantissa (upper) parts

;
; Converting first operand data into calculation-purpose data and loading it into register
;

MOV.W CO_OPE[FB],R0 ; Mantissa (mid, lower) part of first operand data --> R0
MOV.W CO_OPE+2[FB],R1 ; Exponent part of first operand data --> R1H,

; Mantissa (upper) part --> R1L
SHL.W #1,R1 ; Discards sign and adjusts R1H to exponent part
FSET C ; Sets economized form bit
RORC.B R1L ; Sets mantissa (upper) part including economized

; form bit in R1L
RTS

;
;//
; First Operand Data Digit Adjusting Subroutine
;
; Function:
; This subroutine adds a economized form bit to the first operand data, loads the
; sum into CALDAT to adjust digits, and returns the sum of the second operand data
; plus economized form bit placed in R0 and R1.
;//
CO_OPESHF:
;
; Converting first operand data into calculation-purpose data and loading it into register
;

MOV.W CO_OPE[FB],R0 ; Mantissa (mid, lower) part of first operand data --> R0
MOV.W CO_OPE+2[FB],R1 ; Exponent part of first operand data --> R1H,

; Mantissa (upper) part --> R1L
SHL.W #1,R1 ; Discards sign and adjusts R1H to exponent part
FSET C ; Sets economized form bit
RORC.B R1L ; Sets mantissa (upper) part including economized

; form bit in R1L
;
; Digit adjust processing
;
COSHT:

DEC.B DEF[FB] ; Difference in exponent part - 1
JN COSHTSET ; Digit adjustment finished? --> Yes
ADD.B #1,R1H ; Exponent part + 1
SHL.B #-1,R1L ; Shifts mantissa (upper) part down
RORC.W R0 ; Shifts mantissa (mid, lower) part down
JMP COSHT ;

;
; Loading digit-adjusted content into CALDAT
;
COSHTSET:

MOV.W R0,CALDAT[FB] ; Loads mantissa (mid, lower) part
MOV.W R1,CALDAT+2[FB] ; Loads exponent and mantissa (upper) parts

;
; Converting second operand data into calculation-purpose data and loading it into register

;
MOV.W OPE[FB],R0 ; Mantissa (mid, lower) part of second operand data --> R0
MOV.W OPE+2[FB],R1 ; Exponent part of second operand data --> R1H,

; Mantissa (upper) part --> R1L
SHL.W #1,R1 ; Discards sign and adjusts R1H to exponent part
FSET C ; Sets economized form bit
RORC.B R1L ; Sets mantissa (upper) part including economized

; form bit in R1L
RTS

;
.END

221

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;**
; M16C Program Collection of Mathematic/Trigonometric Functions No. 2 *
; *
; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
;**

.GLB FSUB
;

.GLB FADD
;
VromTOP .EQU 0FE0000H ; Declares start address of ROM
;==
; Title: Subtraction (single-precision, floating-point)
; Content of processing:
; This program subtracts first operand data (R2R0) and second operand data (R3R1)
; and stores the result in R2, R0.
; (R2R0) = (first operand data) – (second operand data)
; Procedure:
; (1) First operand data (normalized single-precision, floating-point number)
; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R2 and the mantissa (mid, lower) in register R0.
; (2) Second operand data (normalized single-precision, floating-point number)
; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R3 and the mantissa (mid, lower) in register R1.
; (3) Call the subroutine.
; (4) The calculation result is placed in R2, R0.
; Result:
; R2 (High) R2 (Low) R0H R0L
; › › › ›
; Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)
;
; If the operation resulted in an error, one of the following values is returned:
; –––
; Contents of R2, R0 Meaning
; –––
; Maximum value Overflow
; –––
; Minimum value Underflow
; –––
; Non-numera Erroneous data
; –––
; Absolute 0 When result is 0
; –––
; First or second operand whichever larger (no change) Underflow in exponent
; –––
;
; Input: --> Output:
;
; R0 (Lower half of first operand data) R0 (Lower half of calculation result)
; R1 (Lower half of second operand data) R1 (Indeterminate)
; R2 (Upper half of first operand data) R2 (Upper half of calculation result)
; R3 (Upper half of second operand data) R3 (Indeterminate)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
; Stack amount used: 21 bytes
;==

.SECTION PROGRAM,CODE

.ORG VromTOP
FSUB:

XOR.W #8000H,R3 ; Inverts sign of second operand data
JSR FADD ; Then, result is obtained by adding
RTS

;
.END

222

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;**
; M16C Program Collection of Mathematic/Trigonometric Functions No. 3 *
; *
; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
;**

.GLB FMUL
;

.GLB CHKDATA ; Checks non-numeral and infinity
;
VromTOP .EQU 0FE0000H ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
;
CALDAT .EQU –16 ; Calculation area (6 bytes)
EXP .EQU –10 ; Calculation result of exponent part
SIGN .EQU –9 ; Sign of calculation result 0: plus; 1: minus
OPE .EQU –8 ; Second operand data (4 bytes)
CO_OPE .EQU –4 ; First operand data (4 bytes)
;
;==
; Title: Multiplication (single-precision, floating-point)
; Content of processing:
; This program multiplies first operand data (R2R0) and second operand data (R3R1)
; and stores the result in R2, R0.
; (R2R0) = (first operand data) x (second operand data)
; Procedure:
; (1) First operand data (normalized single-precision, floating-point number)
; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R2 and the mantissa (mid, lower) in register R0.
; (2) Second operand data (normalized single-precision, floating-point number)
; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R3 and the mantissa (mid, lower) in register R1.
; (3) Call the subroutine.
; (4) The calculation result is placed in R2, R0.
; Result:
; R2 (High) R2 (Low) R0H R0L
; › › › ›
; Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)
;
; If the operation resulted in an error, one of the following values is returned:
; ––
; Contents of R2, R0 Meaning
; ––
; Maximum value Overflow
; ––
; Minimum value Underflow
; ––
; Non-numeral Erroneous data
; ––
; Absolute 0 When result is 0
; ––
; Input: --> Output:
; R0 (Lower half of first operand data) R0 (Lower half of calculation result)
; R1 (Lower half of second operand data) R1 (Indeterminate)
; R2 (Upper half of first operand data) R2 (Upper half of calculation result)
; R3 (Upper half of second operand data) R3 (Indeterminate)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
; Stack amount used: 19 bytes
;==

223

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

.SECTION PROGRAM,CODE

.ORG VromTOP

.FB FBcnst ; Assumes FB register value
FMUL:

ENTER #16 ; Allocates internal variables
MOV.L R2R0,CO_OPE[FB] ; Saves first operand data in variables
MOV.L R3R1,OPE[FB] ; Saves second operand data in variables

;
JSR CHKDATA ; Checks first operand data for non-numeral and infinity

;
MOV.L OPE[FB],R2R0 ; Sets second operand data
JSR CHKDATA ; Checks second operand data for non-numeral and infinity

;
MOV.W CO_OPE+2[FB],R0 ; Checks signs of first and second operand data
XOR.W OPE+2[FB],R0 ; Signs are same?
JN FMUL1 ; --> Signs are different

;
; Signs are same (signs are made positive)
;

MOV.B #0,SIGN[FB] ; Turns signs positive
JMP FMUL10

;
; Signs are different (signs are made negative)
;
FMUL1:

MOV.B #1,SIGN[FB] ; Turns signs negative
;
;--
; Absolute 0 check
;--
FMUL10:

MOV.W CO_OPE+2[FB],R0 ; Reads exponent part of first operand data
AND.W #7F80H,R0 ; Clears all but exponent part
JEQ FMULZERO ; --> Sets absolute 0
MOV.W OPE+2[FB],R0 ; Reads exponent part of second operand data
AND.W #7F80H,R0 ; Clears all but exponent part
JNZ FMUL20 ; --> Not absolute 0

;
; Setting absolute 0
;
FMULZERO:

MOV.L #0,R2R0 ; Sets absolute 0 in return value
SHL.B #-1,SIGN[FB] ; Loads sign into C flag
RORC.W R2 ; Sets sign
EXITD

;
;--
; Adding exponent part
;--
FMUL20:

MOV.W CO_OPE+2[FB],R0 ; Reads exponent part of first operand data
SHL.W #-7,R0 ; Adjusts exponent part to low-order bits
AND.W #00FFH,R0 ; Clears all but exponent part
MOV.W OPE+2[FB],R1 ; Reads exponent part of second operand data
SHL.W #-7,R1 ; Adjusts exponent part to low-order bits
AND.W #00FFH,R1 ; Clears all but exponent part

;

224

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

ADD.W R1,R0 ; Adds exponent part
SUB.W #7FH-1,R0 ; Subtracts 7F from addition result

; (in effect, subtracted by 7E to adjust digits)
;

JC FMUL30 ; --> Overflow check
;
; Setting underflow information (minimum value)
;

MOV.L #01000000H,R2R0 ; Sets minimum value in mantissa and
; LSB of exponent part

SHL.B #-1,SIGN[FB] ; Checks signs
RORC.W R2 ; Sets minimum value in exponent part and sign
EXITD

;
Overflow check
;
FMUL30:

CMP.W #00FFH,R0 ; Overflow?
JLTU FMUL40 ; --> No overflow

;
; Setting overflow information (maximum value)
;

MOV.W #0FFFFH,R0 ; Sets maximum value in mantissa (mid, lower) part
MOV.W #0FEFEH,R2 ; Sets maximum value in mantissa (upper) part and

; LSB of exponent part
SHL.B #-1,SIGN[FB] ; Checks signs
RORC.W R2 ; Sets maximum value in exponent part and sign
EXITD

;
;--
; Multiplication of mantissa part
;--
FMUL40:

MOV.B R0L,EXP[FB] ; Stores calculation result of exponent part
;

MOV.W CO_OPE+2[FB],R0 ; Reads mantissa (upper) part
AND.W #007FH,R0 ; Clears exponent part
BSET 7,R0L ; Sets economized form bit
MOV.W R0,CO_OPE+2[FB] ; Loads only mantissa (upper) part into first operand data

;
MOV.W OPE[FB],R0 ; Reads mantissa (mid, lower) part of second operand data
MULU.W CO_OPE[FB],R0 ; Multiplies mantissa (mid, lower) part
MOV.L R2R0,CALDAT[FB] ; Stores calculation result

MOV.W OPE[FB],R0 ; Reads mantissa (mid, lower) part of second operand data
MULU.W CO_OPE+2[FB],R0 ; Multiplies mantissa (mid, lower) and (upper) parts
ADD.W R0,CALDAT+2[FB] ; Adds and stores lower half of calculation result
ADCF.W R2 ; Adds upper half of calculation result
MOV.W R2,CALDAT+4[FB] ; Stores upper half of calculation result

;
MOV.W OPE+2[FB],R0 ; Reads mantissa (upper) part of second operand data
AND.W #007FH,R0 ; Clears exponent part and sign
BSET 7,R0L ; Sets economized form bit
MULU.W CO_OPE[FB],R0 ; Multiplies mantissa (upper) and (mid, lower) parts
ADD.L R2R0,CALDAT+2[FB] ; Adds and stores calculation result

;

225

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

MOV.W OPE+2[FB],R0 ; Reads mantissa (upper) part of second operand data
AND.W #007FH,R0 ; Clears exponent part and sign
BSET 7,R0L ; Sets economized form bit
MULU.W CO_OPE+2[FB],R0 ; Multiplies mantissa (upper) parts
ADD.W R0,CALDAT+4[FB] ; Adds and stores upper half of calculation result

;
;--
; Adjusting digits
;--

BTST 7,CALDAT+5[FB] ; Digit adjustment finished?
JNZ FMULSET ; --> Finished
SHL.W #1,CALDAT+2[FB] ; Adjusts digits of calculation data
ROLC.W CALDAT+4[FB]
DEC.B EXP[FB] ; Adjusts exponent (exponent part - 1)

;
; Setting calculation result in return value
;
FMULSET:

MOV.W CALDAT+3[FB],R0 ; Sets calculation result of mantissa (mid, lower) part
MOV.B EXP[FB],R1H ; Reads calculation result of exponent part
MOV.B CALDAT+5[FB],R1L ; Reads calculation result of mantissa (upper) part
SHL.B #1,R1L ; Discards economized form bit
SHL.B #-1,SIGN[FB] ; Loads sign into C flag
RORC.W R1 ; Sets sign
MOV.W R1,R2 ; Sets sign, exponent part, and mantissa (upper)

; calculation result
EXITD

;
.END

226

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;**
; M16C Program Collection of Mathematic/Trigonometric Functions No. 4 *
; *
; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
;**

.GLB FDIV
;

.GLB CHKDATA ; Checks non-numeral and infinity
;
VromTOP .EQU 0FE0000H ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
;
CALBUF .EQU –15 ; Calculation buffer
COUNT .EQU –11 ; Counter
EXP .EQU –10 ; Calculation result of exponent part
SIGN .EQU –9 ; Sign of calculation result 0: plus; 1: minus
OPE .EQU –8 ; Second operand data (4 bytes)
CO_OPE .EQU –4 ; First operand data (4 bytes)
;
;==
; Title: Division (single-precision, floating-point)
;
; Content of processing:
; This program divides first operand data (R2R0) and second operand data (R3R1) and
; stores the result in R2, R0.
; (R2R0) = (first operand data) ‚ (second operand data)
;
; Procedure:
; (1) First operand data (normalized single-precision, floating-point number)
; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R2 and the mantissa (mid, lower) in register R0.
; (2) Second operand data (normalized single-precision, floating-point number)
; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R3 and the mantissa (mid, lower) in register R1.
; (3) Call the subroutine.
; (4) The calculation result is placed in R2, R0.
;
; Result:
; R2 (High) R2 (Low) R0H R0L
; › › › ›
; Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)
;
; If the operation resulted in an error, one of the following values is returned:
; –––
; Contents of R2, R0 Meaning
; –––
; Maximum value Overflow
; –––
; Minimum value Underflow
; –––
; Infinite Zero division
; –––
; Non-numeral Erroneous data
; –––
; Absolute 0 When result is 0
; –––
; First or second operand whichever larger (no change) Underflow in exponent part
; –––

227

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

; Input: --> Output:
;
; R0 (Lower half of first operand data) R0 (Lower half of calculation result)
; R1 (Lower half of second operand data) R1 (Indeterminate)
; R2 (Upper half of first operand data) R2 (Upper half of calculation result)
; R3 (Upper half of second operand data) R3 (Indeterminate)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
;
; Stack amount used: 18 bytes
;==

.SECTION PROGRAM,CODE

.ORG VromTOP

.FB FBcnst ; Assumes FB register value
FDIV:

ENTER #15 ; Allocates internal variables
MOV.L R2R0,CO_OPE[FB] ; Saves first operand data in variables
MOV.L R3R1,OPE[FB] ; Saves second operand data in variables

;
JSR CHKDATA ; Checks first operand data for non-numeral and infinity

;
MOV.L OPE[FB],R2R0 ; Sets second operand data
JSR CHKDATA ; Checks second operand data for non-numeral and infinity

;
MOV.B CO_OPE+3[FB],R0H ; Checks signs of first and second operand data
XOR.B OPE+3[FB],R0H ; Signs are same?
JN FDIV1 ; --> Signs are different

;
; Signs are same (signs are made positive)
;

MOV.B #0,SIGN[FB] ; Turns signs positive
JMP FDIV10

;
; Signs are different (signs are made negative)
;
FDIV1:

MOV.B #1,SIGN[FB] ; Turns signs negative
;

228

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;--
; Zero division check
;--
FDIV10:

MOV.W OPE+2[FB],R0 ; Reads exponent and mantissa (upper) parts of
; second operand data

BCLR 7,R0H ; Clears sign
OR.W OPE[FB],R0 ; All bits in exponent and mantissa parts of second

; operand data are 0? (zero division?)
JNE FDIV20 ; --> No (not zero division)

;
; Setting zero division (infinite value)
;

MOV.W #0,R0 ; Sets infinite value in mantissa (mid, lower) part
MOV.W #0FF00H,R2 ; Sets infinite value in exponent and mantissa

; (upper) parts
SHL.B #-1,SIGN[FB] ; Loads sign into C flag
RORC.W R2 ; Sets sign
EXITD

;
;--
; Absolute 0 check
;--
FDIV20:

MOV.W CO_OPE+2[FB],R0 ; Reads exponent and mantissa (upper) parts of
; first operand data

BCLR 7,R0H ; Clears sign
OR.W CO_OPE[FB],R0 ; All bits in exponent and mantissa parts of first

; operand data are 0? (zero division?)
JNE FDIV30 ; --> No (not absolute 0)

;
; Setting absolute 0
;

MOV.L #0,R2R0 ; Sets absolute 0
SHL.B #-1,SIGN[FB] ; Loads sign into C flag
RORC.W R2 ; Sets sign
EXITD

;

229

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;--
; Checking first operand data = second operand data
;--
FDIV30:

MOV.W OPE[FB],R0
CMP.W CO_OPE[FB],R0 ; Mantissa (mid, lower) parts of first and second

; operand data are same?
JNE FDIV40 ; --> No
MOV.W OPE+2[FB],R0
BCLR 7,R0H ; Clears sign of second operand data
BCLR 7,CO_OPE+3[FB] ; Clears sign of first operand data
CMP.W CO_OPE+2[FB],R0 ; Exponent and mantissa (upper) parts of first and

; second operand data are same?
JNE FDIV40 ; --> No

;
; Setting calculation result 1
;

MOV.W #0,R0 ; Sets mantissa (mid, lower) part
MOV.W #7F00H,R2 ; Sets exponent and mantissa (upper) parts
SHL.B #-1,SIGN[FB] ; Loads sign into C flag
RORC.W R2 ; Sets sign
EXITD

;
;--
; Subtracting exponent parts
;--
FDIV40:

MOV.W CO_OPE+2[FB],R0 ; Reads exponent part of first operand data
SHL.W #-7,R0 ; Adjusts exponent part to low-order bits
AND.W #00FFH,R0 ; Clears all but exponent part
MOV.W OPE+2[FB],R1 ; Reads exponent part of second operand data
SHL.W #-7,R1 ; Adjusts exponent part to low-order bits
AND.W #00FFH,R1 ; Clears all but exponent part
SUB.W R1,R0 ; Subtracts exponent parts

;

230

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;--
; Checking underflow and overflow
;--

JC FDIV41 ; --> First operand ‡ second operand
CMP.B #83H,R0L ; Underflow occurred?
JC FDIV50 ; --> No underflow

;
; Setting underflow information (minimum value)
;

MOV.L #01000000H,R2R0 ; Sets minimum value in exponent and mantissa parts
SHL.B #-1,SIGN[FB] ; Loads sign into C flag
RORC.W R2 ; Sets sign
EXITD

;
FDIV41:

CMP.B #80H,R0L ; Overflow occurred?
JNC FDIV50 ; --> No overflow

;
; Setting overflow information (maximum value)
;

MOV.W #0FEFFFFFFH,R2R0 ; Sets maximum value in exponent and mantissa part
SHL.B #-1,SIGN[FB] ; Loads sign into C flag
RORC.W R2 ; Sets sign
EXITD

;
; Storing calculation result of exponent part
;
FDIV50:

ADD.B #80H-1,R0L ; Adds 80H from subtraction result
; (in effect, added by 7F for digit adjustment)

MOV.B R0L,EXP[FB] ; Stores calculation result of exponent part
;

231

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;--
; Converting first/second operand data into calculation-purpose data
; 4 bytes = mantissa + economized form bit + 8 low-order bits
;--

MOV.L CO_OPE[FB],R2R0 ; Reads mantissa part of first operand data
AND.W #007FH,R2 ; Clears exponent and sign parts
OR.W #0080H,R2 ; Adds economized form bit

;
MOV.L OPE[FB],R3R1 ; Reads mantissa part of second operand data
AND.W #007FH,R3 ; Clears exponent and sign parts
OR.W #0080H,R3 ; Adds economized form bit

;
MOV.L #0,CALBUF[FB] ; Clears calculation result

;
;--
; First operand data ‚ second operand data
;--

MOV.B #24,COUNT[FB] ; Number of shifts performed
;
DIVCALC:

SHL.W #1,CALBUF[FB] ; Shifts calculation result
ROLC.W CALBUF+2[FB]

;
CMP.W R3,R2
JLTU DIVCALC2 ; --> First operand data is small
JGTU DIVCALC1 ; --> First operand data is large
CMP.W R1,R0
JLTU DIVCALC2 ; --> Second operand data is small

DIVCALC1:
SUB.L R3R1,R2R0
BSET 0,CALBUF[FB] ; Sets bit of calculation result

DIVCALC2:
SHL.W #1,R0 ; Shifts first operand
ROLC.W R2
ADJNZ.B #-1,COUNT[FB],DIVCALC ; --> During calculation

;

232

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;--
; Adjusting digits
;--

BTST 7,CALBUF+2[FB]
JNE FDIVSET ; --> Digit adjustment finished
SHL.W #1,CALBUF[FB] ; Adjusts digits of calculation data
ROLC.W CALBUF+2[FB]
DEC.B EXP[FB] ; Adjusts exponent (exponent part – 1)

;
; Setting calculation result in return value
;
FDIVSET:

MOV.W CALBUF[FB],R0 ; Sets calculation result in mantissa (mid, lower)
MOV.B EXP[FB],R1H ; Calculation result of exponent
MOV.B CALBUF+2[FB],R1L ; Mantissa (upper)
SHL.B #1,R1L ; Discards economized form bit
SHL.B #-1,SIGN[FB] ; Sets sign in C flag
RORC.W R1 ; Sets sign
MOV.W R1,R2 ; Sets sign, exponent part, and mantissa (upper)

; part calculation result
EXITD

;
.END

233

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;**
; M16C Program Collection of Mathematic/Trigonometric Functions No. 5 *
; *
; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
;**

.GLB FSIN
;

.GLB FADD ; Floating-point addition

.GLB FSUB ; Floating-point subtraction

.GLB FMUL ; Floating-point multiplication

.GLB FDIV ; Floating-point division

.GLB FCMP ; Data comparison

.GLB FCAL ; Table data calculation

.GLB FOVERCHK ; Checks for overflow
;
VromTOP .EQU 0FE0000H ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
;
F2PI_H .EQU 40C9H ; 2p upper 2-byte value
F2PI_L .EQU 0FDBH ; lower 2-byte value
FPAI_H .EQU 4049H ; p upper 2-byte value
FPAI_L .EQU 0FDBH ; lower 2-byte value
FPI2_H .EQU 3FC9H ; p/2 upper 2-byte value
FPI2_L .EQU 0FDBH ; lower 2-byte value
FOVER_H .EQU 07F7FH ; Overflow upper 2-byte value
FOVER_L .EQU 0FFFFH ; lower 2-byte value
FUNDER_H .EQU 0080H ; Underflow upper 2-byte value
FUNDER_L .EQU 0000H ; lower 2-byte value
;
SIGN .EQU –5 ; Sign of calculation result 0: plus; 1: minus
CO_OPE .EQU –4 ; Operand data (4 bytes)
;

.SECTION PROGRAM,ROMDATA

.ORG VromTOP
FSIT:

.FLOAT 1.5148419E–4 ; 0.00015148419

.FLOAT –4.6737656E–3 ;–0.00467376557

.FLOAT 7.9689679E–2 ; 0.07968967928

.FLOAT –6.4596371E–1 ;–0.64596371106

.FLOAT 1.5707963 ; 1.57079631847
;
;==
; Title: Sine function [SIN] (single-precision, floating-point)
;
; Content of processing:
; This program finds a sine of operand data (R2R0) and stores the result in R2, R0.
; (R2R0) = SIN (R2R0)
; The unit is radian.
; Make sure the contents of R2 and R0 are smaller than 2p.
;

234

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

; Procedure:
; (1) Operand data (normalized single-precision, floating- point number)
; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R2 and the mantissa (mid, lower) in register R0.
; (2) Call the subroutine.
; (3) The calculation result is placed in R2, R0.
;
; Result:
; Result normal:
; The C flag is reset to “0”.
; The calculation result is stored in R2, R0.
; R2 (High) R2 (Low) R0H R0L
; › › › ›
; Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)
;
; Result erratic:
; The C flag is set to “1”.
; The following value is returned in R2, R0.
; ––
; Contents of R2, R0 Meaning
; ––
; Maximum value Overflow
; ––
;
; Input: --------------------------------> Output:
;
; R0 (Lower half of operand data) R0 (Lower half of calculation result)
; R1 () R1 (Indeterminate)
; R2 (Upper half of operand data) R2 (Upper half of calculation result)
; R3 () R3 (Indeterminate)
; A0 () A0 (Indeterminate)
; A1 () A1 (Indeterminate)
;
; Stack amount used: 34 bytes
;==

.SECTION PROGRAM,CODE

.FB FBcnst ; Assumes FB register value
FSIN:

ENTER #6 ; Allocates internal variables
MOV.L R2R0,CO_OPE[FB] ; Saves operand data in variables

;
; Checking overflow
;

MOV.W CO_OPE+2[FB],R0 ; Reads exponent part
SHL.W #1,R0 ; Discards sign and align to R0H
CMP.B #98H,R0H ; Overflow?
JGEU SINOVER ; --> Yes

;
; Checking sign
;

BTSTC 7,CO_OPE+3[FB] ; Sign is positive? (sign cleared)
STZX.B #0,#1,SIGN[FB] ; Sets sign

;

235

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

; Adjusting data to 2π or less
;

MOV.L CO_OPE[FB],R2R0 ; Reads exponent and mantissa parts of operand data
F2P_LOOP:

MOV.W #F2PI_H,R3 ; Sets 2π
MOV.W #F2PI_L,R1
JSR FCMP ; Operand data ≥ 2π?
JNC FSIN10 ; --> Operand data < 2π
JNE F2P_OVER ; --> Operand data > 2π
MOV.B #0,SIGN[FB] ; Sets sign positive

F2P_OVER:
JSR FSUB ; (R2 R0) ← operand data – 2π
JSR FOVERCHK ; Checks for overflow
JNC F2P_LOOP ; Looped until 2π or less

;
; Setting overflow information (maximum) value
;
SINOVER:

MOV.W #FOVER_H,R2 ; Sets maximum value in return value
MOV.W #FOVER_L,R0
FSET C ; Sets “result erratic” information
EXITD

;
; Inverting sign of π to 2π and reducing it to below π
;
FSIN10:

MOV.W #FPAI_H,R3 ; Sets π
MOV.W #FPAI_L,R1
JSR FCMP ; Operand data ≥ π?
JNC FSIN20 ; --> Operand < π
JNE FSIN15 ; --> Operand > π
MOV.B #01H,SIGN[FB] ; Changes sign negative (to make it positive)

FSIN15:
XOR.B #01H,SIGN[FB] ; Inverts sign
JSR FSUB ; (R2 R0) ← operand data – π
JSR FOVERCHK ; Checks for overflow
JC SINOVER ; --> Overflow

;
; Converting π/2 to π into data π/2 or less
;
FSIN20:

MOV.W #FPI2_H,R3 ; Sets π/2
MOV.W #FPI2_L,R1
JSR FCMP ; Operand data ≥ π?
JNC FSIN30 ; --> Operand < π/2

;
OR.B #08000H,R2 ; Changes data negative
MOV.W #FPAI_H,R3 ; Sets π
MOV.W #FPAI_L,R1
JSR FADD ; Adds π to get 0 to π/2
JSR FOVERCHK ; Checks for overflow
JC SINOVER ; --> Overflow

;

236

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

; Operand data ‚ p/2
;
FSIN30:

MOV.W #FPI2_H,R3 ; Sets p/2
MOV.W #FPI2_L,R1
JSR FDIV ; Data ‚ p/2
JSR FOVERCHK ; Checks for overflow
JC SINOVER ; --> Overflow
MOV.L R2R0,CO_OPE[FB] ; Saves calculation data

;
MOV.L R2R0,R3R1 ; Sets data
JSR FMUL ; Squares data
JSR FOVERCHK ; Checks for overflow
JC SINOVER ; --> Overflow

;
MOV.L #FSIT,A0 ; Sets data table address
MOV.B #5-1,R1L ; Sets number of tables
JSR FCAL ; Calculates table data
JC SINOVER ; --> Overflow

;
MOV.L CO_OPE[FB],R3R1 ; Restores calculation data
JSR FMUL ; Table calculation data x calculation data
JSR FOVERCHK ; Checks for overflow
JC SINOVER ; --> Overflow

;
SHL.W #1,R2
RORC.B SIGN[FB] ; Sign inverting information fi C flag
RORC.W R2 ; Sets sign
FCLR C ; Sets “result normal” information
EXITD

;
.END

237

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;**
; M16C Program Collection of Mathematic/Trigonometric Functions No. 6 *
; *
; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
;**

.GLB FCOS
;

.GLB FSIN ; Sine function [SIN]

.GLB FADD ; Floating-point addition

.GLB FOVERCHK ; Checks for overflow
;
VromTOP .EQU 0FE0000H ; Declares start address of ROM
;
FPI2_H .EQU 3FC9H ; p/2 upper 2-byte value
FPI2_L .EQU 0FDBH ; lower 2-byte value
FOVER_H .EQU 07F7FH ; Overflow upper-2 byte value
FOVER_L .EQU 0FFFFH ; lower-2 byte value
;
;==
; Title: Cosine [COS] (single-precision, floating-point)
;
; Content of processing:
; This program finds a cosine of operand data (R2R0) and stores the result in R2, R0.
; (R2R0) = COS (R2R0)
; The unit is radian.
; Make sure the contents of R2 and R0 are smaller than 2p
;
; Procedure:
; (1) Operand data (normalized single-precision, floating- point number)
; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R2 and the mantissa (mid, lower) in register R0.
; (2) Call the subroutine.
; (3) The calculation result is placed in R2, R0.
;
; Result:
; Result normal:
; The C flag is reset to “0”.
; The calculation result is stored in R2, R0.
; R2 (High) R2 (Low) R0H R0L
; › › › ›
; Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)
;
; Result erratic:
; The C flag is set to “1”.
; The following value is returned in R2, R0.
; ––––––––––––––––––––––––––––––––––––––
; Contents of R2, R0 Meaning
; ––––––––––––––––––––––––––––––––––––––
; Maximum value Overflow
; ––––––––––––––––––––––––––––––––––––––
;

238

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

; Input: --------------------------------> Output:
;
; R0 (Lower half of operand data) R0 (Lower half of calculation result)
; R1 () R1 (Indeterminate)
; R2 (Upper half of operand data) R2 (Upper half of calculation result)
; R3 () R3 (Indeterminate)
; A0 () A0 (Indeterminate)
; A1 () A1 (Indeterminate)
;
; Stack amount used: 34 bytes
;==

.SECTION PROGRAM,CODE

.ORG VromTOP
FCOS:

MOV.W #FPI2_H,R3 ; Sets p/2
MOV.W #FPI2_L,R1
JSR FADD ; Data (R2 R0) + p/2
JSR FOVERCHK ; Checks for overflow
JC COSOVER ; --> Overflow
JMP FSIN ; Calculates SIN by advancing p/2 from COS

; Calculated value is returned as COS data
;
; Setting overflow information (maximum value)
;
COSOVER:

MOV.W #FOVER_H,R2 ; Sets maximum value in return value
MOV.W #FOVER_L,R0
FSET C ; Sets “result erratic” information
RTS

;
.END

239

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;**
; M16C Program Collection of Mathematic/Trigonometric Functions No. 7 *
; *
; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
;**

.GLB FTAN
;

.GLB FDIV ; Floating-point division

.GLB FSIN ; Sine function [SIN]

.GLB FCOS ; Cosine function [COS]

.GLB FOVERCHK ; Checks for overflow
;
VromTOP .EQU 0FE0000H ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
;
FOVER_H .EQU 07F7FH ; Overflow upper-2 byte value
FOVER_L .EQU 0FFFFH ; lower-2 byte value
;
COSDAT .EQU –8 ; COS calculation result
CO_OPE .EQU –4 ; Operand data (4 bytes)
;
;==
; Title: Tangent [TAN] (single-precision, floating-point)
;
; Content of processing:
; This program finds a tangent of operand data (R2R0) and stores the result in R2, R0.
; (R2R0) = TAN (R2R0)
; The unit is radian.
; Make sure the contents of R2 and R0 are smaller than 2p.
;
; Procedure:
; (1) Operand data (normalized single-precision, floating- point number)
; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R2 and the mantissa (mid, lower) in register R0.
; (2) Call the subroutine.
; (3) The calculation result is placed in R2, R0.
;
; Result:
; Result normal:
; The C flag is reset to “0”.
; The calculation result is stored in R2, R0.
; R2 (High) R2 (Low) R0H R0L
; › › › ›
; Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)
;
;
; Result erratic:
; The C flag is set to “1”.
; The following value is returned in R2, R0.
; ––
; Contents of R2, R0 Meaning
; ––
; Maximum value Overflow
; ––

240

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;
; Input: --------------------------------> Output:
;
; R0 (Lower half of operand data) R0 (Lower half of calculation result)
; R1 () R1 (Indeterminate)
; R2 (Upper half of operand data) R2 (Upper half of calculation result)
; R3 () R3 (Indeterminate)
; A0 () A0 (Indeterminate)
; A1 () A1 (Indeterminate)
;
; Stack amount used: 41 bytes
;==

.SECTION PROGRAM,CODE

.ORG VromTOP

.FB FBcnst ; Assumes FB register value
FTAN:

ENTER #8 ; Allocates internal variables
MOV.L R2R0,CO_OPE[FB] ; Saves operand data in variables

;
JSR FCOS ; COS calculation
JC TANERR ; --> Overflow

;
MOV.L R2R0,COSDAT[FB] ; Stores COS calculation result

;
MOV.L CO_OPE[FB],R2R0 ; Sets operand data

;
JSR FSIN ; SIN calculation
JC TANERR ; --> Overflow

;
MOV.L COSDAT[FB],R3R1 ; Sets COS calculation result in operand data

;
JSR FDIV ; TAN = SIN/COS
JSR FOVERCHK ; Overflow check
JC TANERR ; --> Overflow

;
FCLR C ; Sets “result normal” information
EXITD

;
; Setting overflow information (maximum value)
;
TANERR:

MOV.W #FOVER_H,R2 ; Sets maximum value in return value
MOV.W #FOVER_L,R0
FSET C ; Sets “result erratic” information
EXITD

;
.END

241

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;**
; M16C Program Collection of Mathematic/Trigonometric Functions No. 8 *
; *
; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
;**

.GLB FASN
;

.GLB FOVERCHK ; Overflow check

.GLB FADD ; Floating-point addition

.GLB FMUL ; Floating-point multiplication

.GLB FDIV ; Floating-point division

.GLB FSQR ; Square root

.GLB FATN ; Inverse tangent
;
VromTOP .EQU 0FE0000H ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
;
FNO1_H .EQU 3F80H ; Numeral 1 upper 2-byte value
FNO1_L .EQU 0000H ; lower 2-byte value
FPI2_H .EQU 3FC9H ; p/2 upper 2-byte value
FPI2_L .EQU 0FDBH ; lower 2-byte value
FOVER_H .EQU 07F7FH ; Overflow upper-2 byte value
FOVER_L .EQU 0FFFFH ; lower-2 byte value
;
CO_OPE .EQU –4 ; Operand data (4 bytes)
;==
; Title: Inverse sine function [SIN (raised to power of -1) (single-precision, floating-point)
; Content of processing:
; This program finds an inverse sine of operand data (R2R0) and stores the result in R2, R0.
; (R2R0) = SIN –1 (R2R0)
; Procedure:
; (1) Operand data (normalized single-precision, floating- point number)
; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R2 and the mantissa (mid, lower) in register R0.
; (2) Call the subroutine.
; (3) The calculation result is placed in R2, R0.
; Result:
; The unit is radian.
; Result normal:
; The C flag is reset to “0”.
; The calculation result is stored in R2, R0.
; R2 (High) R2 (Low) R0H R0L
; › › › ›
; Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)
;
; Result erratic:
; The C flag is set to “1”.
; The following value is returned in R2, R0.
; ––
; Contents of R2, R0 Meaning
; ––
; Maximum value Overflow
; ––
; Non-numeral Argument error
; ––

242

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

; Input: --------------------------------> Output:
;
; R0 (Lower half of operand data) R0 (Lower half of calculation result)
; R1 () R1 (Indeterminate)
; R2 (Upper half of operand data) R2 (Upper half of calculation result)
; R3 () R3 (Indeterminate)
; A0 () A0 (Indeterminate)
; A1 () A1 (Indeterminate)
;
; Stack amount used: 60 bytes
;==

.SECTION PROGRAM,CODE

.ORG VromTOP

.FB FBcnst ; Assumes FB register value
FASN:

ENTER #4 ; Allocates internal variables
MOV.L R2R0,CO_OPE[FB] ; Saves operand data in variables

;
; Checking argument error (check of 1 or less)

AND.W #07FFFH,R2 ; Clears sign
CMP.W #3F80H,R2 ; Operand data less than 1?
JLTU FASN10 ; --> Less than 1 (no error)
JGTU FASNERR ; --> Larger than 1 (error)
CMP.W #0,R0 ; Exactly 1?
JEQ FASN1SET ; --> Yes (no error)

;
; Setting argument error information (non-numeral)
FASNERR:

MOV.W CO_OPE+2[FB],R2 ; Sets overflow in return value
OR.W #7FFFH,R2 ; Returns same sign as that of argument
MOV.W #0FFFFH,R0
FSET C ; Sets “result erratic” information
EXITD

;
;--
; Setting p/2
;--
FASN1SET:

MOV.W #FPI2_L,R0 ; Sets p/2 lower 2-byte value
MOV.W #FPI2_H,R2 ; Sets p/2 upper 2-byte value
SHL.W #1,R2
MOV.B CO_OPE+3[FB],R1L
SHL.B #1,R1L ; Sign fi C flag
RORC.W R2 ; Sets sign
FCLR C ; Sets “result normal” information
EXITD

;
; Calculation formula Operand data ‚ (1 – square of operand data)
FASN10:

MOV.L R2R0,R3R1 ; Operand data fi calculation data
JSR FMUL ; Squares operand data
JSR FOVERCHK ; Checks for overflow
JC ASNOVER ; --> Overflow

;

243

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

OR.W #08000H,R2 ; Changes sign negative
MOV.W #FNO1_H,R3 ; Sets numeral 1 in operand data
MOV.W #FNO1_L,R1
JSR FADD ; R2, R0 = 1 – (square of operand data)
JSR FOVERCHK ; Checks for overflow
JC ASNOVER ; --> Overflow
JSR FSQR ; Square root of calculation result
JC ASNOVER ; --> Overflow

;
MOV.L R2R0,R3R1 ; Calculation result fi operand data
MOV.L CO_OPE[FB],R2R0 ; Reads operand data
JSR FDIV ; Divides operand data by calculation result
JSR FOVERCHK ; Checks for overflow
JC ASNOVER ; --> Overflow
JSR FATN ; Inverse tangent of calculation result
JSR FOVERCHK ; Checks for overflow
JC ASNOVER ; --> Overflow
FCLR C ; Sets “result normal” information
EXITD

;
; Setting overflow information (maximum)
;
ASNOVER:

MOV.W CO_OPE[FB],R2
AND.W #8000H,R2 ; Clears all but sign
OR.W #FOVER_H,R2 ; Sets maximum data in return value
MOV.W #FOVER_L,R0
FSET C ; Sets “result erratic” information
EXITD

;
.END

244

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;**
; M16C Program Collection of Mathematic/Trigonometric Functions No. 9 *
; *
; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
;**

.GLB FACN
;

.GLB FOVERCHK ; Overflow check

.GLB FADD ; Floating-point addition

.GLB FMUL ; Floating-point multiplication

.GLB FDIV ; Floating-point division

.GLB FSQR ; Square root

.GLB FATN ; Inverse tangent
;
VromTOP .EQU 0FE0000H ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
;
FNO1_H .EQU 3F80H ; Numeral 1 upper-2 byte value
FNO1_L .EQU 0000H ; lower-2 byte value
FPAI_H .EQU 4049H ; p upper 2-byte value
FPAI_L .EQU 0FDBH ; lower 2-byte value
FPI2_H .EQU 3FC9H ; p/2 upper 2-byte value
FPI2_L .EQU 0FDBH ; lower 2-byte value
FOVER_H .EQU 07F7FH ; Overflow upper 2-byte value
FOVER_L .EQU 0FFFFH ; lower 2-byte value
;
CO_OPE .EQU –4 ; Operand data (4 bytes)
;
;==
; Title: Inverse cosine function [COS (raised to power of –1) (single-precision, floating-point)
; Content of processing:
; This program finds an inverse cosine of operand data (R2R0) and stores the result in R2, R0.
; (R2R0) = COS –1 (R2R0)
; Procedure:
; (1) Operand data (normalized single-precision, floating- point number)
; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R2 and the mantissa (mid, lower) in register R0.
; (2) Call the subroutine.
; (3) The calculation result is placed in R2, R0.
; Result:
; The unit is radian.
; Result normal:
; The C flag is reset to “0”.
; The calculation result is stored in R2, R0.
; R2 (High) R2 (Low) R0H R0L
; › › › ›
; Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)
;
; Result erratic:
; The C flag is set to “1”.
; The following value is returned in R2, R0.
; ––
; Contents of R2, R0 Meaning
; ––
; Maximum value Overflow
; ––
; Non-numeral Argument error
; ––

245

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

; Input: --------------------------------> Output:
;
; R0 (Lower half of operand data) R0 (Lower half of calculation result)
; R1 () R1 (Indeterminate)
; R2 (Upper half of operand data) R2 (Upper half of calculation result)
; R3 () R3 (Indeterminate)
; A0 () A0 (Indeterminate)
; A1 () A1 (Indeterminate)
;
; Stack amount used: 60 bytes
;==

.SECTION PROGRAM,CODE

.ORG VromTOP

.FB FBcnst ; Assumes FB register value
FACN:

ENTER #4 ; Allocates internal variables
MOV.L R2R0,CO_OPE[FB] ; Saves operand data in variables

;
; Checking argument error (check of 1 or less)
;

AND.W #07FFFh,R2 ; Clears sign
CMP.W #3F80H,R2 ; Operand data less than 1?
JLTU FACN10 ; --> Smaller than 1
JGTU FACNERR ; --> Larger than 1 (error)
CMP.W #0,R0 ; Exactly 1?
JGTU FACNERR ; --> Larger than 1 (error)

FACN10:
OR.W R2,R0 ; Data 0?
JNE FACN20 ; --> No

;--
; Setting p/2
;--

MOV.W #FPI2_L,R0 ; Sets p/2 lower 2-byte value
MOV.W #FPI2_H,R1 ; Sets p/2 upper 2-byte value
BTST 7,CO_OPE+3[FB] ; Sign is negative?
BMNZ 7,R1H ; Changes sign negative
MOV.W R1,R2
FCLR C ; Sets “result normal” information
EXITD

;
; Setting argument error information (non-numeral)
;
FACNERR:

MOV.W CO_OPE+2[FB],R2 ; Sets overflow in return value
OR.W #7FFFH,R2 ; Returns same sign as that of argument
MOV.W #0FFFFH,R0
FSET C ; Sets “result erratic” information
EXITD

246

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;
; Calculation formula fi (1 – square of operand data) ‚ operand data
;
FACN20:

MOV.L CO_OPE[FB],R2R0 ; Reads operand data
;

MOV.L R2R0,R3R1 ; Operand data fi calculation data
JSR FMUL ; Squares operand data
JSR FOVERCHK ; Checks for overflow
JC ACNOVER ; --> Overflow

;
OR.W #08000H,R2 ; Changes sign negative
MOV.W #FNO1_H,R3 ; Sets numeral 1 in calculation data
MOV.W #FNO1_L,R1
JSR FADD ; R2, R0 = 1 – (square of operand data)
JSR FOVERCHK ; Checks for overflow
JC ACNOVER ; --> Overflow
JSR FSQR ; Square root of calculation result
JC ACNOVER ; --> Overflow

;
MOV.L CO_OPE[FB],R3R1 ; Reads operand data
JSR FDIV ; Divides calculation result by operand data
JSR FOVERCHK ; Checks for overflow
JC ACNOVER ; --> Overflow
JSR FATN ; Inverse tangent of calculation result
JSR FOVERCHK ; Checks for overflow
JC ACNOVER ; --> Overflow

;
BTST 7,CO_OPE+3[FB] ; Sign is negative?
JEQ FACN_OK ; --> No

;
; Calculation result + p
;

MOV.W #FPAI_H,R3 ; Sets p
MOV.W #FPAI_L,R1
JSR FADD ; Calculation result + p
JSR FOVERCHK ; Checks for overflow
JC ACNOVER ; --> Overflow

FACN_OK:
FCLR C ; Sets “result normal” information
EXITD

;
; Setting overflow information (maximum value)
;
ACNOVER:

MOV.W CO_OPE[FB],R2
AND.W #8000H,R2 ; Clears all but sign
OR.W #FOVER_H,R2 ; Sets maximum value in return value
MOV.W #FOVER_L,R0
FSET C ; Sets “result erratic” information
EXITD

;
.END

247

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;**
; M16C Program Collection of Mathematic/Trigonometric Functions No. 10 *
; *
; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
;**

.GLB FATN
;

.GLB FCMP ; Large/small comparison

.GLB FOVERCHK ; Overflow check

.GLB FCAL ; Table data calculation

.GLB FADD ; Floating-point addition

.GLB FMUL ; Floating-point multiplication

.GLB FDIV ; Floating-point division
;
VromTOP .EQU 0FE0000H ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
;
FNO1_H .EQU 3F80H ; Numeral 1 upper 2-byte value
FNO1_L .EQU 0000H ; lower 2-byte value
FPI2_H .EQU 3FC9H ; p/2 upper 2-byte value
FPI2_L .EQU 0FDBH ; lower 2-byte value
FOVER_H .EQU 07F7FH ; Overflow upper 2-byte value
FOVER_L .EQU 0FFFFH ; lower 2-byte value
;
OVER1 .EQU –7 ; 0: 1 or less ; 1: greater than 1
SIGN .EQU –6 ; 0: plus ; 1: minus
CO_OPE .EQU –4 ; Operand data (4 bytes)
;

.SECTION PROGRAM,ROMDATA

.ORG VromTOP
FATT:

.FLOAT 6.812411E–3 ; 0.006812411 (C13)

.FLOAT –3.3606269E–2 ; –0.033606269 (C11)

.FLOAT 7.9626318E–2 ; 0.079626318 (C9)

.FLOAT –1.3233510E–1 ; –0.132335096 (C7)

.FLOAT 1.9807869E–1 ; 0.198078690 (C5)

.FLOAT –3.3317376E–1 ; –0.333173758 (C3)

.FLOAT 9.9999612E–1 ; 0.999996115 (C1)
;
; .LWORD 03BDF3AA4H ; 0.006812411 (C13)
; .LWORD 0BD09A6BAH ; –0.033606269 (C11)
; .LWORD 03DA3131EH ; 0.079626318 (C9)
; .LWORD 0BE0782D8H ; –0.132335096 (C7)
; .LWORD 03E4AD522H ; 0.198078690 (C5)
; .LWORD 0BEAA95C0H ; –0.333173758 (C3)
; .LWORD 03F7FFFBEH ; 0.999996115 (C1)
;
;==
; Title: Inverse tangent function [TAN (raised to power of –1) (single-precision, floating-point)
;
; Content of processing:
; This program finds an inverse tangent of operand data (R2R0) and stores the result in R2, R0.
; (R2R0) = TAN–1 (R2R0)
;

248

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

; Procedure:
; (1) Operand data (normalized single-precision, floating- point number)
; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R2 and the mantissa (mid, lower) in register R0.
; (2) Call the subroutine.
; (3) The calculation result is placed in R2, R0.
;
; Result:
; The unit is radian.
; Result normal:
; The C flag is reset to “0”.
; The calculation result is stored in R2, R0.
; R2 (High) R2 (Low) R0H R0L
; › › › ›
; Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)
;
; Result erratic:
; The C flag is set to “1”.
; The following value is returned in R2, R0.
; ––
; Contents of R2, R0 Meaning
; ––
; Maximum value Overflow
; ––
;
; Input: --------------------------------> Output:
;
; R0 (Lower half of operand data) R0 (Lower half of calculation result)
; R1 () R1 (Indeterminate)
; R2 (Upper half of operand data) R2 (Upper half of calculation result)
; R3 () R3 (Indeterminate)
; A0 () A0 (Indeterminate)
; A1 () A1 (Indeterminate)
;
; Stack amount used: 34 bytes
;==

.SECTION PROGRAM,CODE

.FB FBcnst ; Assumes FB register value
FATN:

ENTER #7 ; Allocates internal variables
MOV.L R2R0,CO_OPE[FB] ; Saves operand data in variables

;
; Checking sign
;

TST.W #08000H,R2 ; Checks sign
STZX.W #0,#08000H,SIGN[FB] ; Sets sign information
AND.W #07FFFH,R2 ; Clear sign

;
; Checking for unsigned data equal to or less than 1
;

MOV.B #0,OVER1[FB] ; Sets “equal to or less than 1” information
MOV.W #FNO1_H,R3 ; Sets floating-point number 1
MOV.W #FNO1_L,R1
JSR FCMP ; Compares
JLTU FATN20 ; --> 1 or less
INC.B OVER1[FB] ; Sets “greater than 1” information

;

249

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

; Checking absolute 0
;
FATN20:

CMP.W R2,R0 ; Absolute 0?
JNE FATN30 ; --> No

;
; Returning absolute 0 information
;

MOV.L CO_OPE[FB],R2R0 ; Returns data that was input
EXITD

;
FATN30:

MOV.W R2,CO_OPE+2[FB] ; Saves unsigned operand data
;

CMP.B #0,OVER1[FB] ; Unsigned data is equal to or less than 1?
JEQ FATN40 ; --> Yes
XCHG.W R2,R3 ; Floating-point number 1 fi (R2, R0)
XCHG.W R0,R1 ; Unsigned operand data fi (R3, R1)
JSR FDIV ; Divides 1 by unsigned operand data
JSR FOVERCHK ; Checks for overflow
JC ATNOVER ; --> Overflow

;
MOV.L R2R0,CO_OPE[FB] ; Saves calculation result

FATN40:
MOV.L R2R0,R3R1 ; Calculation result fi (R3, R1)
JSR FMUL ; Squares calculation result
JSR FOVERCHK ; Checks for overflow
JC ATNOVER ; --> Overflow

;
MOV.L #FATT,A0 ; Sets data table address
MOV.B #7-1,R1L ; Sets number of tables
JSR FCAL ; Calculates table data
JC ATNOVER ; --> Overflow

;
MOV.L CO_OPE[FB],R3R1 ; Reads saved data
JSR FMUL ; Multiplies result by saved data
JSR FOVERCHK ; Checks for overflow
JC ATNOVER ; --> Overflow

;
CMP.B #0,OVER1[FB] ; “Equal to or less than 1” information?
JEQ FATN50 ; --> Yes

;
OR.W #08000H,R2 ; Changes calculation result negative
MOV.W #FPI2_H,R3 ; Sets p/2
MOV.W #FPI2_L,R1
JSR FADD ; Subtracts calculation result from (p/2)
JSR FOVERCHK ; Checks for overflow
JC ATNOVER ; --> Overflow

FATN50:
AND.W #07FFFH,R2 ;
OR.W SIGN[FB],R2 ; Inverts sign if sign information is negative
FCLR C ; Sets “result normal” information
EXITD

250

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;
; Setting overflow information (maximum value)
;
ATNOVER:

MOV.W CO_OPE[FB],R2
AND.W #8000H,R2 ; Clears all but sign
OR.W #FOVER_H,R2 ; Sets maximum value in return value
MOV.W #FOVER_L,R0
FSET C ; Sets “result erratic” information
EXITD

;
.END

251

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;**
; M16C Program Collection of Mathematic/Trigonometric Functions No. 11 *
; *
; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
;**

.GLB FSQR
;

.GLB FPOW ; Power calculation
;
VromTOP .EQU 0FE0000H ; Declares start address of ROM
;
FP5_H .EQU 3F00H ; 0.5 upper 2-byte value
FP5_L .EQU 0000H ; lower 2-byte value
;
;==
; Title: Square root (single-precision, floating-point)
;
; Content of processing:
; This program finds a square root of operand data (R2R0) and stores the result in R2, R0.
; (R2R0) = (R2R0)
;
; Procedure:
; (1) Operand data (normalized single-precision, floating- point number)
; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R2 and the mantissa (mid, lower) in register R0.
; (2) Call the subroutine.
; (3) The calculation result is placed in R2, R0.
;
; Result:
; Result normal:
; The C flag is reset to “0”.
; The calculation result is stored in R2, R0.
; R2 (High) R2 (Low) R0H R0L
; › › › ›
; Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)
;
; Result erratic:
; The C flag is set to “1”.
; The following value is returned in R2, R0.
; –––
; Contents of R2, R0 Meaning
; –––
; Non-numeral Calculation error
; –––
; Maximum value Overflow
; –––
;

252

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

; Input: --------------------------------> Output:
;
; R0 (Lower half of operand data) R0 (Lower half of calculation result)
; R1 () R1 (Indeterminate)
; R2 (Upper half of operand data) R2 (Upper half of calculation result)
; R3 () R3 (Indeterminate)
; A0 () A0 (Indeterminate)
; A1 () A1 (Indeterminate)
;
; Stack amount used: 53 bytes
;==

.SECTION PROGRAM,CODE

.ORG VromTOP
FSQR:

MOV.W #FP5_H,R3 ; Sets 0.5
MOV.W #FP5_L,R1
JSR FPOW ; Calculates a product of the operand data raised to

; the power of 0.5
RTS

;
.END

253

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;**
; M16C Program Collection of Mathematic/Trigonometric Functions No. 12 *
; *
; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
;**

.GLB FPOW
;

.GLB FOVERCHK ; Overflow check

.GLB FIXI ; Floating data fi integer conversion processing

.GLB FLN ; Natural logarithmic calculation

.GLB FEXP ; Exponential function calculation

.GLB FMUL ; Floating-point multiplication
;
VromTOP .EQU 0FE0000H ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
;
FP5_H .EQU 3F00H ; 0.5 upper 2-byte value
FP5_L .EQU 0000H ; lower 2-byte value
;
SIGN .EQU –9 ; Sign of calculation result 0: plus; 1: minus
POWER .EQU –8 ; Multiplication data (4 bytes)
CO_OPE .EQU –4 ; Operand data (4 bytes)
;
;==
; Title: Power (single-precision, floating-point)
; Content of processing:
; This program finds a product of operand data (R2R0) raised to the power (R3R1) and
; stores the result in R2, R0.
; (R2R0) = (R2R0) (R3R1)

; Procedure:
; (1) Operand data (normalized single-precision, floating- point number)
; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R2 and the mantissa (mid, lower) in register R0.
; (2) Exponent data (normalized single-precision, floating-point number)
; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R3 and the mantissa (mid, lower) in register R1.
; (3) Call the subroutine.
; (4) The calculation result is placed in R2, R0.
; Result:
; Result normal:
; The C flag is reset to “0”.
; The calculation result is stored in R2, R0.
; R2 (High) R2 (Low) R0H R0L
; › › › ›
; Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)
;
; Result erratic:
; The C flag is set to “1”.
; The following value is returned in R2, R0.
; –––
; Contents of R2, R0 Meaning
; –––
; Non-numeral Calculation error
; –––
; Maximum value Overflow
; –––

254

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

; Input: --------------------------------> Output:
;
; R0 (Lower half of operand data) R0 (Lower half of calculation result)
; R1 (Lower half of exponent data) R1 (Indeterminate)
; R2 (Upper half of operand data) R2 (Upper half of calculation result)
; R3 (Upper half of exponent data) R3 (Indeterminate)
; A0 () A0 (Indeterminate)
; A1 () A1 (Indeterminate)
;
; Stack amount used: 50 bytes
;==

.SECTION PROGRAM,CODE

.ORG VromTOP

.FB FBcnst ; Assumes FB register value
FPOW:

ENTER #9 ; Allocates internal variables
MOV.L R2R0,CO_OPE[FB] ; Saves operand data in variables
MOV.L R3R1,POWER[FB] ; Saves exponent data

;
; Checking exponent data = 0
;

CMP.W #0,R1 ; Exponent data is 0?
JNE FPOW0 ; --> No
AND.W #7FFFH,R3 ; Exponent data is 0?
JNE FPOW0 ; --> No

;--
; Setting result = 1
;--

MOV.W #0,R0 ; Sets 1 in return value
MOV.W #3F80H,R2
FCLR C ; Sets “result normal” information
EXITD

;
; Checking error & result = 0
;
FPOW0:

CMP.W #0,R0 ; Operand data is 0?
JNE FPOW1 ; --> No
AND.W #7FFFH,R2 ; Operand data is 0?
JNE FPOW1 ; --> No
BTST 7,POWER+3[FB] ; Power is minus?
JEQ POWZERO ; --> No (goes to set result = 0)

;
; Setting calculation error information (non-numeral)
;
POW_ERR:

MOV.W #0FFFFH,R0 ; Sets non-numeral in return value
MOV.W CO_OPE+2[FB],R2
OR.W #7FFFH,R2
FSET C ; Sets “result erratic” information
EXITD

255

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;--
; Setting result = 0
;--
POWZERO:

MOV.L #0,R2R0 ; Sets result = 0
FCLR C ; Sets “result normal” information
EXITD

;
;**
;
FPOW1:

BTST 7,CO_OPE+3[FB] ; Operand data is minus?
JEQ FPOW6 ; --> No
MOV.W POWER[FB],R3 ; Reads power
MOV.W POWER+2[FB],R1
SHL.W #1,R3 ; Shifts data up (to adjust type of exponent part)
ROLC.W R1
CMP.B #7FH,R1H ; Power is less than 1?
JLTU POW_ERR ; --> Yes (error)

;
FPOW2:

CMP.B #7FH,R1H ; Conversion of power into integer completed?
JEQ FPOW3 ; --> Yes
SHL.W #1,R3 ; Shifts mantissa part data up
ROLC.B R1L
SUB.B #1,R1H ; Subtracts 1 from exponent part
JMP FPOW2

FPOW3:
AND.W #00FFH,R1 ; Clears exponent part
OR.W R3,R1 ; No decimal fraction?
JNE POW_ERR ; --> No (error)

FPOW4:
BTST 7,CO_OPE+3[FB] ; Operand data is minus?
JEQ FPOW6 ; --> No

FPOW5:
XOR.B #80H,CO_OPE+3[FB] ; Inverts sign of operand data

;
MOV.L POWER[FB],R2R0 ; Reads power
JSR FIXI ; Converts floating data of power into integer
MOV.B #1,SIGN[FB] ; Sets minus in sign information
BTST 0,R0L ; LSB of integer is 0?
JNE FPOW7 ; --> No

FPOW6:
MOV.B #0,SIGN[FB] ; Sets plus in sign information

256

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

FPOW7:
MOV.L CO_OPE[FB],R2R0 ; Reads operand data (inverted)
JSR FLN ; Natural logarithmic calculation
JC POWOVER ; --> Overflow

;
MOV.L POWER[FB],R3R1 ; Reads power
JSR FMUL ; Multiplies calculation result by power
JSR FOVERCHK ; Checks for overflow
JC POWOVER ; --> Overflow

;
JSR FEXP ; Exponential function calculation
JSR FOVERCHK ; Checks for overflow
JC POWOVER ; --> Overflow

;
CMP.B #0,SIGN[FB] ; Sign inverted?
JEQ FPOW_EXT ; --> No
XOR.W #8000H,R2 ; Inverts sign of calculation result

FPOW_EXT:
FCLR C ; Sets “result normal” information
EXITD

;
; Setting overflow information (maximum value)
;
POWOVER:

AND.W #8000H,R2 ; Clears all but sign
OR.W #7F7FH,R2 ; Sets maximum value in return value
MOV.W #0FFFFH,R0
FSET C ; Sets “result erratic” information
EXITD

;
.END

257

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;**
; M16C Program Collection of Mathematic/Trigonometric Functions No. 13 *
; *
; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
;**

.GLB FEXP
;

.GLB FOVERCHK ; Overflow check

.GLB FSUB ; Floating-point addition

.GLB FDIV ; Floating-point division

.GLB FCAL ; Table data calculation

.GLB FLOT ; Integer data fi floating data conversion processing

.GLB FIXI ; Floating data fi integer conversion processing
;
VromTOP .EQU 0FE0000H ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
;
F87_H .EQU 042AEH ; 87.33654475 upper 2-byte value
F87_L .EQU 0AC50H ; lower 2-byte value
FP5_H .EQU 03F00H ; 0.5 upper 2-byte value
FP5_L .EQU 00000H ; lower 2-byte value
FL2C_H .EQU 03F31H ; LN(2) upper 2-byte value
FL2C_L .EQU 07218H ; lower 2-byte value
FOVER_H .EQU 07F7FH ; Overflow upper 2-byte value
FOVER_L .EQU 0FFFFH ; lower 2-byte value
;
BUFA .EQU –9 ; Used for saving Q data
SIGN .EQU –5 ; Sign of calculation result 0: plus; 1: minus
CO_OPE .EQU –4 ; Operand data (4 bytes)
;

.SECTION PROGRAM,ROMDATA

.ORG VromTOP
FEXT:

.FLOAT 1.0939E-4 ; 0.00010939 (C7)

.FLOAT 9.4755E-4 ; 0.00094755 (C6)

.FLOAT 6.80097E-3 ; 0.00680097 (C5)

.FLOAT 3.9246744E-2 ; 0.039246744 (C4)

.FLOAT 1.6986580E-1 ; 0.169865796 (C3)

.FLOAT 4.9012909E-1 ; 0.490129090 (C2)

.FLOAT 7.0710678E-1 ; 0.707106781 (C1)
;
;==
; Title: Exponential function (single-precision, floating-point)
;
; Content of processing:
; This program finds an exponential function of operand data (R2R0) and stores the
; result in R2, R0.
; (R2R0) = e(R2R0)

;

258

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

; Procedure:
; (1) Operand data (normalized single-precision, floating- point number)
; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R2 and the mantissa (mid, lower) in register R0.
; (2) Call the subroutine.
; (3) The calculation result is placed in R2, R0.
;
; Result:
; Result normal:
; The C flag is reset to “0”.
; The calculation result is stored in R2, R0.
; R2 (High) R2 (Low) R0H R0L
; › › › ›
; Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)
;
; Result erratic:
; The C flag is set to “1”.
; The following value is returned in R2, R0.
; –––
; Contents of R2, R0 Meaning
; –––
; Maximum value Overflow or argument exceeds the range
; of –87.3 to 87.3 including both ends
; –––
;
; Input: --------------------------------> Output:
;
; R0 (Lower half of operand data) R0 (Lower half of calculation result)
; R1 () R1 (Indeterminate)
; R2 (Upper half of operand data) R2 (Upper half of calculation result)
; R3 () R3 (Indeterminate)
; A0 () A0 (Indeterminate)
; A1 () A1 (Indeterminate)
;
; Stack amount used: 38 bytes
;==

.SECTION PROGRAM,CODE

.FB FBcnst ; Assumes FB register value
FEXP:

ENTER #10 ; Allocates internal variables
MOV.L R2R0,CO_OPE[FB] ; Saves operand data in variables

;
; Checking argument = 0
;

CMP.W #0,R0 ; Argument is 0?
JNE FEXP1 ; --> No
AND.W #7FFFH,R2 ; Argument is 0?
JNE FEXP1 ; --> No

;--
; Setting result = 1
;--

MOV.W #3F80H,R2 ; Sets 1 in return value
FCLR C ; Sets “result normal” information
EXITD

;

259

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

; Checking overflow (exceeding the range of –87.3 to 87.3)
;
FEXP1:

MOV.W CO_OPE+2[FB],R2 ; Reads operand data
AND.W #07FFFH,R2 ; Clears sign of operand data

;
CMP.W #F87_H,R2 ; Less than –87.3 or greater than 87.3 including both ends?
JGTU EXPOVER ; --> Yes (overflow)
JLTU FEXP2 ; --> No
CMP.W #F87_L,R0 ; Less than –87.3 or greater than 87.3 including both ends?
JGEU EXPOVER ; --> Yes (overflow)

;
; Calculation processing
;
FEXP2:

MOV.W CO_OPE+2[FB],R2 ; Reads operand data
MOV.W #FL2C_H,R3 ; Sets LN(2) data
MOV.W #FL2C_L,R1

;
JSR FDIV ; Divides operand by LN(2)
JSR FOVERCHK ; Checks for overflow
JC EXPOVER ; --> Overflow
MOV.L R2R0,CO_OPE[FB] ; Saves calculation result

;
JSR FIXI ; Converts data into integer (Q data)

;
TST.W #8000H,R2 ; Checks sign
JEQ FEXP3 ; --> Plus

;
XOR.W #0FFFFH,R0 ; Takes 2’s complement
XOR.W #07FFFH,R2
ADD.L #1,R2R0

FEXP3:
MOV.L R2R0,BUFA[FB] ; Saves Q data

;
JSR FLOT ; Converts Q data into floating data

;
MOV.L R2R0,R3R1 ; Modifies Q data register

;
MOV.L CO_OPE[FB],R2R0 ; Reads (operand divided by LN(2))

;
JSR FSUB ; Divides operand by LN(2) and subtracts Q
JSR FOVERCHK ; Checks for overflow
JC EXPOVER ; --> Overflow

;
MOV.W #FP5_H,R3 ; Sets 0.5
MOV.W #FP5_L,R1
JSR FSUB ; Subtracts 0.5 from calculation result
JSR FOVERCHK ; Checks for overflow
JC EXPOVER ; --> Overflow

;
MOV.L #FEXT,A0 ; Sets data table address
MOV.B #7-1,R1L ; Sets number of tables
JSR FCAL ; Calculates table data
JC EXPOVER ; --> Overflow

;

260

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

MOV.W R2,R1 ; Modifies calculation result register (exponent part)
;

MOV.B #0,SIGN[FB] ; Initializes sign information
SHL.W #1,R1 ; Sign fi C flag
ROLC.B SIGN[FB] ; Sets sign information

;
FSET C ; Sets C flag = 1
ADC.B BUFA[FB],R1H ; Adds exponent + Q + 1

;
SHL.B #-1,SIGN[FB] ; Sign fi C flag
RORC.W R1 ; Sets sign
MOV.W R1,R2 ; Restores register
FCLR C ; Sets “result normal” information
EXITD

;
; Setting overflow information (maximum value)
;
EXPOVER:

MOV.L #0FEFEFFFFH,R2R0 ; Sets maximum value in mantissa part and
; LSB of exponent part

SHL.B #-1,SIGN[FB] ; Checks sign
RORC.W R2 ; Sets maximum value in exponent part and sign
FSET C ; Sets “result erratic” information
EXITD

;
.END

261

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;**
; M16C Program Collection of Mathematic/Trigonometric Functions No. 14 *
; *
; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
;**

.GLB FLN
;

.GLB FLN_CAL ; Natural logarithmic calculation
;
VromTOP .EQU 0FE0000H ; Declares start address of ROM
;
;==
; Title: Natural logarithmic calculation (single-precision, floating-point)
; Content of processing:
; This program finds a natural logarithmic of operand data (R2R0) and stores the result in R2, R0.
; (R2R0) = LN (R2R0)
; Procedure:
; (1) Operand data (normalized single-precision, floating- point number)
; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R2 and the mantissa (mid, lower) in register R0.
; (2) Call the subroutine.
; (3) The calculation result is placed in R2, R0.
; Result:
; Result normal:
; The C flag is reset to “0”.
; The calculation result is stored in R2, R0.
; R2 (High) R2 (Low) R0H R0L
; › › › ›
; Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)
; Result erratic:
; The C flag is set to “1”.
; The following value is returned in R2, R0.
; –––
; Contents of R2, R0 Meaning
; –––
; Non-numeral Calculation error
; –––
; No change Overflow
; –––
;
; Input: --------------------------------> Output:
;
; R0 (Lower half of operand data) R0 (Lower half of calculation result)
; R1 () R1 (Indeterminate)
; R2 (Upper half of operand data) R2 (Upper half of calculation result)
; R3 () R3 (Indeterminate)
; A0 () A0 (Indeterminate)
; A1 () A1 (Indeterminate)
;
; Stack amount used: 41 bytes
;==

.SECTION PROGRAM,CODE

.ORG VromTOP
FLN:

FSET Z ; Sets LN information
JSR FLN_CAL ; Natural logarithmic calculation
RTS

;
.END

262

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;**
; M16C Program Collection of Mathematic/Trigonometric Functions No. 15 *
; *
; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
;**

.GLB FLOG
;

.GLB FOVERCHK ; Overflow check

.GLB FCAL ; Table data calculation

.GLB FADD ; Floating-point addition

.GLB FSUB ; Floating-point subtraction

.GLB FMUL ; Floating-point multiplication

.GLB FDIV ; Floating-point division

.GLB FLOT ; Integer data fi floating data conversion processing
;
VromTOP .EQU 0FE0000H ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
;
FNO1_H .EQU 3F80H ; Numeral 1 upper 2-byte value
FNO1_L .EQU 0000H ; lower 2-byte value
FL2C_H .EQU 3F31H ; LN(2) upper 2-byte value
FL2C_L .EQU 7218H ; lower 2-byte value
FL10_H .EQU 4013H ; LN(10) upper 2-byte value
FL10_L .EQU 5D8EH ; lower 2-byte value
;
EXP .EQU -10 ; Used for saving exponent part
MODE .EQU -9 ; 0: FLOG; 1: FLN
BUFA .EQU -8 ; General-purpose buffer
CO_OPE .EQU -4 ; Operand data (4 bytes)
;

.SECTION PROGRAM,ROMDATA

.ORG VromTOP
FLGT:

.FLOAT 1.0757369E–2 ; 0.010757369 (C7)

.FLOAT –5.5119959E–2 ; –0.055119959 (C6)

.FLOAT 1.3463927E–1 ; 0.134639267 (C5)

.FLOAT –2.2587328E–1 ; –0.225873284 (C4)

.FLOAT 3.2823312E–1 ; 0.328233122 (C3)

.FLOAT –4.9947015E–1 ; –0.499470150 (C2)

.FLOAT 9.9998103E–1 ; 0.999981028 (C1)
;
;==
; Title: Common logarithmic calculation (single-precision, floating-point)
;
; Content of processing:
; This program finds a common logarithmic of operand data (R2R0) and stores the result in R2, R0.
; (R2R0) = LOG (R2R0)
;
; Procedure:
; (1) Operand data (normalized single-precision, floating- point number)
; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R2 and the mantissa (mid, lower) in register R0.
; (2) Call the subroutine.
; (3) The calculation result is placed in R2, R0.
;

263

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

; Result:
; Result normal:
; The C flag is reset to “0”.
; The calculation result is stored in R2, R0.
; R2 (High) R2 (Low) R0H R0L
; › › › ›
; Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)
;
; Result erratic:
; The C flag is set to “1”.
; The following value is returned in R2, R0.
; –––––––––––––––––––––––––––––––––––––––
; Contents of R2, R0 Meaning
; –––––––––––––––––––––––––––––––––––––––
; Non-numeral Calculation error
; –––––––––––––––––––––––––––––––––––––––
; No change Overflow
; –––––––––––––––––––––––––––––––––––––––
;
; Input: --------------------------------> Output:
;
; R0 (Lower half of operand data) R0 (Lower half of calculation result)
; R1 () R1 (Indeterminate)
; R2 (Upper half of operand data) R2 (Upper half of calculation result)
; R3 () R3 (Indeterminate)
; A0 () A0 (Indeterminate)
; A1 () A1 (Indeterminate)
;
; Stack amount used: 33 bytes
;==

.SECTION PROGRAM,CODE

.FB FBcnst ; Assumes FB register value
FLOG:

FCLR C ; Sets LOG information
FLN_CAL:

ENTER #10 ; Allocates internal variables
STZX.B #0,#1,MODE[FB] ; Sets LOG/LN mode
MOV.L R2R0,CO_OPE[FB] ; Saves operand data
TST.W #08000H,R2 ; Checks sign
JNE LOG_ERR2 ; --> Operand data minus (error)
AND.W #07FFFH,R2 ; Clears sign
OR.W R0,R2 ; Absolute 0?
JNE FLOG2 ; --> No

LOG_ERR2:
JMP LOG_ERR ; Sets non-numeral

;
FLOG2:

MOV.W CO_OPE+2[FB],R2 ; Reads exponent and mantissa (upper) parts
AND.W #07FFFH,R2 ; Clears sign
CMP.W #FNO1_H,R2 ; Logic 1?
JNE FLOG3 ; --> No
MOV.W CO_OPE[FB],R0 ; Logic 1?
JNE FLOG3 ; --> No
JMP LOG_ZERO ; --> Yes (returns absolute zero)

;

264

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

FLOG3:
MOV.W R2,R1 ; Exponent part fi R1H
SHL.W #1,R1
CMP.B #1,R1H ; Exponent part is 1?
JNE FLOG31 ; --> No
JMP LOG_NON ; --> Yes (conversion unnecessary)

;
FLOG31:

MOV.B R1H,EXP[FB] ; Saves exponent part
MOV.W CO_OPE+2[FB],R2 ; Reads exponent and mantissa (upper) parts
AND.W #807FH,R2 ; Clears exponent part.
OR.W #3F80H,R2 ; Sets 7F in exponent part

;
MOV.W #FNO1_H,R3 ; Sets numeral 1
MOV.W #FNO1_L,R1
JSR FSUB ; Subtracts 1 from operand
JSR FOVERCHK ; Checks for overflow
JC LOGOVER ; --> Overflow
MOV.L R2R0,BUFA[FB] ; Saves calculation result

;
MOV.L #FLGT,A0 ; Sets data table address
MOV.B #7-1,R1L ; Sets number of tables
JSR FCAL ; Calculates table data
JC LOGOVER ; --> Overflow

;
MOV.L BUFA[FB],R3R1 ; Restores calculation result
JSR FMUL ; Multiplies table calculation result by restored result
JSR FOVERCHK ; Checks for overflow
JC LOGOVER ; --> Overflow
MOV.L R2R0,BUFA[FB] ; Saves table calculation result

;
MOV.B EXP[FB],R0L ; Restores exponent part
SUB.B #7FH,R0L ; Subtracts 7F from exponent part
JNC FLOG4 ; --> Decimal

;
MOV.W #0,R2 ; Sets integer Q
MOV.B #0,R0H
JMP FLOG5

FLOG4:
MOV.W #0FFFFH,R2 ; Sets decimal Q
MOV.B #0FFH,R0H

FLOG5:
JSR FLOT ; Converts integer data into floating data

;
MOV.W #FL2C_H,R3 ; Sets LN(2)

265

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

MOV.W #FL2C_L,R1
JSR FMUL ; Multiplies LN(2) by floating data
JSR FOVERCHK ; Checks for overflow
JC LOGOVER ; --> Overflow

;
MOV.L BUFA[FB],R3R1 ; Restores table calculation result
JSR FADD ; Adds calculation result and table calculation result
JSR FOVERCHK ; Checks for overflow
JC LOGOVER ; --> Overflow

;
MOV.B MODE[FB],R1L ; LOG mode?
JEQ FLOG_EXT ; --> No (LN mode)

;
MOV.W #FL10_H,R3 ; Sets LN(10)
MOV.W #FL10_L,R1
JSR FDIV ; Divides calculation result by LN(10)
JSR FOVERCHK ; Checks for overflow
JC LOGOVER ; --> Overflow

FLOG_EXT:
FCLR C ; Sets “result normal” information
EXITD

;
;--
; Setting calculation error (non-numeral) or overflow (no change)
;--
LOG_ERR:

MOV.W CO_OPE+2[FB],R2 ; Reads sign
OR.W #7FFFH,R2 ; Sets non-numeral in return value
MOV.W #0FFFFH,R0

LOGOVER:
FSET C ; Sets “result erratic” information
EXITD

;
;--
; Setting absolute 0 (normal)
;--
LOG_ZERO:

MOV.L #0,R2R0 ; Sets absolute 0
;--
; Conversion unnecessary (normal)
;--
LOG_NON:

FCLR C ; Sets “result normal” information
EXITD

;
.END

266

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;**
; M16C Program Collection of Mathematic/Trigonometric Functions No. 16 *
; *
; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
;**

.GLB FCMP
;

.GLB FSUB ; Floating-point subtraction
;
VromTOP .EQU 0FE0000H ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
;
OPE .EQU –8 ; Comparison data (4 bytes)
CO_OPE .EQU –4 ; Operand data (4 bytes)
;
;==
; Title: Data comparison (single-precision, floating-point)
;
; Content of processing:
; This program compares the contents of (R2R0) and (R3R1) and sets the result in FLG bits.
; FLG = (R2R0) : (R3R1)
;
; Procedure:
; (1) Operand data (normalized single-precision, floating- point number)
; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R2 and the mantissa (mid, lower) in register R0.
; (2) Comparison data (normalized single-precision, floating-point number)
; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R3 and the mantissa (mid, lower) in register R1.
; (3) Call the subroutine.
; (4) The result is placed in FLG bits.
;
; Result:
; ––––––––––––––––––––––––––––––––––––––
; C Z Meaning
; ––––––––––––––––––––––––––––––––––––––
; 1 0 (R2 R0) > (R3 R1)
; ––––––––––––––––––––––––––––––––––––––
; 1 1 (R2 R0) = (R3 R1)
; ––––––––––––––––––––––––––––––––––––––
; 0 0 (R2 R0) < (R3 R1)
; ––––––––––––––––––––––––––––––––––––––
;
; Input: --> Output:
;
; R0 (Lower half of operand data) R0 (Does not change)
; R1 (Lower half of comparison data) R1 (Does not change)
; R2 (Upper half of operand data) R2 (Does not change)
; R3 (Upper half of comparison data) R3 (Does not change)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
;
; Stack amount used: 32 bytes
;==

267

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

.SECTION PROGRAM,CODE

.ORG VromTOP

.FB FBcnst ; Assumes FB register value
FCMP:

ENTER #8 ; Allocates internal variables
MOV.L R2R0,CO_OPE[FB] ; Saves (R2 R0)
MOV.L R3R1,OPE[FB] ; Saves (R3 R1)

;
JSR FSUB ; (R2,R0) = (R2,R0) – (R3,R1)

;
; Checking absolute 0
;

MOV.W R2,R1 ; Moves result to R1
SHL.W #1,R2 ; Clears sign
CMP.W R0,R2 ; Absolute 0?
JEQ FCMP_END ; --> Yes (C = 1, Z = 1)

;
BNTST 7,R1H ; Sets result in C flag
FCLR Z ; Clears Z flag

FCMP_END:
PUSHC FLG ; Saves FLG
MOV.L CO_OPE[FB],R2R0 ; Restores register
MOV.L OPE[FB],R3R1
POPC FLG ; Restores FLG
EXITD

;
.END

268

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;**
; M16C Program Collection of Mathematic/Trigonometric Functions No. 17 *
; *
; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
;**

.GLB FTOI
;
VromTOP .EQU 0FE0000H ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
;
SIGN .EQU –1 ; 0: plus; 1: minus
;
;==
; Title: Conversion from FLOAT type to WORD type
; Content of processing:
; This program converts the content of FLOAT data (R2R0) into WORD (16-bit) type and
; stores the result in R0.
; Procedure:
; (1) FLOAT data (normalized single-precision, floating-point number)
; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R2 and the mantissa (mid, lower) in register R0.
; (2) Call the subroutine.
; (3) The result is placed in R0.
; Result:
; The result is placed in R0.
; If an overflow occurs, R0 is 7FFFH when positive or 8000H when negative.
; If an underflow occurs, R0 is cleared to 0000H.
; The following shows the contents of flags.
; –––
; C Z S Meaning
; –––
; 1 0 0 Positive overflow (R0 = 7FFFH)
; –––
; 1 0 1 Negative overflow (R0 = 8000H)
; –––
; 1 1 0 Underflow (R0 = 0000H)
; –––
; 0 1 0 Result is 0
; –––
; 0 0 0 Result is positive
; –––
; 0 0 1 Result is negative
; –––
;
; Input: --> Output:
;
; R0 (Lower half of FLOAT type data) R0 (WORD type data)
; R1 () R1 (Indeterminate)
; R2 (Upper half of FLOAT type data) R2 (Does not change)
; R3 () R3 (Unused)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
;
; Stack amount used: 1 byte
;==

269

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

.SECTION PROGRAM,CODE

.ORG VromTOP

.FB FBcnst ; Assumes FB register value
FTOI:

ENTER #1 ; Allocates internal variables
;

XCHG.W R0,R2 ; Changes registers
MOV.W #0,R1 ; Initializes WORD type

;
BTSTC 7,R0H ; Checks sign (sign cleared)
STZX.B #0,#1,SIGN[FB] ; Sets sign of calculation result

;
CMP.W #0,R0 ; Input 0?
JNE FTOI_10 ; --> No
CMP.W #0,R2 ; Input 0?
JNE FTOI_10 ; --> No
FCLR C ; Sets “without flow” information
JMP I0SET

I0UNDER:
FSET C ; Sets “with flow” information

;--
; Setting integer 0
;--
I0SET:

MOV.W #0,R0 ; Sets integer 0 in return value
EXITD

;
FTOI_10:

BTSTS 7,R0L ; Sets LSB of exponent part in C flag
; Adds 1.0 to mantissa part

ROLC.B R0H ; Creates exponent
SUB.B #7FH,R0H ; Less than 1?
JNC I0UNDER ; --> Yes (sets 0)
CMP.B #15,R0H ; Within representation range?
JLTU FTOI_20 ; --> Yes
BSET 7,R1H ; Sets maximum value of the same sign
JNE FTOI_15 ; --> Out of representation range
CMP.B #0,SIGN[FB] ; Sign plus?
JEQ FTOI_PLS ; --> Yes (out of range)

;--
; Checking maximum negative value
;--

CMP.W #0,R2
JNE FTOI_MIS ; --> Out of representation range
CMP.B #80H,R0L
JNE FTOI_MIS ; --> Out of representation range
FCLR C ; Sets “without flow”
JMP FTOI_MIMAX ; --> Sets maximum negative value

;
FTOI_15:

CMP.B #0,SIGN[FB] ; Sign plus?
JNE FTOI_MIS ; --> Negative number (8000H)

;

270

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

; Positive overflow
;
FTOI_PLS:

NOT.W R1 ; Positive number (7FFF)
;
; Negative overflow
;
FTOI_MIS:

FSET C ; Sets “with flow”
FTOI_MIMAX:

MOV.W R1,R0 ; Sets return value
EXITD

;
;--
; FLOAT fi integer conversion
;--
FTOI_20:

INC.B R0H ; Adjusts loop count
FTOI_LOOP:

SHL.W #1,R2 ; Shifts mantissa data up
ROLC.B R0L
ROLC.W R1 ; Gets result
ADJNZ.B #-1,R0H,FTOI_LOOP ; Loop finished? --> No

;
CMP.B #0,SIGN[FB] : Sign plus?
JEQ FTOI_30 ; --> Yes
NEG.W R1 ; Turns data into 2’s complement

FTOI_30:
MOV.W R1,R0 ; Sets return value
FCLR C ; Sets “without flow”
EXITD

;
.END

271

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;**
; M16C Program Collection of Mathematic/Trigonometric Functions No. 18 *
; *
; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
;**

.GLB ITOF
;

.GLB FNOR ; Normalization processing
;
VromTOP .EQU 0FE0000H ; Declares start address of ROM
;
;==
; Title: Conversion from WORD type to FLOAT type
;
; Content of processing:
; This program converts the content of WORD (16-bit) type (R0) into FLOAT data and
; stores the result in R2R0.
;
; Procedure:
; (1) Store WORD (16-bit) type data in register R0.
; (2) Call the subroutine.
; (3) The result is placed in R2, R0.
;
; Result: The result is placed in R2, R0.
;
; R2 (High) R2 (Low) R0H R0L
; › › › ›
; Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)
;
; The following shows the contents of flags.
; ––––––––––––––––––––––––––––––––
; Z S Meaning
; ––––––––––––––––––––––––––––––––
; 1 0 When result is 0
; ––––––––––––––––––––––––––––––––
; 0 0 When result is positive
; ––––––––––––––––––––––––––––––––
; 0 1 When result is negative
; ––––––––––––––––––––––––––––––––
;
; Input: ---------------------> Output:
;
; R0 (WORD type data) R0 (Lower half of FLOAT type data)
; R1 () R1 (Indeterminate)
; R2 () R2 (Upper half of FLOAT type data)
; R3 () R3 (Indeterminate)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
;
; Stack amount used: 4 bytes
;==

272

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

.SECTION PROGRAM,CODE

.ORG VromTOP
ITOF:

ENTER #1 ; Allocates internal variables
MOV.W R0,R1 ; Integer data fi R1

;
MOV.L #0,R2R0 ; Sets 0 in floating-point data

;
CMP.W #0,R1 ; Integer data is 0?
JNE ITOF10 ; --> No
EXITD

;
ITOF10:

BTST 7,R1H ; Sign is minus?
JEQ ITOF20 ; --> No (plus)

;
OR.W #8000H,R2 ; Changes floating-point sign negative
CMP.W #8000H,R1 ; Maximum value?
JEQ ITOF_MAX ; --> Yes

ITOF11:
NEG.W R1 ; Takes 2’s complement

ITOF20:
MOV.B R1L,R0H ; Lower half of integer fi Mid part of floating-point

; number
SHL.W #-8,R1 ; Upper half of integer fi Upper part of floating-

; point number
OR.W #4700H,R1 ; Sets 8E in exponent part
OR.W R1,R2 ; Sets sign

;
PUSHC FLG ; Saves flags
JSR FNOR ; Normalization processing
POPC FLG ; Restores flags
EXITD

;
ITOF_MAX:

MOV.W #0C700H,R2 ; Sets maximum value
EXITD

;
.END

273

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

;**
; M16C Floating-point Library Subroutine *
; *
; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
;**

.GLB CHKDATA

.GLB FOVERCHK

.GLB FCAL

.GLB FLOT

.GLB FIXI

.GLB FNOR
;

.GLB FADD ; Floating-point addition

.GLB FMUL ; Floating-point multiplication
;
VromTOP .EQU 0FE0000H ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
;

.SECTION PROGRAM,CODE

.ORG VromTOP
;
;///
; Non-numeral and Infinity Check Subroutine
;
; Function:
; If the data input with (R2R0) is non-numeral or infinite, this subroutine sets
; non-numeral and infinite data in R2 and R0 before returning to the previous
; program location (e.g., a location from which FADD was called).
; If the data is other than the above, it returns to the location from which it was called.
;
; Input: --------------------------------> Output:
;
; R0 (Lower half of operand data) R0 (Lower half of calculation result)
; R1 () R1 (Indeterminate)
; R2 (Upper half of operand data) R2 (Upper half of calculation result)
; R3 () R3 (Indeterminate)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
;
; Stack amount used: None
;///
CHKDATA:

MOV.L R2R0,R3R1 ; Saves input data
XCHG.W R2,R0 ; Changes registers

;
; Checking operand data
;

SHL.W #1,R0 ; Places exponent part of operand data in R0H
CMP.B #0FFH,R0H ; Exponent part is non-numeral or infinite data?
JEQ CHKDATA10 ; --> Yes
MOV.L R3R1,R2R0 ; Sets data that was input
RTS

;

274

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

CHKDATA10:
CMP.B #0,R0L ; Mantissa (upper) part is infinite?
JNE CKDTNON ; --> Non-numeral
CMP.W #0,R2 ; Mantissa (mid, lower) part is infinite?
JEQ CKDTINF ; --> Infinite

;
; Setting non-numeral value
;
CKDTNON:

MOV.W #0FFFFH,R0 ; Sets non-numeral in mantissa (mid, lower) part
MOV.W R3,R2 ; Reads operand data sign, exponent, and mantissa (upper)
OR.W #7FFFH,R2 ; Sets non-numeral in exponent and mantissa

; (upper) parts (with sign unchanged)
BASERET:

STC SP,R3R1 ; Reads stack
ADD.L #4,R3R1 ; Stack + 4 (for two returns)
LDC R3R1,SP ; Sets stack back again
EXITD

;
; Setting infinite value
;
CKDTINF:

MOV.W #0000H,R0 ; Sets infinity in mantissa (mid, lower) part
MOV.W R3,R2 ; Reads operand data sign, exponent, and mantissa (upper)
AND.W #0FF80H,R2 ; Sets infinity in mantissa (upper) part
OR.W #07F80H,R2 ; Sets infinity in exponent part (with sign unchanged)
JMP BASERET ; Returns to location from which FADD was called

;
;///
; Data Over/Underflow Check Subroutine
;
; Function:
; This subroutine checks to see if the data input in (R2R0) is in overflow or underflow or else.
; If the data is in overflow or underflow,
; the C flag is set to 1.
; Otherwise,
; the C flag is reset to 0.
;
; Input: --------------------------------> Output:
;
; R0 (Lower half of operand data) R0 (Does not change)
; R1 () R1 (Unused)
; R2 (Upper half of operand data) R2 (Does not change)
; R3 () R3 (Unused)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
;
; Stack amount used: None
;///
FOVER_H .EQU 07F7FH ; Overflow upper 2-byte value
FOVER_L .EQU 0FFFFH ; lower 2-byte value
FUNDER_H .EQU 0080H ; Underflow upper 2-byte value
FUNDER_L .EQU 0000H ; lower 2-byte value
;
FOVERCHK:
;

275

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

; Overflow check
;

CMP.W #FOVER_H,R2 ; Overflow value?
JNE FUNDERCHK ; --> No
CMP.W #FOVER_L,R0 ; Overflow value?
JNE FOVER_0 ; --> No (without flow)

FOVER_1:
FSET C ; With flow (C flag is set)
RTS

;
;
; Underflow check
;
FUNDERCHK:

CMP.W #FUNDER_H,R2 ; Underflow value?
JNE FOVER_0 ; --> No (without flow)
CMP.W #FUNDER_L,R0 ; Underflow value?
JEQ FOVER_1 ; --> Yes (with flow)

FOVER_0:
FCLR C ; Without flow (C flag is cleared)
RTS

;
;///
; Table Data Calculation Subroutine
;
; Function:
; This subroutine calculates the data input in (R2R0) by the double-word table data at
; address indicated by A1A0 as many time as the count of R1L. The calculation result
; is placed in R2, R0 and the C flag is reset to 0. However, if an overflow occurs, the
; C flag is set to 1.
;
; Input: --------------------------------> Output:
;
; R0 (Lower half of operand data) R0 (Lower half of calculation result)
; R1 (R1L = count) R1 (Indeterminate)
; R2 (Upper half of operand data) R2 (Upper half of calculation result)
; R3 () R3 (Indeterminate)
; A0 (Table address) A0 (Indeterminate)
; A1 () A1 (Indeterminate)
;
; Stack amount used: 24 bytes
;///
CO_OPE .EQU –5 ; Area for storing floating data when input
COUNT .EQU –1 ; Counter (used in internal processing)

.FB FBcnst ; Assumes FB register value
;
FCAL:

ENTER #5 ; Allocates internal variables
MOV.B R1L,COUNT[FB] ; Calculation count fi internal variable
MOV.L R2R0,CO_OPE[FB] ; Saves input data

;
MOV.L [A0],R3R1 ; Sets calculation data
ADD.L #4,A0 ; Sets next table pointer

FCAL_LOOP:
JSR FMUL ; Multiplies calculation result by data
JSR FOVERCHK ; Checks for overflow

276

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

JC FCALOVER ; --> Overflow
;

MOV.L [A0],R3R1 ; Sets calculation data
ADD.L #4,A0 ; Sets next table pointer

;
JSR FADD ; Adds calculation result and table data
JSR FOVERCHK ; Checks for overflow
JC FCALOVER ; --> Overflow

;
MOV.L CO_OPE[FB],R3R1

;
DEC.B COUNT[FB] ; Decrements counter by 1
JNE FCAL_LOOP ; --> Continues calculation

;
; Calculation terminated normally
;

FCLR C ; Without flow (C flag is cleared)
EXITD

;
 Overflow occurred
;
FCALOVER:

FSET C ; With flow (C flag is set)
EXITD

;
;///
; Integer Data fi Floating Data Conversion Processing
;
; Function:
; This program converts the integer data input in (R2R0) into floating-point numbers
; and returns the converted data placed in R2, R0.
; Input: --------------------------------> Output:
;
; R0 (Lower half of operand data) R0 (Lower half of calculation result)
; R1 () R1 (Indeterminate)
; R2 (Upper half of operand data) R2 (Upper half of calculation result)
; R3 () R3 (Unused)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
;
; Stack amount used: None
;///
FLOT:

MOV.W R2,R1 ; Changes exponent and mantissa (upper) parts to R1
;

BTST 7,R1H
JNE FLOT_MI ; --> Sign minus

;
CMP.W #0,R0 ; Absolute 0?
JNE FLOT1 ; --> No
CMP.W #0,R1 ; Absolute 0?
JNE FLOT1 ; --> No

;
; Setting absolute 0
;

MOV.L #0,R2R0

277

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

RTS
;
; Setting 96H in exponent part
;
FLOT1:

ROLC.W R1 ; Exponent part fi R1H, sign fi C flag
MOV.B #96H,R1H ; Sets 96H in exponent part
RORC.W R1 ; C flag fi sign, exponent part position adjusted
MOV.W R1,R2 ; Returns exponent and mantissa (upper) parts to R2
JSR FNOR ; Normalization
RTS

;
FLOT_MI:

XOR.W #0FFFFH,R0 ; Inverts data
ADD.W #1,R0 ; Takes 2’s complement
XOR.W #0FFFFH,R1 ; Inverts data
ADCF.W R1 ; Takes 2’s complement
BSET 7,R1H ; Sets negative sign
JMP FLOT1

;
;///
; Floating Data fi Integer Conversion Processing
;
; Function:
; This program converts the floating data input in (R2R0) into integral numbers and
; returns the converted data placed in R2, R0.
;
; Input: --------------------------------> Output:
;
; R0 (Lower half of operand data) R0 (Lower half of calculation result)
; R1 () R1 (Indeterminate)
; R2 (Upper half of operand data) R2 (Upper half of calculation result)
; R3 () R3 (Indeterminate)
; A0 () A0 ()
; A1 () A1 ()
;
; Stack amount used: 1 byte
;///
FIXI:

MOV.W R0,R1 ; Changes mantissa (mid, lower) part to R1
MOV.W R2,R0 ; Changes exponent and mantissa (upper) parts to R0

;
SHL.W #1,R1
ROLC.W R0 ; Adjusts exponent part to high-order bit
PUSHC FLG ; Saves sign (sign = C flag)

;
CMP.B #7FH,R0H ; Data is less than 1?
JGEU FIXI10 ; --> No

; Integer 0 returned when less than 1 & exponent 97H or greater
;
FIXI00:

POPC FLG ; Adjusts stacks
MOV.L #0,R2R0 ; Sets integer 0
RTS

;
FIXI10:

FSET C ; Economized form bit

278

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

RORC.B R0L ; Shifts mantissa part down
RORC.W R1
ADD.B #69H,R0H ; Exponent + 69H
JGEU FIXI00 ; --> Exponent 97H or greater (data over)

FIXI20:
ADD.B #1,R0H ; Exponent + 1
JGEU FIXI30 ; --> Conversion into integer finished (exponent part 0)
SHL.B #-1,R0L ; Shifts mantissa part down

; (0s inserted in high-order bits)
RORC.W R1
JMP FIXI20

;
FIXI30:

POPC FLG ; Restores sign (sign = C flag)
JNC FIXI40 ; --> Sign plus
BSET 7,R0H ; Sets negative sign

FIXI40:
MOV.W R0,R2 ; Sets integer-converted data
MOV.W R1,R0
RTS

;
;///
; Normalization Processing
;
; Function:
; This program normalizes the floating-point data input in (R2R0) and returns the result
; placed in R2, R0.
; Input: --------------------------------> Output:
;
; R0 (Lower half of operand data) R0 (Lower half of calculation result)
; R1 () R1 (Indeterminate)
; R2 (Upper half of operand data) R2 (Upper half of calculation result)
; R3 () R3 (Indeterminate)
; A0 () A0 (Unused)
; A1 () A1 (Unused)
;
; Stack amount used: None
;///
FNOR:

MOV.L R2R0,R3R1 ; Saves operand data in registers
;

XCHG.W R0,R2 ; Changes registers for each other
SHL.W #1,R0 ; Discards sign and adjusts exponent
SHL.B #-1,R0L ; Restores mantissa (upper) part

FNOR0:
CMP.B #1,R0H ; Underflow?
JEQ FNOR_SML ; --> Yes (goes to set minimum value)

;
BTST 6,R0L ; MSB of mantissa part is 1?
JNE FNOR2 ; --> Yes
CMP.W #0,R2 ; Mantissa part is 0?
JNE FNOR1 ; --> No
CMP.B #0,R0L ; Mantissa part is 0?
JEQ FNOR_NON ; --> Yes (“no change” returned)

FNOR1:

279

3
3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

SHL.W #1,R2 ; Shifts mantissa part up
ROLC.B R0L
DEC.B R0H ; Exponent – 1
JMP FNOR0

;
; Economized form bit processing
;
FNOR2:

SHL.W #1,R2 ; Shifts mantissa part up
ROLC.B R0L ; Discards economized form bit
DEC.B R0H ; Sets – 1 in exponent part
SHL.B #1,R0L
SHL.W #1,R3 ; Sign fi C flag
RORC.W R0 ; Sets sign (types of exponent and mantissa (upper)

; parts adjusted)
XCHG.W R0,R2 ; Changes registers for each other
RTS

;
; Setting minimum value
;
FNOR_SML:

MOV.W R3,R2
AND.W #8000H,R2 ; Clears all but sign
OR.W #0080H,R2 ; Sets 1 in exponent part
MOV.W #0,R0 ; Sets minimum value in mantissa part
RTS

;
; Returning “no change”
;
FNOR_NON:

MOV.L R3R1,R2R0 ; Restores operand data
RTS

;
.END

MITSUBISHI SINGLE-CHIP MICROCOMPUTERS

M16C/80 Series

Sample Programs Collection Rev.A

September. First Edition 1999

Editioned by

 Committee of editing of Mitsubishi Semiconductor

Published by

 Mitsubishi Electric Corp., Kitaitami Works

This book, or parts thereof, may not be reproduced in any form without

permission of Mitsubishi Electric Corporation.

1999 MITSUBISHI ELECTRIC CORPORATION

	Chapter 1 Guide to Using This Manual
	1. Guide to Using This Manual
	1.1 Program Configuration
	1.1.1 Outline
	1.1.2 Explanation
	1.1.3 Flowchart
	1.1.4 Program list

	1.2 Guide to Using Programs

	Chapter 2 Collection of General-purpuse Programs
	2.1 Clearing RAM
	2.2 Transferring Blocks
	2.3 Transferring strings
	2.4 Comparing strings
	2.5 Changing Blocks
	2.6 Indirect Subroutine Call
	2.7 Compressing BCD
	2.8 Selecting maximum
	2.9 Selecting minimum
	2.10 Selecting maximum or minimum
	2.11 Calculating Sum-of-Products
	2.12 Processing Bits
	2.13 Comparing 32 Bits
	2.14 Adding 32 Bits
	2.15 Subtracting 32 Bits
	2.16 Multiplying 32 Bits
	2.17 Dividing 32 Bits
	2.18 Dividing 64 Bits
	2.19 Adding BCD
	2.20 Subtracting BCD
	2.21 Multiplying BCD
	2.22 Dividing BCD
	2.23 Converting from HEX Code to BCD Code
	2.24 Converting from HEX Code to BCD Code
	2.25 Converting from BCD Code to HEX Code
	2.26 Converting from BCD Code to HEX Code
	2.27 Converting from Floating-point Number to Binary Number
	2.28 Converting from Binary Number to Floating-point Number
	2.29 Sorting
	2.30 Searching Array
	2.31 Converting from Lowercase Alphabet to Uppercase Alphabet
	2.32 Converting from Uppercase Alphabet to Lowercase Alphabet
	2.33 Converting from ASCII to Hexadecimal Data
	2.34 Converting from Hexadecimal Data to ASCII Code
	2.35 Example for Initial Setting Assembler
	2.36 Special Page Subroutine
	2.37 Special Page Jump
	2.38 Variable Vector Table
	2.39 Saving and Restoring Context

	Chapter 3 Program Collection of Mathematic/Trigonometric Functions
	3.1 Single-precision, Floating-point Format
	3.2 Addition
	3.3 Subtraction
	3.4 Multiplication
	3.5 Division
	3.6 Sine Function
	3.7 Cosine Function
	3.8 Tangent Function
	3.9 Inverse Sine Function
	3.10 Inverse Cosine Function
	3.11 Inverse Tangent Function
	3.12 Square Root
	3.13 Power
	3.14 Exponential Function
	3.15 Natural Logarithmic Function
	3.16 Common Logarithmic Function
	3.17 Data Comparison
	3.18 Conversion from FLOAT Type to WORD Type
	3.19 Conversion from WORD Type to FLOAT Type
	3.20 Program List

