ADVANCED AND EVER ADVANCING MITSUBISHI ELECTRIC

MITSUBISHI 16-BIT SINGLE-CHIP MICROCOMPUTER
M16C FAMILY

! MITSUBISHI
ELECTRIC

Keep safety first in your circuit designs!

¢ Mitsubishi Electric Corporation puts the maximum effort into making semiconductor
products better and more reliable, but there is always the possibility that trouble
may occur with them. Trouble with semiconductors may lead to personal injury, fire
or property damage. Remember to give due consideration to safety when making
your circuit designs, with appropriate measures such as (i) placement of substitutive,
auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any
malfunction or mishap.

Notes regarding these materials

* These materials are intended as a reference to assist our customers in the
selection of the Mitsubishi semiconductor product best suited to the customer’s
application; they do not convey any license under any intellectual property rights, or
any other rights, belonging to Mitsubishi Electric Corporation or a third party.

o Mitsubishi Electric Corporation assumes no responsibility for any damage, or
infringement of any third-party’s rights, originating in the use of any product data,
diagrams, charts or circuit application examples contained in these materials.

« All information contained in these materials, including product data, diagrams and
charts, represent information on products at the time of publication of these
materials, and are subject to change by Mitsubishi Electric Corporation without
notice due to product improvements or other reasons. It is therefore recommended
that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for the latest product information before
purchasing a product listed herein.

The information described here may contain technical inaccuracies or typographical
errors. Mitsubishi Electric Corporation assumes no responsibility for any damage,
liability or other loss rising from these inaccuracies or errors.

* Mitsubishi Electric Corporation semiconductors are not designed or manufactured
for use in a device or system that is used under circumstances in which human life
is potentially at stake. Please contact Mitsubishi Electric Corporation or an autho-
rized Mitsubishi Semiconductor product distributor when considering the use of a
product contained herein for any specific purposes, such as apparatus or systems
for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

¢ The prior written approval of Mitsubishi Electric Corporation is necessary to reprint
or reproduce in whole or in part these materials.

o |f these products or technologies are subject to the Japanese export control
restrictions, they must be exported under a license from the Japanese government
and cannot be imported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of
Japan and/or the country of destination is prohibited.

* Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi
Semiconductor product distributor for further details on these materials or the
products contained therein.

Chapter 1 Guide to Using This Manual

Chapter 2 Collection of General-purpose Programs

Chapter 3 Program Collection of Mathematic/Trigonometric Functions

|U|IGC Fam||y-re|atea aocument |ISt

Usages
(Microcomputer development flow)

Selection of Type of document Contents

microcomputer

Data sheet and Hardware specifications (pin assignment,

o | data book memory map, specifications of peripheral func-

Outline design g tions, electrical characteristics, timing charts)

of system T | User's manual Detailed description about hardware specifica-

@© tions, operation, and application examples

L (connection with peripherals, relationship with

Detail design

software)

of system
o | Programming Method for creating programs using assembly
g manual and C languages
%‘ Software manual Detailed description about operation of each
n instruction (assembly language)

evaluation

M16C Family Line-up
M16C Family = ———— M16C/80 Series —— M16C/80 Group

M16C/60 Series — M16C/60 Group
M16C/61 Group
M16C/62 Group

—— M16C/20 Series —— M16C/20 Group
M16C/21 Group

Chapter 1 Guide to Using This Manual

Table of contents

1.1 Program CONfIQUIALIONcoiiiuiiiiieiiii ittt e e e b e e e s bbb e e e s nbeneeeas 2
1.2 GuUide t0 USING PrOGIAMS ...cooiiiiiiiiiiiititit ettt ettt e e e e e e e e e aibb b e e e e e e e e e e e e e annbbnbeeeeeens 10

Chapter 2 Collection of General-purpose Programs

FUNCHION LISt ... e e e e e e e 14
2.1 CleariNg RAM ..ttt oot e e e e e e e e e e bbb e et e e e e e e e e e e e aaae 16
2.2 Transferring BIOCKSouviiii ittt e 20
2.3 TranSferring STNGSoooiiiiiiii ettt e e e e e e e e e s st b e be e e e e e aaeeeaaaaaaaanns 24
2.4 COMPANNG SIINGS ©eeieeiiiiiiie ittt e e e st e e e s s st b e e e e abbe e e e s e sabbeeeeenannnees 28
2.5 Changing BIOCKScooiiiiie ettt e e e e e 32
2.6 Indirect SUBIOULING Callcooiiiiiiiiiiie e 36
2.7 ComPreSSING BCD ...ttt e e e e e e e e e bbb e e e e e e e e e e e e s e aarane 41
2.8 Selecting MaXIMUIMcoiiiiiie ittt et e e et e e e e et e e e e e aabbe e e e e aneaeee 45
2.9 Selecting MINIMUM ..ot e e e e e e e e e e s e bbb b e b e e e e e e aaeeeasaananns 49
2.10 Selecting Maximum OF MiNIMUMocuuiiiiiiiiiiee et e e eneeeas 53
2.11 Calculating SUM-0Ff-PrOOUCEScoiiiiiiiiiiiiiie ettt e e e e e e e e e saneees 57
2.12 ProCeSSING BilSueiiiiiiiiiiie i 61
2.13 COMPAriNG 32 BitScooiiiiiiiiiiii ettt e e e e e e e s — et e e e e e e e e e e aaaaane 65
P Ao Lo [T G 1A = 11 £ PP PTP PRSPPI 70
2.15 SUDLrACNG 32 BilS.....cciciiiiiiiiiiiie ettt e e e e e e e e b bbb e e e e e e e e e e e e anne 75
2.16 MUIIPIYING 32 BitS ..eeeiiiiiiiieiei ittt ettt e e e s b e e e e e e anees 80
2.17 DiIVIAING 32 BiStieeiieiieiitiee sttt ettt ettt et et e e e sk b e e e be e e e sbb e e e ssb e e e abb e e e sabeeaanbe e e e nnneeeas 84
2.18 DiVIAING B4 BILS ..ieeiiieiiiiiiee et a e e 88
2.19 AAAING BCDooitiiieiiiie ettt ettt ettt bt et a bt e e aab e e st b e e an b e e e nnre e e nanee e 92
2.20 SUDLFACHNG BCDeiiiiiiiiiiie ettt 97
2.21 MUIIPIYING BCD ..ottt ettt et skt e st e nab e e s anne e e saneeas 102
2.22 DIVIAING BCD oottt ettt ettt e e e st bt e e e e b b e e e e s abb et e e e e nbba e e e e e eaae 106
2.23 Converting from HEX Code t0 BCD COUEccceieiiiiiiiiiiiieieeeee e 110
2.24 Converting from HEX Code t0 BCD COUEccocuviiiiiiiiiiiee ettt 114
2.25 Converting from BCD Code t0 HEX COUEcccoiiiiiiiiiiiiiiiieeeee e 118
2.26 Converting from BCD Code t0 HEX COUEcoiiuiiiiiiiiiiiieeiiieee e 122
2.27 Converting from Floating-point Number to Binary Number.............oooociiiis 126
2.28 Converting from Binary Number to Floating-point NUMDber..........cccoceiiiiiiii s 130
A IS T 11 o To PO PPPPPPPPUURT 134
2.30 SEAICHING AFTAYieieiee ittt e e ettt e e e st bt e e s sab b et e e e abbe e e e e s sabbeeeessbbeeeeeeen 138

231
2.32
2.33
2.34
2.35
2.36
2.37
2.38
2.39

Converting from Lowercase Alphabet to Uppercase Alphabetcccooiiiiiiiiinnnnennnn, 142

Converting from Uppercase Alphabet to Lowercase Alphabetcoovveiiieiiveneennnnn. 146
Converting from ASCII to Hexadecimal Dataccoooiiiiiiiiiiiiiieeeeiiiieeeeee e 150
Converting from Hexadecimal Data to ASCI COdecccoviiiiiiiiiiiiiieiiee e 154
Example for Initial Setting ASSEMDBIETooiiiii s 158
Special Page SUBIOULINGeiiiiiiiiie et 162
SPECIAI PAGE JUIMP ..ttt ettt e et e e e e e e e et b e e eeaaae e e e e s 164
RV LA E= L] ST = Tor (o] g 1= o =SS 166
Saving and RESONNG CONEXEuuiiiiiiiiieeiiei ittt e e e e e e aeeeeaaae s 169

Chapter 3 Program Collection of Mathematic/Trigonometric Functions

FUNCHON LIST ... e e e e e e e e e e e e 174
3.1 Single-precision, Floating-point FOrMaLtcoocuiiiiiiiiiiieii e 175
I Vo [111 o o PP POPPPPRPRPRRP 178
IR B 11 o] 1 =T 1o o H PO PPT T POPPPPPTPPPIPR 180
I Y/ 1] 1i] o] [ToF= 1 o] o PP PO PPPPTTTPPUT 182
B 38 I 11/ 11 o T o SRR 184
3.6 SINE FUNCHION ..ottt e e e st e e e s sa e e e e s snr e e e e e s nnnneeeeeeanns 186
I A O 1| T U o Tox 1T o PP PP PPPPTTTPPPPPR 188
3.8 TANGENT FUNCHON ..ottt e e e e e e e et e e e e e e e e e e e e e annnnaaes 190
3.9 INVEISE SINE FUNCLIONuiiiiiiiiiiiee ettt ettt e e st e e e s s bbaeeeeenanes 192
3.10 INVerse COSINE FUNCHONcciiiiiiieiitieie ettt e e e e e e s snneeeeeanes 194
3.11 Inverse Tangent FUNCHONc.uuiii ittt e 196
312 SQUANE ROOT ...ttt s e e e e e e e e e e e e e e e e eeeeeeeeeeaernrerrann s 198
T80 I T 01 S 200
3.14 EXPONential FUNCLIONuuiiiiiiiiiiie ettt e e e e e e e e e e e e e e e e e e s e e nannrenes 202
3.15 Natural LogarithmiC FUNCHONcciiiuiiiiiiiiiiiee et e e 204
3.16 Common LogarithmiC FUNCHON ... 206
3.17 DAt COMPAIISON ...eeiiiiiiiiiee ettt ettt e ettt e e e ettt e e e s st b et e e e st b e e e e e s sabaeeeessabbeeeeeaasbaeeeesanne 208
3.18 Conversion from FLOAT Type t0 WORD TYPEcooiiiiiiiiieiiieeeee it 210
3.19 Conversion from WORD Type t0 FLOAT TYPE ...uuviiiiiiiiiiee ettt 212
.20 Program LISt ...eeeeii ettt ettt e ettt e e e e e e e e e e e bbb e e e e e e e e e e e e e aae 214

Chapter 1

Guide to Using This Manual

1.1 Program Configuration
1.2 Guide to Using Programs

1 Guide to Using This Manual

1.1 Program Configuration

1. Guide to Using This Manual
This manual contains sample programs in Chapter 2, “Collection of General-purpose Programs,” and arith-
metic libraries in Chapter 3, “Collection of Mathematic/Trigonometric Programs.” These programs are ex-
pected to provide you with useful materials that can be referenced when developing M16C/80 series pro-
grams. When actually using the sample programs or arithmetic libraries contained in this manual, please be
sure to verify the operation of your program before putting it to work in your application.

1.1 Program Configuration

Each sample program contained in this manual consists of the following four items:

— (1) Outline
———(2) Explanation
——(3) Flowchart
L (4) Program list

Sample program

The arithmetic libraries each consist of items (1) and (2) above.
The next pages show you how to read each item (1) through (4).

Guide to Using This Manual

1.1 Program Configuration

1.1.1 Outline
The following shows the format of the item “Outline” and how to read it.

3)
(4)

(8)
)

(11)

2 Collection of General-purpose Program

2.13 Comparing 32 Bits

2.13 Comparing 32 Bits
2.13.1 Outline

This program compares 32-bit data between registers.

This program compares 32-bit data between memory locations.

(1) 32-bit comparison (register)

Subroutine name : COMP32 ROM capacity : 3 bytes
Interrupt during execution: Accepted Number of stacks used :None
| [
Register/memory Input Output Usage condition
RO Lower hdlf f conparing detal Does not change “—
R1 Lower helf o comparedddta| Does not change “—
R2 Upper half o comparing dtgy = Does not change “—
R3 Upper hdlf o compareddda| Does not change “—
A0 — — Unused
Al - - Unused
ZIC flag — Compared data “—
Usage precautions

65

(1)

(2)

(5)
(6)

9)
(10)

Guide to Using This Manual

1.1 Program Configuration

(1) Function name
It indicates the name of the function performed.
(2) Outline
It indicates the outline function of the program.
(3) Number of execution cycles
It indicates the number of execution cycles required when the program is executed.
(4) Interrupt during execution

It indicates whether an interrupt will be accepted during program execution. If it indicates “Unac-
cepted,” be sure to disable interrupts before you start executing the program.

(5) ROM capacity
It indicates the ROM capacity required for the program.
(6) Number of stacks used

It indicates the number of stacks required for the program. It does not include the stack capacity
necessary to call the program as a subroutine.

Allocate the stack capacity shown below before executing the program.

Examples: (3), (4), (5), and (6)
Subroutine name : COMP32 ROM capacity : 3 bytes

Interrupt during execution: Accepted Number of stacks used :None

(7) Register/memory

It indicates the registers and memory locations used in the program. Memory locations are allocated
by the names shown here.

Guide to Using This Manual

1.1 Program Configuration

(8) Input
It indicates the input arguments required when executing the program. If any input argument is re-
quired, store the data in the register or memory location to be operated on before executing the
program. If there is no input argument required, a dash “-” will be indicated here.

(9) Output
It indicates the register and memory status after executing the program.
No register or memory is used.
“Does not change”™ The input data stored before executing the program is retained.
“Indeterminate”™. The register or memory content is destroyed by executing the program.
(Returned value): The output return value (result) is stored by executing the program.
(10) Usage condition

It indicates the purpose of use for which a register or memory is used. If an arrow “4—" is shown here,
see the input and output columns.

(11) Usage precautions

It indicates the precautions to be observed for the purposes of data processing.

Examples: (7), (8), (9), (10), and (11)

Register/memory Input Output Usage condition

RO Lower half of conparingceia] Does not change “«—

R1 Lowver helf of conpared caia| Does not change “—

R2 Upper half of conparing cetal Does not change “—

R3 Upper half of conpared ceia]| Does not change “«—

AO —_— — Unused

Al - _ Unused

ZIC flag — Compared data «—

Usage precautions

Guide to Using This Manual

1.1 Program Configuration

1.1.2 Explanation
The following shows the format of the item “Explanation”.

2 Collection of General-purpose Program
2.13Comparing 32 Bits ~ | (1)

2.13.2 Explanation

This program compares 32-bit data between registers. Set the comparing data in R2 and RO and R (2)
the compared data in R3 and R1 beginning with the upper half, respectively. The comparison
result is output to the Z and C flags.

This program compares 32-bit data between memory locations. Set the least significant memory
address of the comparing data and that of the compared data in the address registers. The com-
parison result is output to the Z and C flags.

Meaning

Comparing data < compared data

Comparing data = compared data

o |- [k |0
o[|Oo|N

Comparing data > compared data

(1) Function name
It indicates the name of the function performed.
(2) Explanation

It indicates how the program operates.

1.1.3 Flowchart

Guide to Using This Manual

1.1 Program Configuration

The following shows the format of the item “Flowchart”.

Collection of General-purpose Program

2.13 Comparing 32 Bits |

2.13.3 Flowchart

D

ENTER

Compare

EXIT

(1) Function name

It indicates the name of the function performed.

(2) Flowchart

It indicates the flowchart of the program.

(1)

(2)

1.1.4 Program list

Guide to Using This Manual

1.1 Program Configuration

The following shows the format of the item “Program list” and how to read it.

Collection of General-purpose Program
2.13 Comparing 32 Bits —— (1)

,

2.13.4 Program List

M *
; M16C Program Collection No. 13 *
; CPU : M16C/80 Series *

*
VromTOP .EQU OFEOO000H

[

(2)

; Declares start address of ROM

Title: Comparing 32 bits

Outline: Compares 32-bit data between registers
Input: -----mmmmmmmmm oo oo > Output:

RO (Loner hdf of comparing data) RO
R1 (Lower half of compared data) R1
R2 (Uppe hdf of comparing data) R2
R3 (Uppe hdfofcompared data) R3
A0 () A0
Al () Al
Stack amount used: None

Notes: Result is returned by Z and C flags

(Does not change)
(Does not change) (3)
(Does not change)
(Does not change)
(Unused)
(Unused)

.SECTION PROGRAM,CODE -
.ORG VromTOP ; ROM area
COMP32: ;
CMP.L R2R0,R3R1 ; Compares
RTS

(4)

Title: Comparing 32 bits

Outline: Compares 32 bits between memory locations

Input: ==-=mmmmmmmme e > Output:

RO () RO (Unused)

R1 () R1 (Unused)

R2 () R2 (Unused) (3
R3 () R3 (Unused)

AO (Address of comparing data) AQ
Al (Address of compared data) Al
Stack amount used: None

Notes: Result is returned by Z and C flags —

(Does not change)
(Does not change)

COMPmMemory32:

CMP.L [A0],[A1]
RTS

.END

; Compares

i 4)

69

Guide to Using This Manual

1.1 Program Configuration

(1) Function name
It indicates the name of the function performed.
(2) Initial setup section
This is the program’s initial setup section. Following settings are made here as necessary:
* Declares the start address of a memory area.
* Declares the start address of the program.
* Defines symbols.
« Allocates the memory area.
(3) Specification explanation section

This is the program’s specification explanation section. Program specifications are explained here in
order of the following:

* Title
* Outline
« Storage places and contents of input arguments and output return values
* Stack amount used
* Notes
(4) Program section

Comments about the program are written on the right side of the program list.

1 Guide to Using This Manual
1.2 Guide to Using Programs

1.2 Guide to Using Programs

This manual contains programs in subroutine form and those in routine form. (Refer to Chapter 2, “Func-
tion List”.) Use the programs in subroutine form by calling them from your application program following
the procedure shown below. Use the programs in routine form after incorporating them into your applica-
tion program.

User program

Saving registers

Setting arguments FSIN
JSR FSIN
]] SIN calculation
Calling subroutine (single-precision floating-point form)
Processing results RTS

Restoring registers

Procedure for calling a subroutine

10

Guide to Using This Manual
1.2 Guide to Using Programs

User program

MOV.W WORKZ1[SB],R0 J
........ Sets arguments.

MOV.W WORKZ2[SB],R2

JSR FSIN || e Calls the program as subroutine.
JC SINERR ... Result error? (When in error, jumps to
SIN_ERR.)

Processing result

SIN_ERR: '

Processing error

Example of a subroutine call

11

1 Guide to Using This Manual
1.2 Guide to Using Programs

MEMO

12

Chapter 2

Collection of General-purpuse Programs

Function List

Collection of General-purpose Programs

Function List

Item No. Function Form Page
21 Clearing RAM Routine 16
2.2 Transferring block Routine 20
2.3 Transferring Characters Routine 24
2.4 Comparing Characters Routine 28
25 Changing blocks Routine 32
2.6 Indirect subroutine call SubRoutine 36
2.7 Compressing BCD Routine 41
2.8 Selecting maximum Routine 45
2.9 Selecting minimum Routine 49
2.10 Selecting maximum or minimum Routine 53
211 Caluculating sum-of-products Routine 57
212 Processing bits Routine 61
2.13 Comparing 32 bits SubRoutine 65
2.14 Adding 32 bits SubRoutine 70
215 Subtracting 32 bits SubRoutine 75
2.16 Multiplying 32 bits SubRoutine 80
217 Dividing 32 bits SubRoutine 84
2.18 Dividing 64 bits SubRoutine 88
2.19 Adding BCD SubRoutine 92
2.20 Subtracting BCD SubRoutine 97
2.21 Multiplying BCD SubRoutine 102
2.22 Dividing BCD SubRoutine 106

14

Collection of General-purpose Programs

Function List

Item No. Function Form Page
2.23 Converting from HEX code (1 byte) to BCD code (2 bytes) Subroutine 110
2.24 Converting from HEX code (4 bytes) to BCD code (5 bytes) Subroutine 114
2.25 Converting from BCD code (1 byte) to HEX code (1 byte) Subroutine 118
2.26 Converting from BCD code (4 bytes) to BCD code (4 bytes) Subroutine 122
2.27 Converting from floating number to binary-point number Subroutine 126
2.28 Converting from binary number to floating-point number Subroutine 130
2.29 Sorting Subroutine 134
2.30 Searching array Subroutine 138
2.31 Converting from lowercase alphabets to uppercase alphabets Subroutine 142
2.32 Converting from uppercase alphabets to lowercase alphabets Subroutine 146
2.33 Converting from ASCII code to hexadecimal data Subroutine 150
2.34 Converting from hexadecimal code to ASCI| data Subroutine 154
2.35 Example for initial setting assembler Descrption example| 158
2.36 Special page subroutine Descrption example| 162
2.37 Special page jump Descrption example| 164
2.38 Variable vector table Descrption example| 166
2.39 Saving/restoring context Descrption example| 169

15

2 Collection of General-purpose Programs
2.1 Clearing RAM

2.1 Clearing RAM
2.1.1 Ouitline

This program initializes memory by using a block constant setup instruction (SSTR).

Subroutine name : — ROM capacity :11 bytes
Interrupt during execution: Accepted Number of stacks used :None
Register/memory Input Output Usage condition
RO - " 000016 " Transfer data
R1 — — Unused
R2 — — Unused
R3 — " 000016 " Number of transfers performed
AO — — Unused
Al — Last address at destination | Destination address
Specified area — Transfer data “—
Usage precautions

Memory is initialized in units of words.

16

Collection of General-purpose Programs
2.1 Clearing RAM

2.1.2 Explanation

This program stores 0s in memory in units of words by using a block constant setup instruction (SSTR).
The program sets the transfer data (OH) in RO, the number of transfers performed (half the number of
bytes of the area to be initialized) in R3, and the start address at destination in Al before executing the
SSTR instruction.

17

Collection of General-purpose Programs
2.1 Clearing RAM

2.1.3 Flowchart

==

Set transfer conditions

Excute transfer

o)

18

Collection of General-purpose Programs
2.1 Clearing RAM

2.1.4 Program List

R R T s s s o E g s g s S s e R S S R S R e e s T T S T S S S T S S e 2 e e 2 e e e e e e
’

. *
’

; M16C Program Collection No. 1 *

; CPU : M16C/80 series *

. *
Z**

VramTOP .EQU 000400H ; Declares start address of RAM
VramEND .EQU 002CO00H ; Declares end address of RAM
VromTOP .EQU OFEOOOOH ; Declares start address of ROM

; Title: Clearing RAM
; Outline: Clears RAM using block constant setup instruction

; Input: > Output:
; RO) RO (Transfer data)
; R1L () R1L (Unused)
; R1H () R1H (Unused)
; R2 () R2 (Unused)
; R3) R3 (Indeterminate)
; A0) A0 (Unused)
; Al () Al (Indeterminate)
; Stack amount used: None
; Notes:
.SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area
MOV.W #0,R0 ; Sets transfer data
MOV.W #((VramEND+1)-VramTOP)/2,R3 ; Sets number of transfers performed
MOV.W #VramTOP,Al ; Sets destination address
SSTR.W ; Executes clearing of RAM

.END ;

19

2.2 Transferring Blocks

2.2.1 Outline

Collection of General-purpose Programs

2.2 Transferring Blocks

This program transfers memory contents from one location to another by using a block transfer instruc-

tion (SMOVF).

Subroutine name :

ROM capacity : 14 bytes

Interrupt during execution: Accepted

Number of stacks used : None

Register/memory Input Output Usage condition
RO - — Unused
R1H — - Unused
R1L — — Unused
R2 — — Unused
R3 — " 000016 " Number of transfers performed
AO T Last address at source Source address
Al — Last address at destination | Destination address
BLOCK1 Content of BLOCK1 Does not change <“«—
BLOCK2 Content of BLOCK2 | Content of BLOCK1 “—

Usage precautions

20

2 Collection of General-purpose Programs

2.2 Transferring Blocks

2.2.2 Explanation
This program transfers memory contents from one location to another by using a block transfer instruc-
tion (SMOVF).
The program sets the number of transfers performed in R3, the source’s start address in A0, and the
destinations’s start address in Al before executing the SMOVF instruction.

21

Collection of General-purpose Programs

2.2 Transferring Blocks

2.2.3 Flowchart

=3

Set transfer conditions

Excute transfer

o)

22

Collection of General-purpose Programs

2.2 Transferring Blocks

2.2.4 Program List

R R T s s s o E g s g s S s e R S S R S R e e s T T S T S S S T S S e 2 e e 2 e e e e e e
’

. *
’

; M16C Program Collection No. 2 *
; CPU : M16C/80 series *
. *
z**
VramTOP .EQU 000400H ; Declares start address of RAM
VromTOP .EQU OFEOOOOH ; Declares start address of ROM
.SECTION RAM,DATA
.ORG VramTOP ; RAM area
LENGTH .EQU 10 ; Length of area
BLOCK1: .BLKB LENGTH ; Source area of transfer

BLOCK2: .BLKB LENGTH : Destination area of transfer

; Title: Transferring blocks
; Outline: Example for using block transfer instruction
; Input: > Output:

; ROL () ROL (Unused)
; ROH) ROH (Unused)
; R1L () R1L (Unused)
; R1H () R1H (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Indeterminate)
; A0 () A0 (Indeterminate)
; Al () Al (Indeterminate)
; Stack amount used: None
; Notes:
.SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area
MOV.W #LENGTH,R3 ; Sets number of transfers performed
MOV.L #BLOCK1,A0 ; Sets source address
MOV.L #BLOCK2,A1 ; Sets destination address

SMOVEF.B : Executes transfer of blocks

.END ;

23

2.3 Transferring strings

2.3.1 Outline

Collection of General-purpose Programs

2.3 Transferring strings

This program transfers memory contents(string data) from one location to another by using a string trans-
fer instruction (SMOVU).

Subroutine name :

ROM capacity :

10 bytes

Interrupt during execution : Accepted

Number of stacks :

None

Usage precautions

Register/memory Input Output Usage condition
RO — — Unused
R1 o —_— Unused
R2 —_ — Unused
R3 —_— —_— Unused
A0 —_ Indeterminate Source address
Al — Indeterminate Destination address
STRING1 Content of STRING1 Does not change “—
STRING?2 Content of STRING2 | Content of STRING1 “—

24

2 Collection of General-purpose Programs

2.3 Transferring strings

2.3.2 Explanation
This program transfers memory contents(string data) from one location to another by using a string trans-
fer instruction (SMOVU).
The program sets the source’s start address in AO, and the destinations’s start address in Al before
executing the SMOVU instruction.

25

Collection of General-purpose Programs

2.3 Transferring strings

2.3.3 Flowchart

(o)

Set transfer conditions

Execute transfer

o)

26

2.3.4 Program L ist

Collection of General-purpose Programs

2.3 Transferring strings

skkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkhkkkkkkkkkhkkkhkhkkkkkhkkkhhkkkhkkkkkhkkkkkhkkkkkhkkkkk
’

; M16C Program Collection No. 3

*

*

*

*

skkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkhkkkkkkkkkhkkkhkhkkkkkhkkkkkkkkhkkhkkkhkkkkkhkkkkkhkkkkkx
’

; CPU : M16C/80 series
VramTOP .EQU
VromTOP .EQU
.SECTION
.ORG
LENGTH .EQU
STRING1: .BLKB
.BLKB

STRING2:

000400H ; Declares start address of RAM
OFEOOOOH ; Declares start address of ROM
RAM,DATA

VramTOP ; RAM area

16 ; Length of area

LENGTH ; Source area of string transfer
LENGTH ; Destination area of string transfer

; Title: Transferring strings

; Outline: Example for using string transfer instruction

; Input: > Output:
; ROL () ROL (Unused)
; ROH () ROH (Unused)
; RiL () RiL (Unused)
; R1H () R1H (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 () A0 (Indeterminate)
; Al () Al (Indeterminate)
; Stack amount used: None
; Notes:
.SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area
MOV.L #STRING1,A0 ; Sets source address
MOV.L #STRING2,A1 ; Sets destination address
SMOVU.B ; Executes transfer of strings
.END

27

2 Collection of General-purpose Programs
2.4 Comparing strings

2.4 Comparing strings
2.4.1 Outline

This program compares memory contents(string data) from one locatione to another by using a string
compar instruction(SCMPU).

Subroutine name : S ROM capacity : 10 bytes
Interrupt during execution : Accepted Number of stacks used : None
Register/memory Input Output Usage condition
RO e —_— Unused
R1 — — Unused
R2 — —_ Unused
R3 —_— —_— Unused
A0 —_— Indeterminate Source address
Al —_— Indeterminate Destination address
STRING1 Content of STRING1 | Does not change “—
STRING2 Content of STRING2 | Does not change —
Z flag Result of compare “—
Usage precautions

28

Collection of General-purpose Programs
2.4 Comparing strings

2.4.2 Explanation
This program compares memory contents(string data) from one location to another by using a string
compare instruction(SCMPU).

The program sets the source's start address in A0, and the destinations's start address in Al before
executing the SCMPU instruction.

Z Meaning
0 Mismatch
1 Match

29

Collection of General-purpose Programs
2.4 Comparing strings

2.4.3 Flowchart

==

Set compare conditions

Execute compare

o)

30

2.4.4 Program List

Collection of General-purpose Programs

2.4 Comparing strings

R R T e g s s o E R g s s e s S R S S R S R s T T S S T S T S S S 2 e e 2 e e e e e e
’

; M16C Program Collection No. 4

*

*

*

*

R R T R e s s s e e e g e e s e R S S R e R e s T S T S T S T S S 2 e e 2 e e e e e s
’

; CPU : M16C/80 series
VramTOP .EQU
VromTOP .EQU
.SECTION
.ORG
LENGTH .EQU
STRINGL1: .BLKB
.BLKB

STRING2:

000400H
OFEOOOOH

RAM,DATA
VramTOP
16
LENGTH
LENGTH

; Declares start address of RAM
; Declares start address of ROM

; RAM area

; Length of area

; Source area of string compare

; Destination area of string compare

; Title: Comparing strings

; Outline: Example for using string compare instruction

; Input: > Output:
; ROL) ROL (Unused)
; ROH) ROH (Unused)
; R1L () R1L (Unused)
; R1H () R1H (Unused)
; R2 () R2 (Unused)
; R3) R3 (Unused)
; A0) A0 (Indeterminate)
; Al () Al (Indeterminate)
; Stack amount used: None
; Notes:
.SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area
MOV.L #STRING1,A0 ; Sets source address
MOV.L #STRING2,A1 ; Sets destination address
SCMPU.B ; Executes compare of strings
.END ;

31

2 Collection of General-purpose Programs
2.5 Changing Blocks

2.5 Changing Blocks
2.5.1 Ouitline

This program changes memory contents consisting of the same number of bytes with each other
memory location.

Subroutine name : — ROM capacity : 18 bytes
Interrupt during execution: Accepted Number of stacks used :None
Register/memory Input Output Usage condition
ROL - Last data of BLOCK?2 | Register used for change
ROH — — Unused
R1 — — Unused
R2 — — Unused
R3 — — Unused
AO T * 000016 " Number of transfers performed
Al —_ o Unused
BLOCK1 Content of BLOCK1 | Content of BLOCK2 «“—
BLOCK2 Content of BLOCK2 | Content of BLOCK1 “—
Usage precautions
Memory contents are changed in bytes.

32

Collection of General-purpose Programs
2.5 Changing Blocks

2.5.2 Explanation

This program changes memory contents consisting of the same number of bytes with each other memory

location. An add and conditional branch instruction (ADJNZ) is used to count the number of transfers
performed.

In this program, memory contents basically are changed in bytes. However, if the memory contents to be
changed consist of even bytes, they can be changed in words for increased speed of processing.

33

Collection of General-purpose Programs
2.5 Changing Blocks

2.5.3 Flowchart

=3

Set the number of transfers
performed

<

Change data

Number of transfers No
set completed?

34

Collection of General-purpose Programs
2.5 Changing Blocks

2.5.4 Program List

R R T s s s o E g s g s S s e R S S R S R e e s T T S T S S S T S S e 2 e e 2 e e e e e e
’

. *
’

; M16C Program Collection No.5 *
; CPU : M16C/80 series *
. *
z**
VramTOP .EQU 000400H ; Declares start address of RAM
VromTOP .EQU OFEOOOOH ; Declares start address of ROM
.SECTION RAM,DATA
.ORG VramTOP ; RAM area
LENGTH .EQU 10 ; Length of area
BLOCKI1: .BLKB LENGTH i Area l

BLOCK2: .BLKB LENGTH ; Area 2

; Title: Changing blocks
; Outline: Changes data in units of blocks.
; Input: > Output:

; ROL () ROL (Indeterminate)
; ROH) ROH (Unused)
; R1L () R1L (Unused)
; R1H () R1H (Unused)
; R2 () R2 (Unused)
; R3) R3 (Unused)
; A0 () A0 (Indeterminate)
; Al () Al (Unused)
; Stack amount used: None
; Notes:
.SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area
MOV.B #LENGTH,A0 ; Sets number of transfers performed
LOOP: ;
MOV.B BLOCK1-1[A0],ROL ;
XCHG.B ROL,BLOCK2-1]AQ] ; Changes data
MOV.B ROL,BLOCK1-1[A0] ;
ADJIJNZ.W #-1,A0,LOOP ; --> Looped for the number of transfers performed

.END ;

35

2 Collection of General-purpose Programs
2.6 Indirect Subroutine Call

2.6 Indirect Subroutine Call
2.6.1 Outline

This program executes an indirect subroutine call instruction after setting the relative jump address for
indirect jump. It also executes an indirect subroutine call instruction by using a 24-bit absolute address.

(1) Indirect subroutine call (relative)

Subroutine name : SUBIND_W ROM capacity : 20 bytes
Interrupt during execution:Accepted Number of stacks used :3 bytes
Register/memory Input Output Usage condition
RO — — Unused
R1 — — Unused
R2 — — Unused
R3 e — Unused
AO — Indeterminate Processing status
Al — Indeterminate Processing relative address
MODE Current processing status |[Next processing status “—
Usage precautions

The indirect jump address set here is a relative address.

36

2 Collection of General-purpose Programs
2.6 Indirect Subroutine Call

(2) Indirect subroutine call (absolute)

Subroutine name : SUBIND_A ROM capacity : 27 bytes
Interrupt during execution: Accepted Number of stacks used : 3 bytes
Register/memory Input Output Usage condition
RO - - Unused
R1 — — Unused
R2 — — Unused
R3 — — Unused
AO S Indeterminate Address pointer
Al — — Unused
MODE Current processing status [Next processing status “—
Usage precautions

The indirect jump address set here is a 24-bit absolute address.

37

Collection of General-purpose Programs
2.6 Indirect Subroutine Call

2.6.2 Explanation

For indirect jump based on relative addresses, this program uses an transfer instruction (MOV) to set the
relative jump address for the indirect jump. In this program, since relative addresses are within the range
that can be represented with 8 bits, “.B (byte size)” is used to set the offset data.

For indirect jump based on absolute addresses, this program adds the content of the address register,
with its sign ignored, to the start address of the memory area where 24-bit absolute addresses are stored
and jumps to the memory location (24-bit absolute address) indicated by the result. The memory area in
which to store 24-bit absolute addresses is allocated in units of 3 bytes.

38

2.6.3 Flowchart

Collection of General-purpose Programs

==

2.6 Indirect Subroutine Call

Set status

Set processed addresses

Processing 1

Processing 2

o)

39

Collection of General-purpose Programs

2.6.4 Program List

2.6 Indirect Subroutine Call

skkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkhkkkkkkkkhkkkhkhkkkkkhkkkhkkkkhkkhkkkhkkkkkhkkkkkhkkkkkx

; M16C Program Collection No. 6
CPU : M16C/80 series

*
*

R R T e s s R R E o s g g e s e R S S R e R e e s T S T S T S T S e 2 e e 2 e e e e e e

VramTOP .EQU 000400H ; Declares start address of RAM
VromTOP .EQU OFEOOOOH ; Declares start address of ROM
Vsb .EQU 0400H ; Sets SB
.SECTION RAM,DATA
.ORG VramTOP ; RAM area
MODE .BLKB 1 ; Processing status
MD_0 .EQU 0 ; Status No. 0
MD_1 .EQU 1 ; Status No. 1
; Title: Indirect subroutine call
; Outline: Branches processing using an indirect subroutine call (relative)
; Input: > utput:
; RO RO Unused
; R1 R1 Unused
: R2 R2 Unused
; R3 R3 Unused
; A0 A0 Indeterminate
; Al Al Indeterminate
; Stack amount used: 3 bytes
.SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area
.SB Vsb ; Declares SB register value
.SBSYM MODE ;
SUBIND W: :
‘MOV.B MODE,A0 ;)
MOV.B JUMPaddress[A0],Al1 ; Sets jump address
JUMP_offset: ; .
JSRI.W Al ; Jumps to each processing
RTS ;
MODE_0: :
MOV.B #MD_1,MODE ;
RTS ;
MODE_1: ;
MOV.B #MD_0,MODE ;
RTS ;
JUMPaddress: :
.BYTE MODE_0-JUMP_offset ;
.BYTE MODE_1-JUMP_offset ;
; Title: Indirect subroutine call
; Outline: Branches processing using an indirect subroutine call (absolute).
; Input: > utput:
; RO RO Unused
: R1 R1 Unused
; R2 R2 Unused
; R3 R3 Unused
; A0 A0 Indeterminate)
: Al Al Unused)
; Stack amount used: 3 bytes
SUBIND_A:
MOV.B MODE,AO0 ;
SHL.W #1,A0 ;))
ADD.B MODE,AQ ; Sets jump pointer)
gﬁ_l:\él.A JSRaddress[AOQ] ; Jumps to each processing
JSR_O0: ;
MOV.B #MD_1,MODE ;
RTS ;
JSR_1: :
MOV.B #MD_0,MODE ;
RTS ;
JSRaddress: ;
.AADDR JSR 0 :
ADDR JSR’1 ;
.END

40

2 Collection of General-purpose Programs
2.7 Compressing BCD

2.7 Compressing BCD
2.7.1 Outline
This program converts 2-digit unpacked BCD data into 1-digit packed BCD.

Subroutine name : — ROM capacity : 10 bytes
Interrupt during execution: Accepted Number of stacks used :None
Register/memory Input Output Usage condition
ROL — Packed BCD Used to create data
R1H — — Unused
R1 — — Unused
R2 — — Unused
R3 — — Unused
A0 — — Unused
Al e e Unused
UNPACK_BCDhi |Upper half of unpacked BCD| Does not change —
UNPACK_BCDIlow |Lower half of unpacked BCD| Does not change “—
PACK_BCD — Packed BCD «—
Usage precautions

41

Collection of General-purpose Programs
2.7 Compressing BCD

2.7.2 Explanation

This program converts 2-digit unpacked BCD data into 1-digit packed BCD. Set the 2-digit unpacked
BCD data in a variable area (UNPACK_BCDhi, UNPACK_BCDIlow). When the program is executed, 1-
digit packed BCD data is output to a variable area (PACK_BCD).

The program transfers the low-order 4 bits of the upper digit and the low-order 4 bits of the lower digit of
the unpacked BCD in the high-order and the low-order bits of a data creation register by using a 4-bit
manipulating instruction as it creates packed BCD.

42

Collection of General-purpose Programs
2.7 Compressing BCD

2.7.3 Flowchart

0=

Transfer low-order 4 bits of the
upper digit of unpacked BCD in
high-order bits of register

Transfer low-order 4 bits of the
lower digit of unpacked BCD in
low-order bits of register

Transfer the result to
packed BCD area

o)

43

2.7.4 Program List

Collection of General-purpose Programs
2.7 Compressing BCD

R R T s s s o E g s g s S s e R S S R S R e e s T T S T S S S T S S e 2 e e 2 e e e e e e
’

; M16C Program Collection No. 7

*

*

*

*

R R T R e s s R e E R e g e s S R S S R R R e T S T S T S T S S S 2 e e 2 e e e e e e
’

; CPU : M16C/80 series
VramTOP .EQU
VromTOP .EQU
Vshb .EQU

.SECTION

.ORG
UNPACK_BCDhi: .BLKB
UNPACK_BCDlow: .BLKB

.BLKB

PACK_BCD:

000400H ; Declares start address of RAM
OFEOOOOH ; Declares start address of ROM
0400H ; Sets SB

RAM,DATA

VramTOP ; RAM area

1 ; Upper digit of unpacked BCD

1 ; Lower digit of unpacked BCD

1 : Packed BCD

; Title: Compressing BCD
; Outline: Converts 2-digit unpacked

BCD to 1-digit packed BCD.

; Input: > Output:
; ROL () ROL (Packed BCD)
; ROH) ROH (Unused)
; Ri1L () R1L (Unused)
; R1H () R1H (Unused)
; R2 () R2 (Unused)
; R3) R3 (Unused)
; A0) A0 (Unused)
; Al () Al (Unused)
; Stack amount used: None
; Notes:
.SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area
.SB Vsb ; Declares SB register value
.SBSYM UNPACK_BCDhi ;
.SBSYM UNPACK_BCDlow;
.SBSYM PACK_BCD ;
MOVLH UNPACK_BCDhi,ROL ;
MOVLL UNPACK_BCDlow,ROL ;
MOV.B ROL,PACK_BCD

.END

44

2 Collection of General-purpose Programs

2.8 Selecting maximum

2.8 Selecting maximum
2.8.1 Outline

This program selects maximum from 2 values by using a max. select instruction(MAX).

Subroutine name : —_— ROM capacity : 7 bytes
Interrupt during execution : Accepted Number os stacks used : None
Register/memory Input Output Usage condition
RO o — Unused
R1 S —_ Unused
R2 e — Unused
R3 —_— — Unused
A0 —_— — Unused
Al o — Unused
W_DATAl Word data 1 Indeterminate “—
W_DATA2 Word data 2 Result of max select —
Usage precautions

45

Collection of General-purpose Programs

2.8 Selecting maximum

2.8.2 Explanation
This program selects maximum from 2 values by using a max. select instruction(MAX).

46

Collection of General-purpose Programs

2.8 Selecting maximum

2.8.3 Flowchart

=

Execute max select

o=

a7

Collection of General-purpose Programs

2.8 Selecting maximum

2.8.4 Program List

R R T e g s s o E R g s s e s S R S S R S R s T T S S T S T S S S 2 e e 2 e e e e e e
’

. *
’

; M16C Program Collection No. 8 *
; CPU : M16C/80 series *
. *
z**
VramTOP .EQU 000400H ; Declares start address of RAM
VromTOP .EQU OFEOOOOH ; Declares start address of ROM
.SECTION RAM,DATA
.ORG VramTOP ; RAM area
W_DATAL: .BLKW 1 ; Source area of max select

W_DATAZ2: .BLKW 1 ; Destination area of max select

; Title: Selecting maximum
; Outline: Example for using max select instruction
; Input: > Output:

; ROL) ROL (Unused)
; ROH) ROH (Unused)
; R1L () R1L (Unused)
; R1H () R1H (Unused)
; R2 () R2 (Unused)
; R3) R3 (Unused)
; A0) A0 (Unused)
; Al () Al (Unused)
; Stack amount used: None
; Notes:
.SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area
MAX.W W_DATAL1,W_DATA2 ; Executes max select

.END

48

2 Collection of General-purpose Programs

2.9 Selecting minimum

2.9 Selecting minimum
2.9.1 Outline

This program selects minimum from 2 values by using a min. select instruction(MIN).

Subroutine name : —_— ROM capacity : 7 bytes
Interrupt during execution : Accepted NUmber of stacks used : None
Register/memory Input Output Usage condition
RO — S Unused
R1 — —_ Unused
R2 — — Unused
R3 — —_— Unused
A0 — — Unused
Al —_— S Unused
W_DATAl Word data 1 Indeterminate “—
W_DATAZ2 Word data 2 Result of min select “—
Usage precautions

49

Collection of General-purpose Programs

2.9 Selecting minimum

2.9.2 Explanation
This program selects minimum from 2 values by using a min. select instruction(MIN).

50

Collection of General-purpose Programs

2.9 Selecting minimum

2.9.3 Flowchart

==

Execute min select

o=

51

Collection of General-purpose Programs

2.9.4 Program List

2.9 Selecting minimum

R R T E e s s E o s g e s e R S S R e R e T S T S S S T S S 2 e e 2 e e e e s s
’

; M16C Program Collection No. 9

*

*

*

*

; Declares start address of RAM
; Declares start address of ROM

: RAM area
; Source area of min select

; CPU : M16C/80 series
Z**
VramTOP .EQU 000400H
VromTOP .EQU OFEOOOOH

.SECTION RAM,DATA

.ORG VramTOP
W_DATAL: .BLKW 1

.BLKW 1

W_DATA2:

; Destination area of min select

; Title: Selecting minimum
; Outline: Example for using minselect instruction

; Input: > Output:
; ROL) ROL (Unused)
; ROH) ROH (Unused)
; R1L () R1L (Unused)
; R1H () R1H (Unused)
; R2 () R2 (Unused)
; R3) R3 (Unused)
; A0) A0 (Unused)
; Al () Al (Unused)
; Stack amount used: None
; Notes:
.SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area
MIN.W W_DATA1,W_DATA2 ; Executes min select

.END

52

2 Collection of General-purpose Programs

2.10 Selectiong maximum or minimum

2.10 Selecting maximum or minimum
2.10.1 Outline

This program selects maximum or minimum by using CLIP instruction.

Subroutine name : — ROM capacity : 9 bytes
Interrupt during execution : Accepted Number of stacks used : None
Register/memory Input Output Usage condition
RO — — Unused
R1 — — Unused
R2 — — Unused
R3 — — Unused
A0 — — Unused
Al — — Unused
W_DATA Word data Result of select max or min “—
Usage precautions

53

2 Collection of General-purpose Programs

2.10 Selectiong maximum or minimum

2.10.2 Explanation
This program selects maximum or minimum by using CLIP instruction.
CLIP.B/W immediatel,immediate2,dest
Singed compares immediatel and dest and stores the content of immediatel in dest if immediatel is

greater than dest. Next, signed compares immediate2 and dest and stores of immediate2 in dest if imme-
diate2 is smmaller than dest. When immediatel < dest < immediate2, dest is not changed.

54

Collection of General-purpose Programs

2.10 Selectiong maximum or minimum

2.10.3 Flowchart

==

Execute max or min select

=

55

2.10.4 Program List

skkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkhkkkkkkkkkhkkkhkhkkkkkhkkkkhkkkkhkkkkkhkkkkkhkkkkkhkkkkkx
’

Collection of General-purpose Programs

M16C Program Collection No. 10

CPU

: M16C/80 series

2.10 Selectiong maximum or minimum

*

*

*

*

skkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkhkkkkkkkkkhkkkhkhkkkkkhkkkhkkkkhkkhkkkhkkkkkhkkkkkhkkkkkx
’

VramTOP
VromTOP

EQU
.EQU

.SECTION
.ORG
.BLKW

000400H ; Declares start address of RAM
OFEOOOOH ; Declares start address of ROM
RAM,DATA

VramTOP : RAM area

1 : Destination area of max or min select

Title: Selecting maximum or minimum
Outline: Example for using max or min select instruction

>

Input:
ROL ()
ROH ()
R1L ()
R1H ()
R2 ()
R3 ()

()

()

Output:

ROL (Unused)
ROH (Unused)
RiL (Unused)
R1H (Unused)
R2 (Unused)
R3 (Unused)

A0 A0 (Unused)
Al Al (Unused)
Stack amount used: None
Notes:
.SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area
CLIP.W #-1,#1,W_DATA ; Executes max or min select

.END

56

2.11 Calculating Sum-of-Products

2.11.1 Ouitline

Collection of General-purpose Programs
2.11 Calculating Sum-of-Products

This program calculates a sum of products using a sum-of-products calculating instruction (RMPA).

Subroutine name :

ROM capacity : 23 bytes

Interrupt during execution: Accepted

Number of stacks used :None

Register/memory Input Output Usage condition
RO - Result of sum-of-products calculation| Used for calculation
R1 — Result of sum-of-products calculation| Used for calculation
R2 — Result of sum-of-products calculation| Used for calculation
R3 — " 000016 " Number of some-of-products
A0 — Last address of multiplicand| Multiplicand address
Al —_ Last address of multiplier] Multiplier address
DATA11 to 13 Multiplicand Does not change “—
DATAZ21 to 23 Multiplier Does not change “—
ANS — Result of sum-of-products calculation “—

Usage precautions

57

Collection of General-purpose Programs
2.11 Calculating Sum-of-Products

2.11.2 Explanation

This program calculates a sum of products using a sum-of-products calculating instruction (RMPA). Set
the multiplier in a variable area (DATA11-13) and the multiplicand in a variable area (DATA21-23). The
result of sum-of-products calculation is output to a variable area (ANS).

The program sets the number of sum-of-products in R3, the multiplicand address in A0, and the multiplier
address in Al before executing the RMPA instruction.

58

Collection of General-purpose Programs
2.11 Calculating Sum-of-Products

2.11.3 Flowchart

==

Set sum-of-products
calculation condition

Execute sum-of-products
calculation

Set calculation result

o)

59

Collection of General-purpose Programs
2.11 Calculating Sum-of-Products

2.11.4 Program List

R R T s s s o E g s g s S s e R S S R S R e e s T T S T S S S T S S e 2 e e 2 e e e e e e
’

. *
’

; M16C Program Collection No. 11 *
; CPU : M16C/80 series *
. *
;**
VramTOP .EQU 000400H ; Declares start address of RAM
VromTOP .EQU OFEOOOOH ; Declares start address of ROM
Vshb .EQU 0400H ; Sets SB
.SECTION RAM,DATA
.ORG VramTOP ; RAM area
DATA11: .BLKB 1 ; Multiplicand 1
DATA12: .BLKB 1 ; Multiplicand 2
DATA13: .BLKB 1 ; Multiplicand 3
DATA21: .BLKB 1 ; Multiplier 1
DATA22: .BLKB 1 ; Multiplier 2
DATAZ23: .BLKB 1 ; Multiplier 3
ANS: .BLKB 6 ; Result of sum-of-products calculation

; Title: Calculating sum-of-products
; Outline: Calculates a sum of products.

; Input: > Output:
; RO () RO (Calculation result)
; R1 () R1 (Calculation result)
; R2 () R2 (Calculation result)
; R3 () R3 (Indeterminate)
; A0 () A0 (Indeterminate)
; Al () Al (Indeterminate)
; Stack amount used: None
; Notes:
.SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area
.SB Vsb ; Declares SB register value
.SBSYM ANS ;
MOV.L #0,R2R0 ; Initializes calculation area
MOV.W #0,R1 ;
MOV.W #3,R3 ; Sets number of sum-of-products
MOV.L #DATA11,A0 ; Multiplicand address
MOV.L #DATA21,A1 ; Multiplier address
RMPA.B ; Executes sum-of-products calculation
MOV.L R2R0,ANS ; Sets calculation result
MOV.W R3,ANS+4 ;
.END ;

60

2.12 Processing Bits

2.12.1 Outline

This program processes bits.

Collection of General-purpose Programs

2.12 Processing Bits

Subroutine name :

ROM capacity : 33 bytes

Interrupt during execution: Accepted

Number of stacks used :None

Register/memory Input Output Usage condition
RO — - Unused
R1 — — Unused
R2 — — Unused
R3 — — Unused
AO — — Unused
Al — — Unused

Usage precautions

61

2 Collection of General-purpose Programs
2.12 Processing Bits

2.12.2 Explanation

This program uses bit processing instructions (BTSTC, BTST, BNTST) and condition store instructions
(STZ, STZX) to perform its function. When it is executed, a value is output to PORT1, or PORT2 that
corresponds to the bit content of a variable area (FLAG1).

62

Collection of General-purpose Programs
2.12 Processing Bits

2.12.3 Flowchart

(o)

Requested? No
(Request cleared)

Yes

Content of F_|Odatal

A

0

O_IOdatal < O o lodatal < 1

Content of F_|Odata2

i

Output "FFH" to PORT1

Content of F_IOdata3

I,

Output "55H" to PORT2 Output "AAH" to PORT2

< v

o)

63

Collection of General-purpose Programs
2.12 Processing Bits

2.12.4 Program List

R R T s s s o E g s g s S s e R S S R S R e e s T T S T S S S T S S e 2 e e 2 e e e e e e
’

. *
’

; M16C Program Collection No. 12 *
; CPU : M16C/80 series *
. *
z**
VramTOP .EQU 000400H ; Declares start address of RAM
VromTOP .EQU OFEOOOOH ; Declares start address of ROM
; SFR area
PORTO .EQU 003EOH : PORTO
O_lOdatal .BTEQU 0,PORTO :
PORT1 .EQU 003E1H ;: PORT1
PORT2 .EQU 003E4H ;. PORT2
.SECTION RAM,DATA
.ORG VramTOP ; RAM area
FLAGI1: .BLKB 1 ;
F REQ .BTEQU 0,FLAG1 ; Output request flag
F_lOdatal .BTEQU 1,FLAG1 ;
F_lOdata2 .BTEQU 2,FLAG1 ;
F_lOdata3 .BTEQU 3,FLAG1 ;

; Title: Setting bit after accepting event
; Outline: Outputs memory content only when requested by other process
; Input: > Output:

; ROL () ROL (Unused)
; ROH () ROH (Unused)
; Ri1L () R1L (Unused)
; R1H () R1H (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 () A0 (Unused)
; Al () Al (Unused)
; Stack amount used: None
; Notes:
.SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area
BTSTC F REQ ; Confirms and clears request
JEQ BITsetEXIT ; --> No request
BTST F_lOdatal ; Checks memory content
BMC O_IOdatal ; Outputs memory content
BNTST F_lOdata2 ; Checks memory content
STZ.B #0FFH,PORT1 ; Outputs “FF” if memory content =1
BTST F_lOdata3 ; Checks memory content
STZX.B #055H,#0AAH,PORT2 ; Outputs “55": memory content =0, “AA”: memory content = 1

BITsetEXIT:

.END ;

64

2 Collection of General-purpose Programs
2.13 Comparing 32 Bits

2.13 Comparing 32 Bits
2.13.1 Ouitline

This program compares 32-bit data between registers.
This program compares 32-bit data between memory locations.

(1) 32-bit comparison (register)

Subroutine name : COMP32 ROM capacity : 3 bytes
Interrupt during execution: Accepted Number of stacks used :None
Register/memory Input Output Usage condition
RO Lower half of comparing dataj Does not change <“«—
R1 Lower half of compared dataj Does not change “—
R2 Upper half of comparing dataj Does not change “—
R3 Upper half of compared data| Does not change “—
AO N —_ Unused
Al — - Unused
ZIC flag — Compared data “—
Usage precautions

65

2 Collection of General-purpose Programs
2.13 Comparing 32 Bits

(2) 32-bit comparison (memory)

Subroutine name : COMPmemory32 ROM capacity : 3 bytes
Interrupt during execution:Accepted Number of stacks used : None
Register/memory Input Output Usage condition

RO - - Unused
R1 — — Unused
R2 — — Unused
R3 — — Unused
AO Address of comparing data| Does not change “—
Al Address of compared data| Does not change “—

Memory indicated by AO Comparing Does not change “—

Memory indicated by Al Compared Does not change “—

ZIC flag — Comparison result “—
Usage precautions

66

Collection of General-purpose Programs
2.13 Comparing 32 Bits

2.13.2 Explanation

This program compares 32-bit data between registers. Set the comparing data in R2 and RO and the
compared data in R3 and R1 beginning with the upper half, respectively. The comparison result is output
to the Z and C flags.

This program compares 32-bit data between memory locations. Set the least significant memory address
of the comparing data and that of the compared data in the address registers. The comparison result is
output to the Z and C flags.

Meaning

Comparing data < compared data

Comparing data = compared data

olr|rr|0O
o|lr |o|N

Comparing data > compared data

67

Collection of General-purpose Programs
2.13 Comparing 32 Bits

2.13.3 Flowchart

(v)

Compare

o)

68

Collection of General-purpose Programs
2.13 Comparing 32 Bits

2.13.4 Program List

R R T s s s o E g s g s S s e R S S R S R e e s T T S T S S S T S S e 2 e e 2 e e e e e e
’

. *
’

; M16C Program Collection No. 13 *
; CPU : M16C/80 series *
. *
rhkkkkkkkkkkkhkhkkkkhkhkhkhkhkkhhhhkhkhkhkhkhkhhhkhkhkhkhkhkkhkhhhkhkhhkhhhkhhkhkhhhhkhkhhhkhkhkhhhkhhhhkhhkhhkhkhhkhhhhkhhkhkhhhkhkkx

VromTOP .EQU OFEOOOOH ; Declares start address of ROM

; Title: Comparing 32 bits
; Outline: Compares 32-bit data between registers.

; Input: > Output:

; RO (Lower half of comparing data) RO (Does not change)
; R1 (Lower half of compared data) R1 (Does not change)
; R2 (Upper half of comparing data) R2 (Does not change)
; R3 (Upper half of compared data) R3 (Does not change)
; A0 () A0 (Unused)

; Al () Al (Unused)

; Stack amount used: None
; Notes: Result is returned by Z and C flags.

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
COMP32: ;

CMP.L R2R0,R3R1 ; Compares

RTS ;

; Title: Comparing 32 bits
; Outline: Compares 32 bits between memory locations.

; Input: > Output:

; RO () RO (Unused)
; R1 () R1 (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)

; AO (Address of comparing data) AO (Does not change)
; Al (Address of compared data) Al (Does not change)
; Stack amount used: None

; Notes: Result is returned by Z and C flags.

COMPmMemory32: ;
CMP.L [AO],[A1L] ; Compares
RTS ;

.END ;

69

2.14 Adding 32 Bits

2.14.1 Outline

This program performs a 32-bit addition using registers.
This program performs a 32-bit addition between memory locations.

(1) 32-bit addition (register)

Collection of General-purpose Programs

2.14 Adding 32 Bits

Subroutine name : ADDITION32

ROM capacity : 3 bytes

Interrupt during execution:Accepted

Number of stacks used :None

Register/memory Input Output Usage condition

RO Lower half of augend |Lower half of addition result “—
R1 Lower half of addend Does not change “—
R2 Upper half of augend |Upper half of addition result “—
R3 Lower half of addend Does not change “—
A0 S _ Unused
Al — — Unused

C flag — Carry information “—

Usage precautions

The augend is destroyed as a result of program execution.

70

(2) 32-bit addition (memory)

Collection of General-purpose Programs
2.14 Adding 32 Bits

Subroutine name : ADDITIONmemory32

ROM capacity : 3 bytes

Interrupt during execution: Accepted

Number of stacks used : None

Register/memory Input Output Usage condition

RO - - Unused

R1 — — Unused

R2 — — Unused

R3 e — Unused
A0 Augend address Does not change “—
Al Addend address Does not change “—
Memory indicated by AO Augend Result of addition “«—
Memory indicated by A1 Addend Does not change “—
C flag — Carry information “—

Usage precautions

The augend is destroyed as a result of program execution.

71

Collection of General-purpose Programs
2.14 Adding 32 Bits

2.14.2 Explanation

This program performs a 32-bit addition using registers. Set the augend in R2 and RO and the addend in
R3 and R1 beginning with the upper half, respectively. The addition result is output to R2 and RO begin-
ning with the upper half and carry information to the C flag, respectively.

This program performs a 32-bit addition between memory locations. Set the least significant memory
address of the augend and that of the addend in the address registers. The addition result is output to the
augend’s memory location and carry information to the C flag, respectively.

C Meaning

0 | Without carry

With carry

72

Collection of General-purpose Programs
2.14 Adding 32 Bits

2.14.3 Flowchart

(o)

Add

or)

73

2.14.4 Program List

Collection of General-purpose Programs
2.14 Adding 32 Bits

R R T s s s o E g s g s S s e R S S R S R e e s T T S T S S S T S S e 2 e e 2 e e e e e e
’

*

; M16C Program Collection No. 14 *
; CPU : M16C/80 series *
. *
z**
.EQU OFEOOOOH ; Declares start address of ROM

VromTOP

; Title: Adding 32 bits

; Outline: Adds 32-bit data using registers.

; Input: > Output:

; RO (Lower half of augend) RO (Lower half of addition result)
; R1 (Lower half of addend) R1 (Does not change)

; R2 (Upper half of augend) R2 (Upper half of addition result)

; R3 (Upper half of addend) R3 (Does not change)
; A0 () A0 (Unused)
; Al () Al (Unused)
; Stack amount used: None
; Notes: Carry information in C flag
; R2R0O + R3R1
.SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area
ADDITION32: ;
ADD.L R3R1,R2R0O ; Adds
RTS ;
; Title: Adding 32 bits
; Outline: Adds 32-bit data between memory locations
; Input: > Output:
; RO () RO (Unused)
; R1 () R1 (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 (Augend address) A0 (Does not change)
; Al (Addend address) Al (Does not change)
; Stack amount used: None
; Notes: Carry information in C flag
; (AO) + (A1)
ADDITIONmemory32: ;
ADD.L [A1],[A0] ; Adds
RTS ;
.END ;

74

2.15 Subtracting 32 Bits

2.15.1 Ouitline

This program performs a 32-bit subtraction using registers.
This program performs a 32-bit subtraction between memory locations.

(1) 32-bit subtraction (register)

Collection of General-purpose Programs

2.15 Subtracting 32 Bits

Subroutine name : SUBTRACT32

ROM capacity : 3 bytes

Interrupt during execution:Accepted

Number of stacks used :None

Register/memory Input Output Usage condition

RO Lower half of minuend |Lower half of subtraction result “—
R1 Lower half of subtrahend| Does not change “—
R2 Upper half of minuend |Upper half of subtraction result “—
R3 Upper half of subtrahend| Does not change “—
A0 S _ Unused
Al — — Unused

C flag — Borrow information “—

Usage precautions

The minuend is destroyed as a result of program execution.

75

Collection of General-purpose Programs

2.15 Subtracting 32 Bits

(2) 32-bit subtraction (memory)

Subroutine name : SUBTRACTmemory32

ROM capacity : 3 bytes

Interrupt during execution: Accepted

Number of stacks used : None

Register/memory Input Output Usage condition

RO - - Unused

R1 — — Unused

R2 — — Unused

R3 e — Unused
A0 Minuend address Does not change “—
Al Subtrahend address Does not change “—
Memory indicated by AO Minuend Subtraction result “—
Memory indicated by A1 Subtrahend Does not change “—
C flag — Borrow information <“«—

Usage precautions

The minuend is destroyed as a result of program execution.

76

Collection of General-purpose Programs
2.15 Subtracting 32 Bits

2.15.2 Explanation

This program performs a 32-bit subtraction using registers. Set the minuend in R2 and RO and the
subtrahend in R3 and R1 beginning with the upper half, respectively. The subtraction result is output to
R2 and RO beginning with the upper half and borrow information to the C flag, respectively.
This program performs a 32-bit subtraction between memory locations. Set the least significant memory
address of the minuend and that of the subtrahend in the address registers. The subtraction result is
output to the minuend’s memory location and borrow information to the C flag, respectively.

Meaning
With borrow
Without borrow

77

Collection of General-purpose Programs
2.15 Subtracting 32 Bits

2.15.3 Flowchart

(o)

Subtract

or)

78

2.15.4 Program List

Collection of General-purpose Programs
2.15 Subtracting 32 Bits

R R T s s s o E g s g s S s e R S S R S R e e s T T S T S S S T S S e 2 e e 2 e e e e e e
’

*

; M16C Program Collection No. 15 *
; CPU : M16C/80 series *
. *
Z**
.EQU OFEOOOOH ; Declares start address of ROM

VromTOP

; Title: Subtracting 32 bits

; Outline: Subtracts 32-bit data using registers.

; Input: > Output:
; RO (Lower half of minuend) RO (Lower half of subtraction result)
; R1 (Lower half of subtrahend) R1 (Does not change)
; R2 (Upper half of minuend) R2 (Upper half of addition result)
; R3 (Upper half of subtrahend) R3 (Does not change)
; A0 () A0 (Unused)
; Al () Al (Unused)
; Stack amount used: None
; Notes: Borrow information in C flag
; R2R0 - R3R1
.SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area
SUBTRUCT32: ;
SUB.L R3R1,R2R0 ; Subtracts
RTS ;

; Title: Subtracting 32 bits

; Outline: Subtracts 32-bit data between memory locations

; Input:

; RO ()
; R1 ()
; R2 ()
: R3 ()

; AO (Minuend address)

; Al (Subtrahend address)Al
; Stack amount used: None

—~ A~~~

> Output:

RO (Unused)

R1 (Unused)

R2 (Unused)

R3 (Unused)

AO (Does not change)
(Does not change)

; Notes: Borrow information in C flag

; (AO) - (A1)
SUBTRACTmemory32: ;
SUB.L [A1],[AQ] ; Subtracts
RTS ;
.END ;

79

Collection of General-purpose Programs

2.16 Multiplying 32 Bits

2.16.1 Outline

This program performs a 32-bit unsigned multiplication using registers.

2.16 Multiplying 32 Bits

Subroutine name : MULTIPLE32

ROM capacity : 39 bytes

Interrupt during execution: Accepted

Number of stacks used :6 bytes

Register/memory

Input

Output

Usage condition

RO Lower half of multiplicand | Lower part of multiplication result “—
R1 Lower half of multiplier | Upper part of multiplication result “—
R2 Upper half of multiplicand | Middle part of multiplication result “—
R3 Upper half of multiplier|Mostsignificant part of multiplication resuf “—
AO — Indeterminate Used for storing data
Al — Indeterminate Used for storing data

Usage precautions

The multiplication result is output to R3, R1, R2, and RO beginning with its most significant part.
Both multiplier and multiplicand are destroyed as a result of program execution.

80

Collection of General-purpose Programs
2.16 Multiplying 32 Bits

2.16.2 Explanation

This program performs a 32-bit unsigned multiplication using registers. Set the multiplicand in R2 and RO
beginning with the upper half and the multiplier in R3 and R1, respectively. The multiplication result is
output to R3, R1, R2, and RO beginning with its most significant part.

In this program, both multiplier and multiplicand are divided into the upper and lower halves (16 bits each)
as they are multiplied. The results are added to produce a 64-bit calculation result.

81

Collection of General-purpose Programs
2.16 Multiplying 32 Bits

2.16.3 Flowchart

(o)

Save multiplier

Multiply upper half of multiplicand by
lower half of multiplier

Move calculation result to
intermediate calculation value

Multiply lower half of multiplicand by
upper half of multiplier

Add calculation result to
intermediate calculation value

Multiply upper half of multiplicand
by upper half of multiplier

Add carry to the most
significant bit

Multiply lower half of multiplicand by
lower half of multiplier

Add calculation result to
intermediate calculation value

(e)

82

Collection of General-purpose Programs
2.16 Multiplying 32 Bits

2.16.4 Program List

R R T s s s o E g s g s S s e R S S R S R e e s T T S T S S S T S S e 2 e e 2 e e e e e e
’

. *
’

; M16C Program Collection No. 16 *
; CPU : M16C/80 series *
. *
rhkkkkkkkkkkkhkhkkkkhkhkhkhkhkkhhhhkhkhkhkhkhkhhhkhkhkhkhkhkkhkhhhkhkhhkhhhkhhkhkhhhhkhkhhhkhkhkhhhkhhhhkhhkhhkhkhhkhhhhkhhkhkhhhkhkkx

VromTOP .EQU OFEOOOOH ; Declares start address of ROM

; Title: Multiplying 32 bits
; Outline: Multiplies 32-bit data together using registers

; Input: > Output:

; RO (Lower half of multiplicand) RO (Lower part of multiplication result)

; R1 (Lower half of multiplier) R1 (Upper part of multiplication result)

; R2 (Upper half of multiplicand) R2 (Middle part of multiplication result)

; R3 (Upper half of multiplier) R3 (Most significant part of multiplication result)
; A0 () A0 (Indeterminate)

; Al () Al (Indeterminate)

; Stack amount used: 6 bytes

; Notes: R2R0 X R3R1

; Calculation result is output in order of R3, R1, R2, and RO beginning with the most
significant bits.

.SECTION PROGRAM,CODE

.org VromTOP ; ROM area
MULTIPLE32: ;
PUSH.W R1 ; Saves lower half of multiplier
PUSH.W R3 ; Saves upper half of multiplier
PUSH.W R3 ; Saves upper half of multiplier
MULU.W R2,R1 ; Multiplies upper half of multiplicand by lower half of multiplier
MOV.W R3,Al ; Saves calculation result
MOV.W R1,A0 ;
POP.W R1 ; Restores upper half of multiplier
MULU.W RO,R1 ; Muttiplies lower half of multiplicand by upper half of multiplier
ADD.W R1,A0 ; Adds to intermediate calculation value and saves result
ADC.W R3,Al1 ; Holds carry until next addition is made
POP.W R1 ; Restores upper half of multiplier
MULU.W R2,R1 ; Multiplies upper half of multiplicand by upper half of multiplier
ADCF.W R3 ; Adds carry to the most significant bit
POP.W R2 ; Restores lower half of multiplier
MULU.W R2,RO ; Multiplies lower half of multiplicand by lower half of multiplier
ADD.W AO,R2 ; Adds intermediate value to middle part
ADC.W Al,R1 ; Adds intermediate value to upper part
ADCF.W R3 ; Adds carry to the most significant bit
RTS ;
.END ;

83

2.17 Dividing 32 Bits

2.17.1 Outline

Collection of General-purpose Programs

This program performs a 32-bit unsigned division using registers.

2.17 Dividing 32 Bits

Subroutine name : DIVIDE32

ROM capacity : 47 bytes

Interrupt during execution:Accepted

Number of stacks used :3 bytes

Register/memory Input Output Usage condition
RO Lower half of dividend | Lower half of quotient “—
R1 Lower half of divisor Does not change “—
R2 Upper half of dividend | Upper half of quotient “—
R3 Upper half of divisor Does not change “—
A0 — Lower half of remainder —
Al — Upper half of remainder “—
CNT — Indeterminate Number of shifts performed
Z flag — Zero divide information “«—

Usage precautions

CNT is allocated in a stack area by configuring a stack frame as a temporary variable area in the
program. Therefore, the value of CNT when program execution is completed is indeterminate.
The dividend is destroyed as a result of program execution.

84

Collection of General-purpose Programs
2.17 Dividing 32 Bits

2.17.2 Explanation

This program performs a 32-bit unsigned division using registers. Set the dividend in R2 and RO and the
divisor in R3 and R1 beginning with the upper half, respectively. The quotient and the remainder are
output to R2 and R3, and to A1 and AO beginning with the upper half, respectively. The zero divide
information is output to the Z flag.

In this program, the dividend is pushed out one bit at a time beginning with the most significant bit as the
program creates a dividend for calculation purposes and the divisor is subtracted from that data to get the
guotient beginning with the most significant bit. The quotient and the remainder are obtained by repeat-
ing this operation as many times as the number of bits in the dividend.

Meaning

0 | Quotient and remainder are valid.

Quotient and remainder are invalid because division by zero is attempted.

85

Collection of General-purpose Programs
2.17 Dividing 32 Bits

2.17.3 Flowchart

(enter)

Initialize remainder area

Yes

Zero division?

No

Sets number of shifts to be
performed

<

Create shift dividend and
carry quotient

Shift dividend - divisor
--> Shift dividend

Set quotient

Could be subtracted?

Shift dividend + divisor
--> Shift dividend

Number of shifts set
completed?

Division succeeded
Clear Z flag

(EXT)

86

Collection of General-purpose Programs
2.17 Dividing 32 Bits

2.17.4 Program List

skkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkhkkkkkkkkkhkkkhkhkkkkkhkkkhhkkkhkkkkkhkkkkkhkkkkkhkkkkk

*

; M16C Program Collection No. 17 *
; CPU : M16C/80 series *

*
Z**
VromTOP .EQU OFEOOOOH ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value

Title: Dividing 32 bits
Outline: Divides 32-bit data together using registers

Input: > Output:

RO (Lower half of dividend) RO (Lower half of quotient)
R1 (Lower half of divisor) R1 (Lower half of divisor)

R3 (Upper half of divisor) R3 (Upper half of divisor)
A0 () AO (Lower half of remainder)
Al () Al (Upper half of remainder)

Stack amount used: 3 bytes
Notes: R2R0O, R3R1
Division by zero is returned by Z flag.

: R2 (Upper half of dividend) R2 (Upper half of quotient)

.SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area
.FB FBcnst ; Assumes FB register value

DIVIDE32: ;

; Declaration of temporary variable ;

CNT .EQU -1 ; Shift count counter
ENTER #1 ; Sets stack frame
MOV.B #0,A0 ; Initializes remainder area
MOV.B #0,A1 ;
CMP.W #0,R1 ;
JNE DIVIDE32_10 ;
CMP.W #0,R3 ;
JEQ DIVIDE32exit ; --> Division by zero
DIVIDE32_10: ;
MOV.B #32,CNT[FB] ; Sets number of shifts performed (32 times)
DIVIDE32_20: ;
SHL.W #1,R0 ; Pushes dividend and carry quotient
ROLC.W R2 ;
ROLC.W A0 ; Creates dividend
ROLC.W Al ;
SUB.W R1,A0 ; Subtracts divisor
SBB.W R3,Al ;
BMC 0,ROL ; Sets quotient
JC DIVIDE32_30 ; --> Subtraction of divisor succeeded
ADD.W R1,A0 ; Restored to original data because
; subtraction of divisor failed
ADC.W R3,Al ;
DIVIDE32_30: ;
ADJNZ.B #-1,CNT[FB],DIVIDE32_20 ; --> Executes next digit
FCLR Z ; Division succeeded
DIVIDE32exit: ;
EXITD ; Clears stack frame

.END ;

87

2.18 Dividing 64 Bits

2.18.1 Ouitline

Collection of General-purpose Programs

2.18 Dividing 64 Bits

This program performs an unsigned division on a 64-bit dividend and a 32-bit divisor using registers.

Subroutine name : DIVIDEG4

ROM capacity : 76 bytes

Interrupt during execution:Accepted

Number of stacks used :8 bytes

Register/memory

Input

Output

Usage condition

RO Lower part of dividend|Lower part of quotient “—
R1 Upper part of dividend| Upper part of quotient “—
R2 Middle part of dividend|Middle part of quotient “—
R3 Most significant part of dividend | Most significant part of quotient “—
AO Lower half of divisor | Lower half of remainder “—
Al Upper half of divisor | Upper half of remainder “—
JYOUYO — Indeterminate Shift dividend used for calculation
CNT — Indeterminate Number of shifts performed
Z flag — Zero divide information “—

Usage precautions

CNT and JYOUYO are allocated in a stack area by configuring stack frames as temporary variable
areas in the program. Therefore, the values of CNT and JYOUYO when program execution is
completed are indeterminate. The dividend is destroyed as a result of program execution.

88

Collection of General-purpose Programs
2.18 Dividing 64 Bits

2.18.2 Explanation

This program performs an unsigned division on a 64-bit dividend and a 32-bit divisor using registers. Set
the dividend in R3, R1, R2, and RO beginning with the most significant part, and the divisor in A1 and AO
beginning with the upper half. The quotient and the remainder are output to R3, R1, R2, and RO, and Al
and AQ, respectively. The zero divide information is output to the Z flag.

In this program, the dividend is pushed out one bit at a time beginning with the most significant bit as the
program creates a dividend for calculation purposes and the divisor is subtracted from that data to get the
guotient beginning with the most significant bit. The quotient and the remainder are obtained by repeat-
ing this operation as many times as the number of bits in the dividend.

Meaning

Quotient and remainder are valid.

Quotient and remainder are invalid because division by zero is attempted.

89

2 Collection of General-purpose Programs
2.18 Dividing 64 Bits

2.18.3 Flowchart

(ENTER)

Initialize remainder area

Yes

Zero division?

No

Sets number of shifts to be
performed

<

Create shift dividend
and carry quotient

Shift dividend - divisor
--> Shift dividend

Set quotient

Could be subtracted?

No

Shift dividend + divisor
--> Shift dividend

Number of shifts
et completed?

Yes

Set remainder

Division succeeded
Clear Z flag

<

(ext)

90

Collection of General-purpose Programs
2.18 Dividing 64 Bits

2.18.4 Program List

skkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkhkkkkkkkkkhkkkhkhkkkkkhkkkhkkkkhkkhkkkhkkkkkhkkkkkhkkkkkx

; M16C Program Collection No. 18 *

; CPU : M16C/80 series *
skkkkkkkkkkkkkkkkkkkkkkkkkkhkhkhkhkhkhkhhkkkkkkhkhkhhhhhhhhhhkhhkhhhhhrhkrkhkkkkhkhhhhhhhhhhhkhhhrhrhkrkxixkxx

VromTOP .EQU OFEOOOOH ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value

Title: Dividing 64 bits
Outline: Divides 64-bit dividend by 32-bit divisor

Input: > Output:

RO (Lower part of dividend) RO (Lower part of quotient)

R1 (Upper part of dividend) R1 (Upper part of quotient)

R2 (Middle part of dividend) R2 (Middle part of quotient)

R3 (Most significant part of dividend) R3 (Most significant part of quotient)
A0 (Lower half of divisor) AO (Lower half of remainder)

Al (Upper half of divisor) Al (Upper half of remainder)

Stack amount used: 8 bytes
Notes: Division by zero is returned by Z flag.
R3R1R2R0, A1A0 = R3R1R2RO0 remainder A1A0

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area
.FB FBcnst ; Assumes FB register value

DIVIDEG4: ;

; Declaration of temporary variables

JYOUYO .EQU -6 ; Used for remainder calculation

CNT .EQU -1 ; Shift count counter

ENTER #6 ; Sets stack frame

MOV.W #0,JYOUYO[FB] ; Initializes remainder area

MOV.W #0,JYOUYO+2[FB] ;

MOV.B #0,JYOUYO+4[FB] :

CMP.W #0,A0 ;

JNE DIVIDE64_10 ;

CMP.W #0,A1 ;

JEQ DIVIDEG64exit ; --> Division by zero
DIVIDE64_10: ;

MOV.B #64,CNT[FB] ; Sets number of shifts performed (64 times)
DIVIDE64_20: ;

SHL.W #1,R0 ; Pushes divided and carry quotient

ROLC.W R2 ;

ROLC.W R1 ;

ROLC.W R3 ;

ROLC.W JYOUYOI[FB] ; Creates dividend

ROLC.W JYOUYO+2[FB] ;

ROLC.B JYOUYO+4[FB] ;

SUB.W A0,JYOUYOI[FB] ; Subtracts divisor

SBB.W A1,JYOUYO+2[FB] ;

SBB.B #0,JYOUYO+4[FB] ;

BMC 0,ROL ; Sets quotient

JC DIVIDE6G64 30 ; --> Subtraction of divisor succeeded

ADD.W A0,JYOUYO[FB] ; Restored to original data because

; subtraction of divisor failed

ADC.W A1,JYOUYO+2[FB] ;

ADCF.B JYOUYO+4[FB] ;
DIVIDE64_30: ;

ADJNZ.B #-1,CNT[FB],DIVIDE64_20 ; --> Executes next digit

MOV.W JYOUYOI[FB],AO ; Sets lower half of remainder

MOV.W JYOUYO+2[FB],Al ; Sets upper half of remainder

FCLR Z ; Division succeeded
DIVIDE64exit: ;

EXITD ; Clears stack frame

.END ;

91

2.19 Adding BCD
2.19.1 Outline

Collection of General-purpose Programs

This program adds 8 digits of BCD data together by using registers.
This program adds 8 digits of BCD data together between memory locations.

(1) BCD addition (regi

ster)

2.19 Adding BCD

Subroutine name : BCD_ADDITIONS

ROM capacity : 15 bytes

Interrupt during execution:Accepted

Number of stacks used :None

Register/memory

Input

Output

Usage condition

RO Lower half of augend |Lower half of addition result “—
R1 Lower half of addend Does not change “—
R2 Upper half of augend |Upper half of addition result “—
R3 Upper half of addend Does not change “—
A0 S _ Unused
Al — — Unused
C flag — Carry information “—

Usage precautions

The augend is destroyed as a result of program execution.

92

Collection of General-purpose Programs
2.19 Adding BCD

(2) BCD addition (memory)

Subroutine name : BCD_ADDITIONmMemory8

ROM capacity : 22 bytes

Interrupt during execution: Accepted

Number of stacks used : None

Register/memory Input Output Usage condition
RO — Indeterminate Used for calculation
R1 — Indeterminate Used for calculation
R2 — — Unused
R3 e — Unused
A0 Augend address Does not change “—
Al Addend address Does not change “—

Memory indicated by AO Augend Result of addition “«—

Memory indicated by A1 Addend Does not change “—

C flag — Carry information “—
Usage precautions

The augend is destroyed as a result of program execution.

93

Collection of General-purpose Programs
2.19 Adding BCD

2.19.2 Explanation
This program adds 8 digits of BCD data between registers by using a decimal add instruction (DADD).
Set the augend in R2 and RO and the addend in R3 and R1 beginning with the upper half, respectively.
The addition result is output to R2 and RO beginning with the upper half. The carry information is output
to the C flag.
This program adds 8 digits of BCD data between memory locations by using a decimal add instruction
(DADD). Set the least significant memory address of the augend and that of the addend in the address
registers. The addition result is output to the augend’s memory location. The carry information is output
to the C flag.

Meaning

Without carry

With carry

94

Collection of General-purpose Programs
2.19 Adding BCD

2.19.3 Flowchart

==

Add low-order bits

Move added data

Add high-order bits including
carry

Move added data

(o)

95

Collection of General-purpose Programs
2.19 Adding BCD

2.19.4 Program List

skkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkhkkkkkkkkkhkkkhkhkkkkkhkkkhhkkkhkkkkkhkkkkkhkkkkkhkkkkk

*

; M16C Program Collection No. 19 *
; CPU : M16C/80 series *
*
Z**
VromTOP .EQU OFEOOOOH ; Declares start address of ROM

Title: Adding 8-digit BCD.
Outline: Adds 8-digit BCD together using registers.

Stack amount used: None

; Input: > Output:

; RO (Lower half of augend) RO (Lower half of addition result)
; R1 (Lower half of addend) R1 (Does not change)

; R2 (Upper half of augend) R2 (Upper half of addition result)
; R3 (Upper half of augend) R3 (Does not change)

; A0 () A0 (Unused)

; Al () Al (Unused)

.SECTION PROGRAM,CODE
.ORG VromTOP : ROM area
BCD_ADDITIONS: ;

DADD.W R1,RO ; Adds low-order bits
XCHG.W R2,R0O : Moves added data
XCHG.W R3,R1 ;
DADC.W R1,RO ; Adds high-order bits
XCHG.W R2,R0O : Moves added data
XCHG.W R3,R1 :

RTS

Title: Adding 8-bit BCD
Outline: Adds 8-bit BCD between memory locations
Input: > Output:

RO RO (Indeterminate)
R1 R1 (Indeterminate)
R3 R3 (Unused)

A0 (Augend address) A0 (Does not change)
Al (Addend address) Al (Does not change)

Stack amount used: None

; ()

; ()

; R2 () R2 (Unused)
; ()

: Notes: Resultis returned by C flag

BCD_ADDITIONmemory8:

MOV.W [AO],RO ;
MOV.W [Al],R1 ;
DADD.W R1,R0O ; Adds low-order bits
MOV.W RO,[AQ] ;
MOV.W 2[AQ],RO ;
MOV.W 2[Al1],R1 :
DADC.W R1,RO ; Adds high-order bits
MOV.W RO,2[A0] ;
RTS ;
.END ;

96

Collection of General-purpose Programs

2.20 Subtracting BCD

2.20.1 Ouitline

This program subtracts 8-digit BCD data using registers.
This program subtracts 8-digit BCD data between memory locations.

(1) BCD subtraction (register)

2.20 Subtracting BCD

Subroutine name : BCD_SUBTRACTS8

ROM capacity : 15 bytes

Interrupt during execution:Accepted

Number of stacks used :None

Register/memory

Input

Output

Usage condition

RO Lower half of minuend |Lower half of subtraction result “—
R1 Lower half of subtrahend| Does not change “—
R2 Upper half of minuend |Upper half of subtraction result “—
R3 Upper half of subtrahend| Does not change “—
A0 S _ Unused
Al — — Unused
C flag — Borrow information “—

Usage precautions

The minuend is destroyed as a result of program execution.

97

(2) BCD subtraction (memory)

Collection of General-purpose Programs
2.20 Subtracting BCD

Subroutine name :BCD_SUBTRACTmemory8

ROM capacity : 22 bytes

Interrupt during execution: Accepted

Number of stacks used : None

Register/memory

Input

Output

Usage condition

RO - Indeterminate Used for calculation
R1 - Indeterminate Used for calculation
R2 — — Unused
R3 — — Unused
A0 Minuend address Does not change “—
Al Subtrahend address Does not change “—
Memory indicated by AO Minuend data Subtraction result “—
Memory indicated by A1l| Subtrahend data Does not change “—
C flag — Borrow information <“«—

Usage precautions

The minuend is destroyed as a result of program execution.

98

Collection of General-purpose Programs

2.20 Subtracting BCD

2.20.2 Explanation

This program subtracts 8-digit BCD data between registers by using a decimal subtract instruction
(DSUB). Set the minuend in R2 and RO and the subtrahend in R3 and R1 beginning with the upper half,
respectively. The subtraction result is output to R2 and RO beginning with the upper half. The borrow
information is output to the C flag.

This program subtracts 8-digit BCD data between memory locations by using a decimal subtract instruc-
tion (DSUB). Set the least significant memory address of the minuend and that of the subtrahend in the
address registers. The subtraction result is output to the minuend’s memory location. The borrow infor-
mation is output to the C flag.

Meaning
0 | With borrow
Without borrow

99

Collection of General-purpose Programs
2.20 Subtracting BCD

2.20.3 Flowchart

==

Subtract low-order bits

Move subtracted data

Subtract high-order bits
including borrow

Move subtracted data

(o)

100

Collection of General-purpose Programs
2.20 Subtracting BCD

2.20.4 Program List

skkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkhkkkkkkkkkhkkkhkhkkkkkhkkkhhkkkhkkkkkhkkkkkhkkkkkhkkkkk

*

; M16C Program Collection No. 20 *
; CPU : M16C/80 series *
*
Z**
VromTOP .EQU OFEOOOOH ; Declares start address of ROM

Title: Subtracting 8-digit BCD
Outline: Subtracts 8-digit BCD using registers

Stack amount used: None
Notes: Borrow information in C flag

; Input: > Output:

; RO (Lower half of minuend) RO (Lower half of subtraction result)
; R1 (Lower half of subtrahend) R1 (Does not change)

; R2 (Upper half of minuend) R2 (Upper half of addition result)

; R3 (Upper half of subtrahend) R3 (Does not change)

; A0 () A0 (Unused)

; Al () Al (Unused)

.SECTION PROGRAM,CODE
.ORG VromTOP : ROM area
BCD_SUBTRACTS: :

DSUB.W R1,RO ; Subtracts low-order bits
XCHG.W R2,R0O : Moves subtracted data
XCHG.W R3,R1 ;
DSBB.W R1,RO ; Subtracts high-order bits
XCHG.W R2,R0O ; Moves subtracted data
XCHG.W R3,R1 :

RTS

Title: Subtracting 8-digit BCD
Outline: Subtracts 8-digit BCD between memory locations
Input: > Output:

; RO () RO (Indeterminate)
; R1 () R1 (Indeterminate)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 (Minuend address) A0 (Does not change)
; Al (Subtrahend address) Al (Does not change)
; Stack amount used: None
; Notes: Borrow information in C flag
BCD_SUBTRACTmemory8: ;
MOV.W [AQ],RO ;
MOV.W [A1],R1 ;
DSUB.W R1,RO ; Subtracts low-order bits
MOV.W RO,[AQ] ;
MOV.W 2[A0],RO ;
MOV.W 2[A1],R1 ;
DSBB.W R1,RO ; Subtracts high-order bits
MOV.W RO0,2[A0] ;
RTS ;
.END ;

101

2.21 Multiplying BCD

2.21.1 Ouitline

Collection of General-purpose Programs

This program multiplies 4-digit BCD using registers.

2.21 Multiplying BCD

Subroutine name : BCD_MULTIPLE4

ROM capacity : 38 bytes

Interrupt during execution: Accepted

Number of stacks used :None

Register/memory Input Output Usage condition
RO — Lower part of multiplication result “—
R1 Multiplicand Does not change “—
R2 — Upper part of multiplication result <“«—
R3 Multiplier Indeterminate “—
A0 o * 000016 " Number of digits counter
Al — * 000016 " Addition count

Usage precautions

The multiplier is destroyed as a result of program execution.

102

Collection of General-purpose Programs
2.21 Multiplying BCD

2.21.2 Explanation

This program multiplies 4-digit BCD together by using registers. Set the multiplicand in R1 and the
multiplier in R3, respectively. The multiplication result is output to R2 and RO beginning with the upper
half.

In this program, data for BCD calculation is loaded from the multiplier 4 high-order bits at a time to set an
addition count and the multiplicand is added to the multiplication result. The carry deriving from multipli-
cation is shifted in units of 4 bits to the next high-order digit.

103

Collection of General-purpose Programs
2.21 Multiplying BCD

2.21.3 Flowchart

(ENTER)

Initialize multiplication result area

Set number of digits to be multiplied

<

Carry of multiplication result

One digit of multiplier -->
Addition count

. Yes
Addition count = 0?

Multiplicand + multiplier -->
Multiplication result

Addition count finished?

No

Specified number of
digits completed?

104

Collection of General-purpose Programs
2.21 Multiplying BCD

2.21.4 Program List

R R T s s s o E g s g s S s e R S S R S R e e s T T S T S S S T S S e 2 e e 2 e e e e e e
’

. *
’

; M16C Program Collection No. 21 *
; CPU : M16C/80 series *
. *
z**
OFEOOOOH ; Declares start address of ROM

VromTOP .EQU

; Title: Multiplying 4-digit BCD
; Outline: Multiplies 4-digit BCD using registers.

; Input: > Output:

; RO) RO (Lower half of multiplication result)
; R1 (Multiplicand) R1 (Does not change)

; R2) R2 (Upper half of multiplication result)
; R3 (Multiplier) R3 (Indeterminate)

; A0 () A0 (Indeterminate)

; Al () Al (Indeterminate)

; Stack amount used: None

; Notes:

BCD_MULTIPLE4:

MOV.L
MOV.B

BCD_MULTIPLE4_10:

SHL.L
MOV.W

BCD_MULTIPLE4_20:

SHL.W
ROLC.W
INC
JEQ

BCD_MULTIPLE4_30:

DADD.W
XCHG.W
DADC.W
XCHG.W
ADINZ.W

BCD_MULTIPLE4_40:

ADINZ.W
RTS

: ROM area

; Clears multiplication result area
; Sets number of digits to be multiplied

.SECTION PROGRAM,CODE
.ORG VromTOP
#0,R2R0

#4,A0

#4 R2R0

#0001000000000000B,A1

#1,R3

Al
BCD_MULTIPLE4_20
BCD_MULTIPLE4_40

R1,RO
R2,RO
#0,R0
R2,RO
#-1,A1,BCD_MULTIPLE4_30

#-1,A0,BCD_MULTIPLE4_10

.END

105

; Carry processing
; Specifies for 4 bits to be loaded

; Loads 4 bits

; Loads addition count

; --> Taking 4 bits not completed

; --> Zero (no addition)

; Moves high-order data

; Adds C flag to next high-order digit for carry
; Moves high-order data

; --> Specified addition count not completed
; --> Specified digit count to be multiplied not completed

2.22 Dividing BCD

2.22.1 Outline

Collection of General-purpose Programs

This program divides 8-digit BCD by using registers.

2.22 Dividing BCD

Subroutine name : BCD_DIVIDES

ROM capacity : 67 bytes

Interrupt during execution:Accepted

Number of stacks used :3 bytes

Register/memory

Input

Output

Usage condition

RO —_— Lower half of remainder “—

R1 Lower half of divisor Does not change “—

R2 —_— Upper half of remainder “—

R3 Upper half of divisor Does not change “—

AO Lower half of dividend | Lower half of quotient “—

Al Upper half of dividend | Upper half of quotient “—
CNT — Indeterminate Shift count
Z flag — Zero divide information «—

Usage precautions

CNT is allocated in a stack area by configuring a stack frame as a temporary variable area in the
program. Therefore, the value of CNT when program execution is completed is indeterminate.
The dividend is destroyed as a result of program execution.

106

Collection of General-purpose Programs
2.22 Dividing BCD

2.22.2 Explanation

This program divides 8-digit BCD together by using registers. Set the dividend in A1 and AO and the
divisor in R3 and R1 beginning with the upper half, respectively. The quotient and the remainder are
output to A1 and A0, and to R2 and RO, beginning with the upper half, respectively. The zero divide
information is output to the Z flag.

In this program, data for BCD calculation is loaded from the dividend 4 high-order bits at a time to create
the dividend to be operated on and the divisor count can be subtracted is counted to obtain the quotient.
A carry deriving from the divide operation is shifted in units of 4 bits to the next high-order digit.

Meaning

0 | Quotient and remainder are valid.

Quotient and remainder are invalid because division by zero is attempted.

107

2 Collection of General-purpose Programs
2.22 Dividing BCD

2.22.3 Flowchart

(ENTER)

Initialize remainder area

Yes

Zero division?

Set shift count

[

Create shift dividend and carry 1 into next
position of quotient (done in units of 4 bits
because of BCD)

Count quotient

Shift dividend - divisor
--> Shift divided

) Yes
Subtraction succeeded?

Correct quotient

Shift dividend + divisor
--> Shift divided

Shift count finished?

Division succeeded
Clear Z flag

¢

(EXIT)

108

Collection of General-purpose Programs
2.22 Dividing BCD

2.22.4 Program List

skkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkhkkkkkkkkkhkkkhkhkkkkkhkkkhkkkkhkkhkkkhkkkkkhkkkkkhkkkkkx
’

; M16C Program Collection No. 22 *

; CPU : M16C/80 series *
skkkkkkkkkkkkkkkkkkkkkkkkkkhkhkhkhkhkhkhhkkkkkkhkhkhhhhhhhhhhkhhkhhhhhrhkrkhkkkkhkhhhhhhhhhhhkhhhrhrhkrkxixkxx

VromTOP .EQU OFEOOOOH ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value

Title: Dividing 8-digit BCD
Outline: Divides 8-digit BCD using registers

Stack amount used: 3 bytes
Notes: Al1lAO0, R3R1
Zero division is returned by Z flag

; Input: > Output:

; RO () RO (Lower half of remainder)
; R1 (Lower half of divisor) R1 (Lower half of divisor)

; R2 () R2 (Upper half of remainder)
; R3 (Upper half of divisor) R3 (Upper half of divisor)

; AO (Lower half of dividend) AO (Lower half of quotient)
; Al (Upper half of dividend) Al (Upper half of quotient)

.SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area
.FB FBcnst ; Sets provisional FB register value

BCD_DIVIDES: ;

; Declaration of temporary variables

CNT .EQU -1 ; Shift count counter

ENTER #1 ; Sets stack frame

MOV.L #0,R2R0 ; Initializes remainder area

CMP.L #0,R3R1 ;

JEQ BCD_DIVIDES8exit ; --> Zero division
BCD_DIVIDES8_10: ;

MOV.B #8,CNT[FB] ; Sets number of digits to be divided
BCD_DIVIDES_20: ;

OR.W #1000H,R2 ; Specifies 4-bit carry
BCD_DIVIDES8_30: ;

SHL.W #1,A0 ; Pushes dividend and carries 1 in quotient

ROLC.W Al ; Pushes dividend and carries 1 in quotient

ROLC.W RO ; Creates dividend

ROLC.W R2 ;

JNC BCD_DIVIDE8_30 ; --> 4-bit carry not completed
BCD_DIVIDES8_40: ;

ADD.L:S #1,A0 ; Quotient + 1

DSUB.W R1,RO ; Subtraction by divisor

XCHG.W R2,R0O ; Moves data

XCHG.W R3,R1 ;

DSBB.W R1,R0O ;

XCHG.W R2,R0O ; Moves data

XCHG.W R3,R1 ;

JGEU BCD_DIVIDES8 40 ; --> Subtraction by divisor succeeded

DEC.W A0 ; Quotient corrected

DADD.W R1,RO ; Restored to original data because divisor subtraction failed

XCHG.W R2,R0O ; Moves data

XCHG.W R3,R1 ;

DADC.W R1,R0O ;

XCHG.W R2,R0O ; Moves data

XCHG.W R3,R1 ;

ADJNZ.B #-1,CNT[FB],BCD_DIVIDE8 20 :--> Executes next digit

FCLR Z ; Division succeeded
BCD_DIVIDES8exit: ;

EXITD ; Clears stack frame

.END ;

109

Collection of General-purpose Programs
2.23 Converting from HEX Code to BCD Code

2.23 Converting from HEX Code to BCD Code

2.23.1 Ouitline

This program converts 1-byte HEX code into 2-byte BCD code.

Subroutine name : HEXtoBCD_1byte

ROM capacity : 18 bytes

Interrupt during execution: Accepted

Number of stacks used : None

Register/memory Input Output Usage condition
RO - BCD code “—
R1H - " 0016 " Loop count
R1L HEX code Indeterminate “—
R2 — Indeterminate Used to save data
R3 — — Unused
A0 —_ —_— Unused
Al — — Unused

Usage precautions

HEX code is destroyed as a result of program execution.

110

Collection of General-purpose Programs

2.23 Converting from HEX Code to BCD Code

2.23.2 Explanation

This program converts 1-byte HEX code into 2-byte BCD code. Set the HEX code in R1L. The BCD code
is output to RO.

In this program, the HEX code is doubled by decimal calculation sequentially beginning with the most
significant bit and the results are added. This operation is repeated by a specified number of bits as the
HEX code is converted into BCD code.

111

Collection of General-purpose Programs
2.23 Converting from HEX Code to BCD Code

2.23.3 Flowchart

===

Initialize BCD area

Set loop count

<

Shift most significant bit to C flag

Save register

BCD area x 2 + C flag -->
BCD area

Restore register

NO

Loop count finished?

Yes

(e)

112

2.23.4 Program List

Collection of General-purpose Programs
2.23 Converting from HEX Code to BCD Code

R R T s s s o E g s g s S s e R S S R S R e e s T T S T S S S T S S e 2 e e 2 e e e e e e
’

; M16C Program Collection No. 23
: M16C/80 series

; CPU

*

*

*

*

R R T R e s s R e E R e g e s S R S S R R R e T S T S T S T S S S 2 e e 2 e e e e e e
’

.EQU OFEOOOOH ; Declares start address of ROM

VromTOP

; Title: Converting from HEX code to BCD code
; Outline: Converts 1-byte HEX code into 2-byte BCD code

; Input:

; ROL
; ROH
; R1H
; R1H
; R2
; R3
; AO
; Al

AN AN AN AN A S
—_— e L~ —

EX code)

; Stack amount used: None

; Notes:

Output:
RO (BCD code)

R1L (Indeterminate)
R1H (Indeterminate)

R2 (Indeterminate)
R3 (Unused)
A0 (Unused)
Al (Unused)

HEXtoBCD_1byte:
MOV.W
MOV.B

HEXtoBCD_1byte_10:

SHL.L
XCHG.W
MOV.W
DADC.W
XCHG.W
ADINZ.W
RTS

SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area

#0,RO ; Initializes BCD area

#8,R1H ; Sets loop count

#1,R1L ; Shifts most significant bit to C flag
R1,R2 ; Saves register

RO,R1 ;

R1,RO ; Doubled by decimal calculation + C flag
R1,R2 ; Restores register
#-1,R1H,HEXtoBCD_1byte 10 ; --> Executes next digit

.END ;

113

2 Collection of General-purpose Programs
2.24 Converting from HEX Code to BCD Code

2.24 Converting from HEX Code to BCD Code
2.24.1 Outline
This program converts 4-byte HEX code into 5-byte BCD code.

Subroutine name : HEXtoBCD_4byte ROM capacity : 39 bytes
Interrupt during execution: Accepted Number of stacks used : 2 bytes
Register/memory Input Output Usage condition

RO - Lower part of BCD code “—
R1 Lower half of HEX code Indeterminate “—
R2 — Middle part of BCD code “—
R3 Upper half of HEX code Indeterminate “—
A0 - " 000016 " Number of digits counter
Al — Upper part of BCD code “—

Usage precautions

The HEX code is destroyed as a result of program execution.

114

Collection of General-purpose Programs

2.24 Converting from HEX Code to BCD Code

2.24.2 Explanation

This program converts 4-byte HEX code into 5-byte BCD code. Set the HEX code in R3 and R1 begin-
ning with the upper half. The BCD code is output to A1, R2, and RO beginning with the most significant
part.

In this program, the HEX code is doubled by decimal calculation sequentially beginning with the most

significant bit and the results are added. This operation is repeated by a specified humber of bits as the
HEX code is converted into BCD code.

115

Collection of General-purpose Programs
2.24 Converting from HEX Code to BCD Code

2.24.3 Flowchart

===

Initialize BCD area

Set loop count

<

Shift most significant bit to C flag

Save register

BCD area x 2 + C flag -->
BCD area

Restore register

Loop count finished?

Yes

(e)

116

Collection of General-purpose Programs
2.24 Converting from HEX Code to BCD Code

2.24.4 Program List

R R T s s s o E g s g s S s e R S S R S R e e s T T S T S S S T S S e 2 e e 2 e e e e e e
’

. *
’

; M16C Program Collection No. 24 *

; CPU : M16C/80 series *

. *
z**

VromTOP .EQU OFEOOOOH ; Declares start address of ROM

; Title: Converting from HEX code to BCD code
; Outline: Converts 4-byte HEX code into 5-byte BCD code

; Input: > Output:
; RO () RO (Lower part of BCD)
; R1 (Lower half of HEX code) R1 (Indeterminate)
; R2 () R2 (Middle part of BCD)
; R3 (Upper half of HEX code) R3 (Indeterminate)
; A0 () A0 (Indeterminate)
; Al () Al (Upper part of BCD)
; Stack amount used: 2bytes
; Notes:
SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area
HEXtoBCD_4byte: ;
MOV.L #0,R2R0 ; Initializes BCD area
MOV.W #0,A1 ;
MOV.B #32,A0 ; Sets loop count
HEXtoBCD_4byte 10: ;
SHL.L #1,R3R1 ; Shifts most significant bit to C flag
PUSH.W R1 ; Saves register
MOV.W RO,R1 ;
DADC.W R1,RO ; Doubled by decimal calculation + C flag
XCHG.W R2,R0O ;
MOV.W RO,R1 ;
DADC.W R1,RO ; Doubled by decimal calculation + carry
XCHG.W RO,Al ;
MOV.W RO,R1 ;
DADC.W R1,RO ; Doubled by decimal calculation + carry
XCHG.W RO,Al ;
XCHG.W R2,R0O ;
POP.W R1 ; Restores register
ADJINZ.W #-1,A0,HEXtoBCD_4byte_10 ; --> Executes next digit
RTS ;
.END ;

117

2 Collection of General-purpose Programs
2.25 Converting from BCD Code to HEX Code

2.25 Converting from BCD Code to HEX Code
2.25.1 Ouitline
This program converts 1-byte BCD code into 1-byte HEX code.

Subroutine name : BCDtoHEX_1byte ROM capacity : 19 bytes
Interrupt during execution: Accepted Number of stacks used : None
Register/memory Input Output Usage condition
ROL — HEX code “—
ROH BCD code Indeterminate “—
R1L — " 0016 " Loop count
R1H — — Unused
R2 — — Unused
R3 — — Unused
A0 - - Unused
Al — — Unused
Usage precautions

The BCD code is destroyed as a result of program execution.

118

Collection of General-purpose Programs

2.25 Converting from BCD Code to HEX Code

2.25.2 Explanation
This program converts 1-byte BCD code into 1-byte HEX code. Set the BCD code in ROH. The HEX
code is output to ROL.

In this program, the BCD code is divided by 2 (shifted right) and the remainder is loaded into the register
as HEX code. If a significant bit is transferred from the BCD’s high-order digit to the low-order digit,
numeric correction is applied.

119

Collection of General-purpose Programs
2.25 Converting from BCD Code to HEX Code

2.25.3 Flowchart

===

Initialize HEX area

Set loop count

<

Set remainder of BCD code vid.
2 to MSB of HEX data

Correct BCD code

Loop count finished?

Yes

(e)

120

2.25.4 Program List

Collection of General-purpose Programs

2.25 Converting from BCD Code to HEX Code

R R T s s s o E g s g s S s e R S S R S R e e s T T S T S S S T S S e 2 e e 2 e e e e e e
’

; M16C Program Collection No. 25
; CPU : M16C/80 series

*

*

*

*

R R T R e s s R e E R e g e s S R S S R R R e T S T S T S T S S S 2 e e 2 e e e e e e
’

VromTOP .EQU OFEOOOOH

; Declares start address of ROM

; Title: Converting from BCD code to HEX code
; Outline: Converts 1-byte BCD code into 1-byte HEX code

; Input: Output:
; ROL () ROL (HEX code)
; ROH (BCD code) ROH (Indeterminate)
; R1L () R1L (Indeterminate)
; R1H () R1H (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 () A0 (Unused)
; Al () Al (Unused)
; Stack amount used: None
; Notes:
.SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area
BCDtoHEX 1byte: ;
MOV.B #0,ROL ; Initializes HEX area
MOV.B #8,R1L ; Sets loop count
BCDtoHEX 1byte 10: ;
SHL.B #-1,ROH ; Shifts most significant bit
RORC.B ROL ;
BTST 3,ROH ;
JEQ BCDtoHEX 1byte 20 ;
SUB.B #3,ROH ;
BCDtoHEX 1byte 20: ;
ADJNZ.B #-1,R1L,BCDtoHEX_1byte 10 ; --> Executes next BCD digit
RTS ;
.END ;

121

2 Collection of General-purpose Programs
2.26 Converting from BCD Code to HEX Code

2.26 Converting from BCD Code to HEX Code
2.26.1 Outline
This program converts 4-byte BCD code into 4-byte HEX code.

Subroutine name : BCDtoHEX_4byte ROM capacity :41 bytes
Interrupt during execution: Accepted Number of stacks used : None
Register/memory Input Output Usage condition
RO Lower half of BCD code Indeterminate “—
R1 — Lower part of HEX code «—
R2 Upper half of BCD code Indeterminate —
R3 — Upper part of HEX code “—
A0 — " 000016 " Loop count
Al — " 000016 " Number of digits counter

Usage precautions

The BCD code is destroyed as a result of program execution.

122

Collection of General-purpose Programs

2.26 Converting from BCD Code to HEX Code

2.26.2 Explanation

This program converts 4-byte BCD code into 4-byte HEX code. Set the BCD code in R2 and RO begin-
ning with the upper half. The HEX code is output to R3 and R1 beginning with the upper half.

In this program, the BCD code is divided by 2 (shifted right) and the remainder is loaded into the register
as HEX code. If a significant bit is transferred from the BCD’s high-order digit to the low-order digit,
numeric correction is applied.

123

Collection of General-purpose Programs
2.26 Converting from BCD Code to HEX Code

2.26.3 Flowchart

(' ENTER)

Initialize HEX area

Set loop count

¢

Set remainder of BCD code vid.
2 to MSB of HEX data

Set loop count

Change upper and lower halves
for each other

-t

Execute 1-digit correction
processing

Change digits

4th digit finished?

Change upper and lower halves
for each other

All digits finished?

Yes

No

Conversion of a
digits finished?

Yes

C et)

124

2.26.4 Program List

Collection of General-purpose Programs

2.26 Converting from BCD Code to HEX Code

R R T s s s o E g s g s S s e R S S R S R e e s T T S T S S S T S S e 2 e e 2 e e e e e e
’

; M16C Program Collection No. 26

; CPU

: M16C/80 series

*

*

*

*

R R T R e s s R e E R e g e s S R S S R R R e T S T S T S T S S S 2 e e 2 e e e e e e
’

VromTOP

.EQU OFEOOOOH

; Declares start address of ROM

; Title: Converting from BCD code to HEX code
; Outline: Converts 4-byte BCD code into 4-byte HEX code

; Input:

> Output:

; RO (Lower half of BCD code) RO (Indeterminate)
R1 (Lower part of HEX)
; R2 (Upper half of HEX code) R2 (Indeterminate)
R3 (Upper part of HEX)
A0 (Indeterminate)
Al (Indeterminate)

; R1 ()

; R3 ()
; A0 ()
; Al ()

; Stack amount used: None

; Notes:

BCDtoHEX_4byte:
MOV.L
MOV.B

BCDtoHEX_4byte_10:

SHL.W
RORC.W
RORC.W
RORC.W
MOV.B
XCHG.W

BCDtoHEX 4byte 20:

BTST
JEQ
SUB.W

BCDtoHEX_ 4byte 30:

ROT.W
CMP.B
JNE
XCHG.W

BCDtoHEX_4byte_40:

ADINZ.W
ADINZ.W
RTS

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area

#0,R3R1 ; Initializes HEX area

#32,A0 ; Sets loop count

#-1,R2 ; Shifts most significant bit

RO ;

R3 ;

R1 ;

#8,A1 ; Sets loop count

R2,R0O ; Changes upper/lower halves for each other
3,ROL ;

BCDtoHEX_4byte_30 ; --> Correction not required

#3,R0O ; Executes correction

#-4,R0 ; Changes digits

#5,A1 ; Determines whether high-order correction is completed
BCDtoHEX 4byte 40 ; --> Change of upper/lower halves not required
R2,R0O

#-1,A1,BCDtOHEX_4byte 20
#-1,A0,BCDtOHEX_4byte 10

.END

125

; Changes upper/lower halves for each other
; --> Processes next digit correction
; --> Executes next digit

2 Collection of General-purpose Programs

2.27 Converting from Floating-point Number to Binary Number

2.27 Converting from Floating-point Number to Binary Number
2.27.1 Outline

This program converts a single-precision, floating- point number into a 32-bit singed binary number.

Subroutine name : FLOATINGtoBIN ROM capacity : 69 bytes
Interrupt during execution: Accepted Number of stacks used : None
Register/memory Input Output Usage condition

RO Mid and lower parts of mantissa Indeterminate “—
R1 — Lower half of signed binary «—
R2 Exponent, upper part of mantissa Indeterminate —
R3 — Upper half of signed binary “—
A0 o Indeterminate Used to save sign bit
Al — — Unused

Usage precautions

If the magnitude of a single-precision, floating-point number is equal to or greater than "23!", the
program outputs the maximum value of the same sign; if less than "1", the program outputs a "0".
The floating-point data is destroyed as a result of program execution.

126

Collection of General-purpose Programs

2.27 Converting from Floating-point Number to Binary Number

2.27.2 Explanation

This program converts a single-precision, floating- point number into a 32-bit singed binary number. Set
the single-precision, floating-point number in R2 and RO. A signed binary number is output to R3 and R1
beginning with the upper half.

In this program, after confirming that the single- precision, floating-point number is convertible, the data is
loaded into the registers while shifting the mantissa data left, and this operation is repeated as many
times as dictated by the exponent to create a binary number. Finally, the resulting data is adjusted to
make it matched to the sign bit of the input data.

If the magnitude of a single-precision, floating-point number is equal to or greater than "2%", the program
outputs the maximum value of the same sign; if less than "1", the program outputs a "0". In either case,
the result is output to R3 and R1.

R3,R1 Meaning
ZEEEEEEEH | Magnitude of a single-precision, floating-point number is equal to
or greater than "231" (sign +)
80000000H | Magnitude of a single-precision, floating-point number is equal to
or greater than "231" (sign -)

00000000H | Magnitude of a single-precision, floating-point number is less than "1"

127

Collection of General-purpose Programs

2.27 Converting from Floating-point Number to Binary Number

2.27.3 Flowchart

(ENTER)

Initialize binary area
I

Save sign bit

Yes

0?

No

Create exponent and
mantissa data

Yes

Less than 1?

Within range of binar No
numbers regresente

ith 31 bits

Shift mantissa data 1 bit
left
[

Load binary data into
register

umber of times
equal to exponent +
finished?

No

Yes

Positive number?

Set maximum value of
the same sign

> y L]

' EXIT '

Set 2's complement

128

2 Collection of General-purpose Programs

2.27 Converting from Floating-point Number to Binary Number

2.27.4 Program List

skkkkkkkkkkkkkkkkkkhkkkkkkkkkhhkkkhkkkkkhkkkkkkkkhkkkkkhkkkkkhkkkkkhhkkhkkkkhkhkkhkkkkkkkkkkkhkkkkk
*

M16C Program Collection No. 27 *
; CPU : M16C/80 series *
*
Z**
VromTOP .EQU OFEOOOOH ; Declares start address of ROM

Title: Converting from single-precision, floating-point number to binary number
Outline: Converts single-precision, floating-point number into 32-bit signed binary number

Notes:

Stack amount used: None

; Input: > Output:

; RO (Mid and lower parts of mantissa) RO (Indeterminate)

; R1 () R1 (Lower half of signed binary)
; R2 (Exponent, upper part of mantissa) R2 (Indeterminate)

; R3 () R3 (Upper half of signed binary)
; A0 () A0 (Indeterminate)

; Al () Al (Unused)

FLOATINGtOBIN:
XCHG.W
MOV.L
MOV.B
BCLR
CMP.W
INE
CMP.W
JEQ

FLOATINGtoBIN_10:
BTSTS

ROLC.B
SUB.B
INC
CMP.B
JLTU
OR.W
BTST
INE
NOT.W
NOT.W
JMP.B
FLOATINGtoBIN_20:
INC.B
FLOATINGtoBIN_30:
SHL.W
ROLC.B
ROLC.W
ROLC.W
ADJNZ.B
BTST
JEQ
NOT.W
NOT.W
ADD.L

FLOATINGtoBIN_EXIT:

RTS

'SECTION

PROGRAM CODE

.ORG VromTOP ; ROM area

RO,R2 ; Changes registers

#0,R3R1 ; Initializes binary area

ROH,AO0 ; Saves sign bit

7,ROH ; Clears sign

#0,R0O ;

FLOATINGtoBIN_10 ;

#0,R2 ;

FLOATINGtoBIN_EXIT ; --> Zero

7,R0 ; Sets LSB of exponent to C flag
; and adds 1.0 to mantissa

ROH ; Creates exponent

#7FH,ROH ; Determines whether magnitude is less than 1

FLOATINGtoBIN_EXIT
#31,ROH
FLOATINGtoBIN_20
#08000H,R3

7,A0
FLOATINGtoBIN_EXIT
R1

R3
FLOATINGtoBIN_EXIT

ROH

#-1,ROH,FLOATINGtoBIN_30
7,A0

FLOATINGtoBIN_EXIT

R1

R3

#1,R3R1

.END

129

; --> Sets 0 because magnitude is less than 1

; Determines whether number is within representation range
; --> Number is within binary representation range

; Initial sets maximum value of the same sign

; Checks sign bit

; --> Negative number (80000000)

; Positive number (7FFFFFFF)

Adjusts loop count

- Pushes mantissa data
 Loads result into register
. --> Conversion loop

; Checks sign bit

; --> Positive number
; Takes 2's complement

2.28 Converting from Binary Number to Floating-point Number

Collection of General-purpose Programs

2.28 Converting from Binary Number to Floating-point Number

2.28.1 Ouitline

This program converts a 32-bit signed binary number into a single-precision, floating-point number.

Subroutine name : BINtoFLOATING

ROM capacity : 60 bytes

Interrupt during execution: Accepted

Number of stacks used : None

Register/memory Input Output Usage condition
RO Lower half of signed binary | Mid and lower parts of mantissa “—
R1 —_— Indeterminate Used for format conversion
R2 Upper half of signed binary | Exponent, upper part of mantissa —
R3 — —_ Unused
AO — Indeterminate Used to save sign bit
Al — — Unused

Usage precautions

130

Collection of General-purpose Programs

2.28 Converting from Binary Number to Floating-point Number

2.28.2 Explanation

This program converts a 32-bit signed binary number into a single-precision, floating-point number. Set
the 32-bit signed binary number in R2 and RO beginning with the upper half. A single-precision, floating-
point number is output to R2 and RO.

In this program, after confirming whether the input data is "0" and adjusting the data by the sign, a
maximum value is set to the exponent part that can be represented by a 32-bit signed binary number.
Next, the input data is shifted left while calculating (subtracting) the exponent part to create mantissa
data. Finally, the resulting data is adjusted to suit the format of single-precision, floating-point numbers.

131

Collection of General-purpose Programs

2.28 Converting from Binary Number to Floating-point Number

2.28.3 Flowchart

ENTER

Yes

Zero ?

No

Save sign bit

. Yes
Positive number ?

No

Create 2's complement

-t

Set maximum value to exponent part

Set exponent data by searching for
maximum bit position

Set floating-point format

Set exponent part

Set sign bit

-t

(EXIT)

132

2.28.4 Program List

Collection of General-purpose Programs

2.28 Converting from Binary Number to Floating-point Number

skkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkhkkkkkkkkkhkkkhkhkkkkkhkkkhkkkkhkkhkkkhkkkkkhkkkkkhkkkkkx

CPU

: M16C/80 series

M16C Program Collection No. 28

*
*
*
*

skkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkhkkkkkkkkkhkkkhkhkkkkkhkkkhkkkkhkkhkkkhkkkkkhkkkkkhkkkkkx

VromTOP

.EQU OFEOOOOH

; Declares start address of ROM

Input:
R1

R3 ()
A0 ()
Al

Notes:

> Output:

Title: Converting from binary number to single-precision, floating-point number
Outline: Converts 32-bit signed binary number into single-precision, floating-point number

RO (Lower half of signed binary) RO (Mid and lower parts of mantissa)

R1 (Indeterminate)

()
R2 (Upper half of signed binary) R2 (Exponent, upper part of mantissa)
R3 (Unused)

A0 (Indeterminate)

Al (Unused)
Stack amount used: None

BINtoFLOATING:
XCHG.W
CMP.L
JEQ
BINtoFLOATING_10:
MOV.B
BTST
JEQ
NOT.W
NOT.W
ADD.W
ADCF.W
BINtoFLOATING_20:
MOV.B
BINtoFLOATING_30:
BTST
INE
SHL.W
ROLC.W
SUB.B
JMP
BINtoFLOATING_40:
MOV.B
BINtoFLOATING_50:
SHL.W
RORC.W
ADJNZ.B
MOV.B
SHL.W
RORC.W
BTST
BMC

BINtoFLOATING_EXIT:

XCHG.W
RTS

SECTION
.ORG VromTOP

R2,RO
#0,R2R0
BINtoFLOATING_EXIT

ROH,A0

7,ROH
BINtoFLOATING_20
R2

#9DH+1,R1L

7,ROH
BINtoFLOATING_40
#1,R2

RO

#1,R1L
BINtoFLOATING_30

#7,R1H

#-1,R0O

R2
#-1,R1H,BINtoFLOATING_50
R1L,ROH

#-1,R0O

R2

7,A0

7,ROH

R2,RO

.END

133

PROGRAM.CODE

: ROM area
Changes data
. --> ZERO
Saves sign bit
; Checks sign

; --> Positive number
; Takes 2's complement

; Sets maximum value to exponent part

Search of maximum bit position
; --> Finds maximum bit
; Pushes for search of maximum bit position

Counts down exponent

Number of shifts to adjust mantissa position
Adjusts mantissa position

--> Adjustment not completed

; Sets exponent

; Adjusts format

Sets sign bit

Changes data

2.29 Sorting
2.29.1 Ouitline

Collection of General-purpose Programs
2.29 Sorting

This program sorts data consisting of a specified number of bytes (sizes in bytes) in ascending order.

Subroutine name : SORT

ROM capacity : 29 bytes

Interrupt during execution: Accepted

Number of stacks used : None

Register/memory Input Output Usage condition
ROL Number of compare bytes - 1 Indeterminate Compare bytes counter
ROH e Indeterminate Compare bytes counter
R1L — Indeterminate Register used for change
R1H — — Unused
R2 — — Unused
R3 — — Unused
A0 Start address Indeterminate Compared address
Al — Indeterminate Compare address
Z flag — Sorting succeeded/failed “—
Usage precautions

The number of bytes that can be specified is 2 to 256 bytes.

134

2 Collection of General-purpose Programs
2.29 Sorting

2.29.2 Explanation
This program sorts data consisting of a specified number of bytes (sizes in bytes) in ascending order
beginning with a specified address. Set the “number of bytes to be compared - 1” in ROL and the start
address of the data in AO.

Z Meaning
0 Sorting succeeded
1 Sorting failed

135

Collection of General-purpose Programs
2.29 Sorting

2.29.3 Flowchart

ENTER

Number of bytes to Yes
be sorted =0 ?

No
-

Set compare address and
number of compare bytes

-t

Change compare address

Compare data Yes
compare data ?

No

Change compared data and
compare data for each other

-t

Number of bytes of
compare data?

Yes

Change compared address

Number of bytes of No
compared data?

Yes

136

Collection of General-purpose Programs

2.29 Sorting

2.29.4 Program List

R R T s s s o E g s g s S s e R S S R S R e e s T T S T S S S T S S e 2 e e 2 e e e e e e
’

. *
’

; M16C Program Collection No. 29 *

; CPU : M16C/80 series *

. *
Z**
VromTOP .EQU OFEOOOOH ; Declares start address of ROM

; Title: Sorting

; Outline: Sorts given data (2 to 256 bytes) in ascending order
; Input: > Output:

; ROL (Compare bytes - 1) ROL (Indeterminate)
; ROH () ROH (Indeterminate)
; R1L () R1L (Indeterminate)
; R1H () R1H (Unused)

; R2 () R2 (Unused)

; R3 () R3 (Unused)

; A0 (Start address) AOQ (Indeterminate)
; Al () Al (Indeterminate)

; Stack amount used: None
; Notes: Success or failure of sorting is returned by Z flag

.SECTION

PROGRAM,CODE
.ORG VromTOP ; ROM area
SORT: ;
CMP.B #0,ROL ;
JEQ SORT_EXIT ; --> Number of compare bytes not set
SORT_10: ;
MOV.B ROL,ROH ; Sets number of compare bytes
MOV.W A0,Al ; Sets compare address
SORT_20: ;
ADD.L:S #1,A1 ; Changes compare address
CMP.B [AO],[A1] ; Compare data to see if large or small
JGEU SORT_30 ; --> Sorting unnecessary
MOV.B [AO],R1L ; Changes compared and compare data for each other
XCHG.B R1L,[A1] ;
MOV.B R1L,[AQ] ;
SORT_30: ;
ADJINZ.B #-1,ROH,SORT_20 ; --> Looped for compare data
ADD.L:S #1,A0 ; Changes compared address
ADJINZ.B #-1,ROL,SORT_10 ; --> Looped for compared data
FCLR z ; Sorting completed
SORT_EXIT: ;
RTS

.END

137

2.30 Searching Array

2.30.1 Ouitline

Collection of General-purpose Programs

2.30 Searching Array

This program searches for specified data from a two-dimensional array of a given size (maximum 255 x

255 bytes).

Subroutine name : ARRANGE

ROM capacity :41 bytes

Interrupt during execution: Accepted

Number of stacks used : 2 bytes

Register/memory Input Output Usage condition
ROL Row size of array | Row element of coincidence datal “—
ROH Column size of array | Column element of coincidence data “—
R1L Search data Does not change “—
R1H — Indeterminate Used to save column size
R2 o o Unused
R3 — — Unused
A0 Start address of array |Address of coincidence data “—
Al — Indeterminate Used to save start address
Z flag — Sorting succeeded/failed “—

Usage precautions

138

Collection of General-purpose Programs
2.30 Searching Array

2.30.2 Explanation

This program searches for specified data from a two-dimensional array of a given size (maximum 255 x
255 bytes). Set the start address of the array in AO, the row size of the array in ROL, the column size of the
array in ROH, and the search data in R1L. The address, the row element, and the column element of the
coincidence data are output to A0, ROL, and ROH, respectively. Information on whether the search has
succeeded or failed is output to the Z flag.

In this program, the overall size of the array is calculated, the specified data is searched from the entire
array region, and a difference from the start address to the search address is obtained before decompos-
ing the coincidence data into row and column elements.

4 Meaning

0 | Search succeeded

Search failed (no coincidence data found, row setting of array = 0, or column setting of array = 0)

139

2.30.3 Flowchart

([ewer)

Row setting of array = 0?

Column setting of array
=0?

Collection of General-purpose Programs
2.30 Searching Array

Calculate entire area of array

Coincidence data?

Yes

Yes
No

Yes >
No

No

Set address difference from start to
coincidence data

Decompose coincidence data
into row and column elements

Search succeeded
Clear Z flag

<

Move to next data

Search finished?

Search failed
Set Z flag

(e)

140

Collection of General-purpose Programs
2.30 Searching Array

2.30.4 Program List

R R T s s s o E g s g s S s e R S S R S R e e s T T S T S S S T S S e 2 e e 2 e e e e e e
’

*

; M16C Program Collection No. 30 *
; CPU : M16C/80 series *
. *
rhkkkkkkkkkkkhkhkkkkhkhkhkhkhkkhhhhkhkhkhkhkhkhhhkhkhkhkhkhkkhkhhhkhkhhkhhhkhhkhkhhhhkhkhhhkhkhkhhhkhhhhkhhkhhkhkhhkhhhhkhhkhkhhhkhkkx

VromTOP

.EQU OFEOOOOH ; Declares start address of ROM

; Title: Searching array
; Outline: Searches for data from two-dimensional array of given size (within 255 x 255 bytes)

; Input: > Output:

; ROL (Row size of array) ROL (Row element of coincidence data)

; ROH (Column size of array) ROH (Column element of coincidence data)
; RiL (Search data) RiL (Does not change)

; R1H () R1H (Indeterminate)

; R2 () R2 (Unused)

; R3 () R3 (Unused)

; A0 (Start address of array) A0 (Address of coincidence data)

; Al () Al (Indeterminate)

; Stack amount used: 2 bytes
; Notes: Success or failure of search is returned by Z flag

ARRANGE:
CMP.B
JEQ
MOV.B
JEQ
MOV.W
MULU.B
ARRANGE_10:
CMP.B
JEQ
ADD.L:S
ADJINZ.W
ARRANGE_NG:
FSET
JMP
ARRANGE_20:
PUSH.W
SUB.W

MOV.W
DIVU.B

INC.B
INC.B
POP.W
FCLR
ARRANGE_EXIT:
RTS

.SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area

#0,ROL ;

ARRANGE_NG ; --> No rows of array are set
ROH,R1H ; Saves columns
ARRANGE_NG ; --> No columns of array are set
AQ,A1 ;

ROH,ROL ; Calculates array size
R1L,[A0O] ;

ARRANGE_20 ; --> Coincidence data found
#1,A0 ;

#-1,R0O,ARRANGE_10 ; --> Checks next data

Z : Search failed
ARRANGE_EXIT ;

A0 ; Saves address of coincidence data
Al1,A0 ; Creates address difference from start
; to coincidence data
AO,RO ;
R1H ; Decomposes coincidence data into
; row and column elements
ROL ; Corrects rows
ROH ; Corrects columns
A0 ; Restores address of coincidence data
Z ; Search succeeded
.END ;

141

2 Collection of General-purpose Programs

2.31 Converting from Lowercase Alphabet to Uppercase Alphabet

2.31 Converting from Lowercase Alphabet to Uppercase Alphabet
2.31.1 Outline

This program converts a lowercase English alphabet in ASCII code into an uppercase English alphabet

in ASCII code.
Subroutine name : TOUPPER ROM capacity : 16 bytes
Interrupt during execution: Accepted Number of stacks used :None
Register/memory Input Output Usage condition
ROL Lowercase alphabet (ASCII) | Uppercase alphabet (ASCII) “—
ROH — — Unused
R1 — — Unused
R2 — — Unused
R3 — — Unused
A0 —_ —_ Unused
Al — — Unused
C flag — Conversion information —
Usage precautions

142

2 Collection of General-purpose Programs

2.31 Converting from Lowercase Alphabet to Uppercase Alphabet

2.31.2 Explanation
This program converts a lowercase English alphabet in ASCII code into an uppercase English alphabet in
ASCII code. Set the lowercase English alphabet in ASCII code in ROL. The converted uppercase English
alphabet in ASCII code is output to ROL. Conversion information is output to the C flag.

Meaning

Lowercase alphabet converted into uppercase alphabet

No converted because inconvertible code was input

143

Collection of General-purpose Programs

2.31 Converting from Lowercase Alphabet to Uppercase Alphabet

2.31.3 Flowchart

(e)

ROL t 'a' ? No
ROL £ 7' ? No >
ROL - 20H -> ROL
Conversion succeeded Conversion failed
Clear C flag Set C flag

o)

144

Collection of General-purpose Programs

2.31 Converting from Lowercase Alphabet to Uppercase Alphabet

2.31.4 Program List

R R T s s s o E g s g s S s e R S S R S R e e s T T S T S S S T S S e 2 e e 2 e e e e e e
’

. *
’

; M16C Program Collection No. 31 *

; CPU : M16C/80 series *

. *
z**

VromTOP .EQU OFEOOOOH ; Declares start address of ROM

; Title: Converting ASCII code lowercase alphabet into uppercase alphabet

; Contents of processing:

; The ASCII code input in ROL is converted from a lowercase English alphabet into an
uppercase English alphabet and the result is returned to ROL. No conversion is
performed if any code is input in ROL that is not a lowercase English alphabet.

; Procedure: (1) Input ASCII code in ROL.

; (2) Call the subroutine.

; (3) Converted ASCII code is loaded into ROL.

; Result: The C flag is cleared to 0 when the code was converted from a lowercase alphabet
into an uppercase alphabet. The C flag is set to 1 when the code was not converted.

; Input: > Output:
; ROL (ASCII code) ROL (ASCII code)
; ROH) ROH (Unused)
; R1 () R1 (Unused)
; R2 () R2 (Unused)
; R3) R3 (Unused)
; A0) A0 (Unused)
; Al () Al (Unused)
; Stack amount used: None
.SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area
TOUPPER: :
CMP.B #'a',ROL ; Lowercase alphabet ‘a’ or above?
JLTU TOUPNON ; --> no (not converted)
CMP.B #27',ROL ; Lowercase alphabet ‘z’ or below?
JGTU TOUPNON ; --> no (not converted)
SUB.B #20H,ROL ; Converts from lowercase alphabet into
; uppercase alphabet
FCLR C ; Sets “converted” information
RTS ;
TOUPNON: ;
FSET C ; Sets “not-converted” information
RTS ;
.END ;

145

2 Collection of General-purpose Programs

2.32 Converting from Uppercase Alphabet to Lowercase Alphabet

2.32 Converting from Uppercase Alphabet to Lowercase Alphabet
2.32.1 Ouitline

This program converts an uppercase English alphabet in ASCII code into a lowercase English alphabet

in ASCII code.
Subroutine name : TOLOWER ROM capacity : 16 bytes
Interrupt during execution: Accepted Number of stacks used :None
Register/memory Input Output Usage condition
ROL Uppercase alphabet (ASCII) | Lowercase alphabet (ASCII) “—
ROH — — Unused
R1 — — Unused
R2 — — Unused
R3 — — Unused
A0 —_ —_ Unused
Al — — Unused
C flag — Conversion information —
Usage precautions

146

2 Collection of General-purpose Programs

2.32 Converting from Uppercase Alphabet to Lowercase Alphabet

2.32.2 Explanation
This program converts an uppercase English alphabet in ASCII code into a lowercase English alphabet in
ASCII code. Setthe uppercase English alphabet in ASCII code in ROL. The converted lowercase English
alphabet in ASCII code is output to ROL. Conversion information is output to the C flag.

Meaning

Uppercase alphabet converted into lowercase alphabet

1| No converted because inconvertible code was input

147

Collection of General-purpose Programs

2.32 Converting from Uppercase Alphabet to Lowercase Alphabet

2.32.3 Flowchart

([ever

ROL 1 'A' ? No

ROL £'Z' ? No >
ROL + 20H -> ROL
Conversion succeeded Conversion failed
Clear C flag Set C flag

([ear)

148

Collection of General-purpose Programs

2.32 Converting from Uppercase Alphabet to Lowercase Alphabet

2.32.4 Program List

R R T s s s o E g s g s S s e R S S R S R e e s T T S T S S S T S S e 2 e e 2 e e e e e e
’

. *
’

; M16C Program Collection No. 32 *

; CPU : M16C/80 series *

. *
z**

VromTOP .EQU OFEOOOOH ; Declares start address of ROM

; Title: Converting ASCII code uppercase alphabet into lowercase alphabet

; Contents of processing:

; The ASCII code input in ROL is converted from an uppercase English alphabet into

; a lowercase English alphabet and the result is returned to ROL. No conversion is

; performed if any code is input in ROL that is not an uppercase English alphabet.

; Procedure: (1) Input ASCII code in ROL.

; (2) Call the subroutine.

; (3) Converted ASCII code is loaded into ROL.

; Result: The C flag is cleare d to 0 when the code was converted from a uppercase alphabet
; into an lowercase alphabet. The C flag is set to 1 when the code was not

converted.
; Input: > Output:
; ROL (ASCII code) ROL (ASCII code)
; ROH) ROH (Unused)
; R1 () R1 (Unused)
; R2 () R2 (Unused)
; R3) R3 (Unused)
; A0) A0 (Unused)
; Al () Al (Unused)
; Stack amount used: None
.SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area
TOLOWER: ;
CMP.B #A' ROL ; Uppercase alphabet ‘A’ or above?
JLTU TOLOWNON ; --> no (not converted)
CMP.B #27' ROL ; Uppercase alphabet ‘Z’ or below?
JGTU TOLOWNON ; --> no (not converted)
ADD.B #20H,ROL ; Converts from uppercase alphabet
; into lowercase alphabet
FCLR C ; Sets “converted” information
RTS ;
TOLOWNON: ;
FSET C ; Sets “not-converted” information
RTS ;
.END ;

149

2 Collection of General-purpose Programs

2.33 Converting from ASCII to Hexadecimal Data

2.33 Converting from ASCII to Hexadecimal Data
2.33.1 Outline

This program converts ASCII code into hexadecimal data.

Subroutine name : ATOH ROM capacity : 42 bytes
Interrupt during execution: Accepted Number of stacks used :None
Register/memory Input Output Usage condition
ROL ASCII code Hexadecimal “«—
ROH — — Unused
R1 — — Unused
R2 — — Unused
R3 — — Unused
AO — — Unused
Al S — Unused
C flag — Conversion information —
Usage precautions

150

2 Collection of General-purpose Programs

2.33 Converting from ASCII to Hexadecimal Data

2.33.2 Explanation
This program converts ASCII code into hexadecimal data. The ASCII code that can be converted are
numbers from ‘0’ to ‘9’ and alphabets from ‘a’ to ‘f and ‘A’ to ‘F’. Set ASCII code in ROL. The converted
hexadecimal data is output to ROL. Conversion information is output to the C flag.

Meaning

ASCII converted into hexadecimal

1 | Not converted because inconvertible code was input

151

Collection of General-purpose Programs

2.33 Converting from ASCII to Hexadecimal Data

2.33.3 Flowchart

ROL="A'to'F'?
Yes

ROL - 'A"'+ 10 --> ROL

No
ROL="a"to'f'?

No

ROL -'a' + 10 --> ROL ROL="0'to'9"?

Yes

Conversion failed

ROL - '0" --> ROL Set C flag

Conversion succeeded
Clear C flag

EXIT

152

Collection of General-purpose Programs

2.33 Converting from ASCII to Hexadecimal Data

2.33.4 Program List

*hkkkkkkhhkhhhhhhkhkhkkkkkx *k%k *kkkkkkkhhhhkhk *k%k *kkkkkkkhkhhkhk *k%k

: M16C Program Collection No. 33
; CPU : M16C/80 series

* % * * X%

-k *k%k

VromTOP

*kkkkkkkkkkkkkkkk *k%k *kkkkkkkkk

EQU

*%k%k

OFEOOOOH

*k%k *kkkkkkkkk

: Declares start address of ROM

*k%k *k%k *

Title: Converting ASCII code into hexadecimal
Contents of processing:
The ASCII code input in ROL is converted into hexadecimal data, which is returned
to ROL. The valid ASCII code are 0to 9, A to F, and a to f. No conversion is per-
formed if invalid code is input.
Procedure: (1) Input ASCII code in ROL.
(2) Call the subroutine.
(3) The converted hexadecimal data is loaded into ROL.
; Result: When converted into hexadecimal data, the C flag is cleared to 0. If not converted
; into hexadecimal data, i.e., if any code other than 0 to 9, A to F, or a to f was input,

the C flag is set to 1.

; Input: > Output:
; ROL (ASCII code) ROL (Hexadecimal)
; ROH () ROH (Unused)
; R1 () R1 (Unused)
; R2 () R2 (Unused)
; R3 () R3 (Unused)
; A0 () A0 (Unused)
; Al () Al (Unused)
; Stack amount used: None
.SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area
ATOH: ;
CMP.B #'a',ROL ;‘a’ or above?
JLTU ATOH10 1 --> N0
CMP.B #'f',ROL ;. ‘f or below?
JGTU ATOH_ERR ; --> no (not converted)
SUB.B #(61H-10),ROL : SUB.B #'a’-10,ROL
FCLR C ; Sets “converted” information
RTS ;
ATOH10: :
CMP.B #A',ROL . ‘A’ or above?
JLTU ATOH20 1 --> N0
CMP.B #F' ,ROL :‘F’ or below?
JGTU ATOH_ERR ; --> no (not converted)
SUB.B #(41H-10),ROL : SUB.B #'A'-10,ROL
FCLR C ; Sets “converted” information
RTS ;
ATOH20: :
CMP.B #0',ROL ‘0’ or above?
JLTU ATOH_ERR ; --> no (not converted)
CMP.B #9',ROL ‘9" or below?
JGTU ATOH_ERR ; --> no (not converted)
AND.B #0FH,ROL :
FCLR C ; Sets “converted” information
RTS ;
ATOH_ERR: ;
FSET C : Sets “not-converted” information
RTS ;
.END ;

2 Collection of General-purpose Programs

2.34 Converting from Hexadecimal Data to ASCIl Code

2.34 Converting from Hexadecimal Data to ASCII Code
2.34.1 Outline

This program converts hexadecimal data into ASCII code.

Subroutine name : HTOA ROM capacity : 21 bytes
Interrupt during execution: Accepted Number of stacks used :None
Register/memory Input Output Usage condition
ROL Hexadecimal ASCII code “—
ROH — — Unused
R1 — — Unused
R2 — — Unused
R3 — — Unused
A0 —_ —_ Unused
Al S S Unused
C flag — Converted or not —
Usage precautions

154

2 Collection of General-purpose Programs

2.34 Converting from Hexadecimal Data to ASCIl Code

2.34.2 Explanation

This program converts hexadecimal data into ASCII code. The hexadecimal data that can be converted
are from “00H” to “OFH.” The converted ASCII code are numbers from ‘0’ to ‘9’ and alphabets from ‘A’ to
‘F’. Set the hexadecimal data in ROL. The converted ASCII code is output to ROL. Conversion informa-
tion is output to the C flag.

Cc Meaning

0 | Hexadecimal converted into ASCII code

1 | Not converted because inconvertible code was input

155

Collection of General-purpose Programs

2.34 Converting from Hexadecimal Data to ASCIl Code

2.34.3 Flowchart

No
ROL £ OFH ?

No
ROL 1 0AH ?

Conversion failed

ROL + 'A' - 10 --> ROL ROL +'0' --> ROL Set C flag

<

Conversion succeeded
Clear C flag

<

EXIT

156

Collection of General-purpose Programs

2.34 Converting from Hexadecimal Data to ASCIl Code

2.34.4 Program List

*kkkkkkkkk

M16C Program Collection No. 34

: CPU

*kkkk

*%k% *k%k *kkkkkkkhhhhkhk *k%k *kkkkkkkhkhhkhk *k%k

: M16C/80 series

* % * * X%

-k *k%k

VromTOP

*kkkkkkkkkkkkkkkk

*k%k *kkkkkkkkk

EQU

*%k%k

OFEOOOOH

*k%k *kkkkkkkkk

: Declares start address of ROM

*k%k *k%k *

; Title: Converting hexadecimal into ASCII code
; Contents of processing:

The hexadecimal data input in ROL is converted into ASCII code, which is returned
to ROL. The valid hexadecimal data are 00 to OF. OA to OF are converted into ‘A’ to
‘F.” No conversion is performed if invalid code is input.

; Procedure: (1) Input hexadecimal data in ROL.

; Result:

; Input:
ROL
ROH
R1
R2

A0
Al

(2) Call the subroutine.

(3) The converted hexadecimal data is loaded into ROL.
When converted into ASCII code, the C flag is cleared to 0. If not converted into
ASCII code, i.e., if any hexadecimal data other than 00 to OF was input, the C flag is
setto 1.

> Output:
(Hexadecimal) ROL (ASCII code)
() ROH (Unused)
() R1 (Unused)
() R2 (Unused)
() R3 (Unused)
() A0 (Unused)
() Al (Unused)

Stack amount used: None

: R3

HTOA10:
ADD.B
FCLR
RTS

HTOA_ERR:
FSET
RTS

.END

SECTION PROGRAM,CODE

.ORG VromTOP ; ROM area

#0FH,ROL ; OF or below?

HTOA_ERR ; --> No(not converted)
#0AH,ROL ; OA or above?

HTOA10 ; —->Yes (Ato F set)

#0',ROL ;

C ; Sets “converted” information
#(41H-10),ROL ; ADD.B #'A'-10,ROL

C ; Sets “converted” information

C : Sets “not-converted” information

157

2.35 Example for Initial Setting Assembler
2.35.1 Ouitline

Collection of General-purpose Programs

2.35 Example for Initial Setting Assembler

This program is an example of initial settings accomplished by using the directive commands of the

assembler.

2.35.2 Explanation

The program shown here consists of the following:
(1) Map file information output
(2) Global symbol name specification
(3) Numeric symbol definition
(4) RAM area allocation
(5) Bit symbol definition
(6) Initial setup program
* Interrupt stack pointer setting
* FB register setting
» SB register setting
 INTB register setting
* RAM clear
Main program
Peripheral 1/O interrupt vector table
Nonmaskable interrupt fixed vector table

(7)
(8)
9)

The following shows the range of the FB and SB relative addresses in this program.

FB 380H to 47FH

-128

T

400H
i
+127
480H to 57FH
400H

N

+ 255

SB

158

Collection of General-purpose Programs

2.35 Example for Initial Setting Assembler

2.35.3 Program List

R R T e s s R E o e g g e s S R S S R e R e e s S S S S S T S S e 2 e e 2 e e e e e e

*

; M16C Program Collection No. 35 *
; CPU : M16C/80 series *

*
skkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkhkkkkhkkkkkhkkkkkkkkkhkkkhkhkkkkkhkkkhkkkkhkkhkkkhkkkkkhkkkkkhkkkkkx
’

Title: Initial settings using assembler’s directive commands

Outline:
(1) Assemble control
(2) Address control
; (3) Link control
; (4) List control
; (5) Branch instruction optimization control
; Notes:

//
Map file information output
//
.VER 'Verl.02' ; ‘Verl.02' is output when generating map file

ST T T
; Global symbol name specification
ST T T T T T

; [Global symbol specification]

.GLB ROUTINE ; Externlly referenced symbol
.GLB MAIN ; Public symbol

; [Global bit symbol specification]
.BTGLB P2_4 ; Externally referenced symbol
.BTGLB P0O_7 ; Public symbol

//
Numeric symbol definition
//

VramTOP .EQU 000400H ; Declares start address of RAM
VramEND .EQU 002BFFH ; Declares last address of RAM
Vistack .EQU 002CO00H ; Interrupt stack pointer
VproTOP .EQU OFEOOOOH ; Declares start address of program
Vintbase.EQU .EQU OFFFDOOH ; Declares start address of variable vector table
Vvector .EQU OFFFFDCH ; Declares fixed interrupt vector address
CNT125ms .EQU 125 ; Sets 125 in CNT125ms
AUTOchar .EQU -8 ; Sets -8 in AUTOchar
.FORM 45,160 ; [List output control instruction]
; Specifies 45 lines, 160 columns per page of list file
.LIST ON ; [List output control]
; Outputs assembler list
.PAGE 'RAM' ; [List page break and title specification]
.SECTION MEMORY,DATA ; [Section name specification]
; Declares DATA attribute section of section name “MEMORY”
.ORG VramTOP ; [Absolute address setting]

; Sets location to 400H

159

Collection of General-purpose Programs

2.35 Example for Initial Setting Assembler

ST T T T
: RAM area allocation
ST T T T

; [RAM area 1-byte allocation]

CHAR: .BLKB 10 ; Allocates 10-byte area
; [RAM area 2-byte allocation]
SHORT: .BLKW 10 ; Allocates 20-byte area
; [RAM area 3-byte allocation]
ADDR: .BLKA 10 ; Allocates 30-byte area
; [RAM area 4-byte allocation]
LONG: .BLKL 10 ; Allocates 40-byte area
; [Single-precision, floating-point RAM area allocation]
SFLOAT: .BLKF 10 ; Allocates 40-byte area
; [Double-precision, floating-point RAM area allocation]
DFLOAT: .BLKD 10 ; Allocates 80-byte area
CHECK: .BLKW 10

;//
; Bit symbol definition
ST T T

BIT4 .BTEQU 4,CHAR ; Sets bit 4 of displacement CHAR to BIT4
MSB .BTEQU 15,SHORT ; Sets bit 15 of displacement SHORT to MSB
PO 7 .BTEQU 7,3EO0H ; Sets bit 7 at address 3E0 to PO_7
.SECTION PROG,CODE ; Declares CODE attribute section of section name “PROG”
.ORG VproTOP ; Sets location to FEOOOOH
.OPTJ OFF ; [Branch instruction optimize specification]
; Does not optimize branch instruction after this line
.FB VramTOP ; [Assumption of FB register value]
; Assumes 400H for FB register value
.SB VramTOP+80H ; [Assumption of SB register value]
; Assumes 480H for SB register value
.FBSYM SHORT
.SBSYM CHECK

Program start

RESET
LDC #Vlstack,ISP ; Sets interrupt stack pointer
LDC #VramTOP,FB ; Sets frame base register
LDC #VramTOP+80H,SB ; Sets static base register
LDC #Vintbase,INTB ; Sets interrupt table register
MOV.W #0,R0 ; Sets store data (0)
MOV.W #((VramEND+1)-VramTOP)/2,R3 ; Sets number of transfers performed
MOV.W #VramTOP,Al ; Sets address where to start storing
SSTR.W ; Executes clearing of RAM
FSET I ; Enables interrupt

160

Collection of General-purpose Programs

2.35 Example for Initial Setting Assembler

; Main program

MAIN
MOV.W #1234H,SHORT
MOV.W #5678H,CHECK
JSR ROUTINE
BSET PO_7
[}
[}
[}
1
ROUTINE:
(Processing)
RTS
NOTUSE:
(Processing)
REIT

.PAGE 'VECTOR'

.SECTION UINTER,ROMDATA : Declares FOMDATA attribute section
: of section name “UINTER”
.ORG Vintbase : Sets location to FFFDOOH

; Peripheral I/O interrupt vector table

.LWORD NOTUSE ; Software interrupt number 0

.LWORD NOTUSE ; Software interrupt number 1

.SECTION INTER,ROMDATA ; Declares FOMDATA attribute section
; of section name “INTER”

.ORG Vvector ; Sets location to FFFFDCH

; Nonmaskable interrupt fixed vector table

.LWORD NOTUSE ; FFFFDC to F Undefined instruction
.LWORD NOTUSE : FFFFEO to 3 Overflow

.LWORD NOTUSE : FFFFE4 to 7 BRK instruction
.LWORD NOTUSE ; FFFFE8 to B Address coincidence
.LWORD NOTUSE ; FFFFEC to F Single stepping
.LWORD NOTUSE ; FFFFFO to 3Watchdog timer
.LWORD NOTUSE ; FFFFF4 to 7 Debugger

.LWORD NOTUSE : FFFFF8 to B NMI

.LWORD RESET iFFFFFCto F Reset

ST T

; End of assemble direction

ST T
.END

161

2 Collection of General-purpose Programs
2.36 Special Page Subroutine

2.36 Special Page Subroutine

2.36.1 Ouitline
This program is an example for using a special subroutine call.

2.36.2 Explanation
The program branches to a subroutine at an address that is the address set in one of the special page
vector tables (in 2 bytes each) plus FFOOOOH. The area in which control can branch to a subroutine is
from address FFOOOOH to address FFFFFFH.
The special page vector tables are located in an area ranging from address FFFEOOH to address
FFFFDBH. The special page number at address FFFEOOH is 255 and that at address FFFFDAH is 18. A
label can be used in place of a special page number.
Shown in this program are an example where labels are used for special page numbers 255 and 18 and
an example where a special page number (254) is used directly.

162

Collection of General-purpose Programs
2.36 Special Page Subroutine

2.36.3 Program List

R R T R s s s s R E s e e s e R S S R e R e e s S T S T S T S e 2 e e 2 e e e e e e
*

; M16C Program Collection No. 36 *
; CPU : M16C/80 series *
*
:**
VromTOP .EQU OFEOOOOH ; Declares start address of ROM

; Title: Special page subroutine call
; Outline: Description example of special page subroutine call

; Input: > Output:
; RO () RO ()
; R1 () R1 ()
; R2 () R2 ()
; R3 () R3 ()
; A0 () A0 ()
; Al 0) Al 0)
; Stack amount used: 3 bytes
.SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area
MAIN:
JSRS \SUB1 ; Branches to subroutine at LABEL_1
JSRS #254 ; Branches to subroutine at LABEL_2
JSRS \SUB238 ; Branches to subroutine at LABEL_238
:
[}
1
[}
LABEL_1:
(Processing)
RTS
LABEL_2:
(Processing)
RTS
LABEL_238:
(Processing)
RTS
.SECTION SPECIAL,ROMDATA
.ORG OFFFEOOH ; Special page area
; Special page
SUBL1: .WORD LABEL_1&0FFFFH ; Special page number 255
.WORD LABEL_2&0FFFFH ; Special page number 254
.ORG OFFFDAH
SUB238: .WORD LABEL_238&0FFFFH ; Special page humber 18
.END ;

163

2 Collection of General-purpose Programs

2.37 Special Page Jump

2.37 Special Page Jump

2.37.1 Ouitline
This program is an example for using a special page jump.

2.37.2 Explanation
Control jumps to an address that is set in one of the special page vector tables (in 2 bytes each) plus
FFOOOOH. The area within which control can jump is from address FFOOO0H to address FFFFFFH.
The special page vector tables are located in an area ranging from address FFFEOOH to address
FFFFDBH. The special page humber at address FFFEOOH is 255 and that at address FFFFDAH is 18. A
label can be used in place of a special page number.
Shown in this program are an example where labels are used for special page nhumbers 255 and 18 and
an example where a special page number (254) is used directly.

164

Collection of General-purpose Programs
2.37 Special Page Jump

2.37.3 Program List

R R T R s s s s R E s e e s e R S S R e R e e s S T S T S T S e 2 e e 2 e e e e e e
*

; M16C Program Collection No. 37 *
; CPU : M16C/80 series *
*
:**
VromTOP .EQU OFEOOOOH ; Declares start address of ROM

; Title: Special page subroutine call
; Outline: Description example of special page subroutine call

; Input: > Output:
; RO () RO ()
; R1 () R1 ()
: R2 () R2 ()
: R3 () R3 ()
: A0 () A0 ()
; Al 0) Al 0)
; Stack amount used: None
.SECTION PROGRAM,CODE
.ORG VromTOP ;ROM area
MAIN:
JMPS \SUB1 ; Jumps to LABEL_1
JMPS #254 ; Jumps to LABEL_2
JMPS \SUB238 ; Jumps to LABEL_238
1
1
[}
1
[}
LABEL_1:
(Processing)
LABEL_2:
(Processing)
LABEL_238:
(Processing)
.SECTION SPECIAL,ROMDATA
.ORG OFFFEOOH ; Special page area
; Special page area
SUB1: .WORD LABEL_1&0FFFFH ; Special page number 255
.WORD LABEL_2&0FFFFH ; Special page number 254
.ORG OFFFDAH
SUB238: .WORD LABEL_238&0FFFFH ; Special page humber 18

.END ;

165

2 Collection of General-purpose Programs
2.38 Variable Vector Table

2.38 Variable Vector Table

2.38.1 Ouitline

This program shows an example for setting variable vector tables and an example for using software
interrupts.

2.38.2 Explanation
A variable vector table is a 256-byte interrupt vector table whose start address (IntBase) is indicated by
the content of the interrupt table register (INTB). The variable vector table in this program has its start
address at FFEOOOH. The variable vector table has individual vector tables each comprised of 4 bytes,
and each vector table contains the start address of an interrupt routine.
There are software interrupt numbers (0 to 63) available for each vector table. The INT instruction uses
these software interrupt numbers. No labels can be used in place of the software interrupt numbers.
Peripheral 1/O interrupts are assigned software interrupt numbers 0 to 31. In this program, software
interrupt number 12 is used for timer AO and software interrupt number 13 is used for timer Al.
Software interrupt numbers 32 to 63 are used for software interrupts. This type of interrupt is generated
by the INT instruction. Therefore, software interrupts are used in the same way as a subroutine by using
the INT instruction. The INT instruction is executed even when interrupts are disabled. After interrupts
are disabled (FCLR 1) in this program, INT#44 and INT#45 are executed regardless of whether or not the
interrupt enable flag (l) is set.

166

Collection of General-purpose Programs
2.38 Variable Vector Table

2.38.3 Program List

skkkkkkkkkkkkkkkhkkkkkkkkkhkhkhhkhhhkrhkrkhkkkhkhkhkhhhhhhhhhhhhkhhhrhrhkrkhkkkhhkhhhhhhhhhhhhhrrhrhrhkiixkxx

*
; M16C Program Collection No. 38 *
; CPU : M16C/80 series *

*
:**
VromTOP .EQU OFEOOOOH ; Declares start address of ROM
Vistack .EQU 002CO00H ; Interrupt stack pointer
Vintbase .EQU OFFEOOOH ; Declares interrupt vector table address
TAOIC .EQU 006CH ; Timer AO interrupt control register
TAlIC .EQU 008CH ; Timer Al interrupt control register
TABSR .EQU 0340H ; Timer start flag
TAO .EQU 0346H ; Timer AO register
TA1l .EQU 0348H ; Timer Al register

Title: Variable vector table
Outline: Description example of variable vector table and software interrupt

.SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area
MAIN
LDC #Vlstack,ISP ; Sets interrupt stack pointer
LDC #Vintbase,INTB ; Sets interrupt table register
’ MOV.W #100-1,TAO ; Sets timer AO counter
MOV.B #00000001B,TAOIC ; Sets interrupt level 1 for timer AO
MOV.W #1000-1,TAl1 ; Sets timer A1 counter
MOV.B #00000010B,TA1IC ; Sets interrupt level 2 for timer Al
’ MOV.B #00000011B,TABSR ; Timers AO and Al start counting
’ FSET I ; Enables interrupts
’ INT #12 ; Performs timer AQ interrupt processing
; (TIMER_AQO is executed)
’ FCLR I ; Disables interrupts
’ INT #13 ; Performs timer Al interrupt processing
; (TIMER_AL1 is executed)
’ INT #44 ; Performs SOFTINT label interrupt processing
TIMER_AO:
(Processing)
REIT
TIMER_A1:
(Processing)
REIT
SOFTINT:
(Processing)
REIT

167

NOTUSE:
REIT

Collection of General-purpose Programs

2.38 Variable Vector Table

; Variable vector table area

; Software interrupt number O
; Software interrupt number 1

; Software interrupt number 12
; Software interrupt number 13

; Software interrupt area

; Software interrupt number 44

.SECTION SPECIAL,ROMDATA
.ORG Vintbase
; Peripheral I/O interrupt vector table
.LWORD NOTUSE
.LWORD NOTUSE
.ORG Vintbase+48
.LWORD TIMER_AO
.LWORD TIMER_A1
.ORG Vintbase+176
; Software interrupt vector table
.LWORD SOFTINT
.LWORD NOTUSE

.END

168

; Software interrupt number 45

2 Collection of General-purpose Programs

2.39 Saving and Restoring Context

2.39 Saving and Restoring Context

2.39.1 Ouitline
This program shows a usage example for saving context (STCTX instruction) and restoring context
(LDCTX instruction).

2.39.2 Explanation

Tasks are executed in the main routine and context save and restore operations are performed within
each task processing.

TASK contains a task’s execution number. The content of the table equal to twice the content of TASK in
the task execution table is executed (task execution processing). This program has three tasks to ex-
ecute. Context save and restore operations are performed within each task processing.

Vcontext indicates the table’s base address. The data stored at an address apart from the base address
by twice the content of TASK contains register information and the next address indicates a stack
pointer’s correction value.

The following shows the function of register information.

b7 b6 b5 b4 b3 b2 bl b0
FB SB Al AO R3 R2 R1 RO

The content of the register whose bit is set (= 1) is saved to or restored from a stack. The stack pointer’s
correction value is twice the number of registers to be saved and restored.

169

2.39.3 Program List

Collection of General-purpose Programs

2.39 Saving and Restoring Context

R R T R s s s s R E s e e s e R S S R e R e e s S T S T S T S e 2 e e 2 e e e e e e
’

; M16C Program Collection No. 39

*

*

; CPU : M16C/80 series *
. *
:**
VramTOP .EQU 000400H ; Declares start address of RAM
VromTOP .EQU OFEOOOOH ; Declares start address of ROM
Vcontext .EQU OFFF800H ; Table’'s base address
Vsubtbl .EQU OFFFAOQOH ; Declares start address of subroutine table
.SECTION RAM,DATA
.ORG VramTOP ; RAM area
TASK .BLKB 1 ; Task number
; Title: Saving/restoring context
; Outline: Example for using STCTX/LDCTX instructions
; Notes:
.SECTION PROGRAM,CODE
.ORG VromTOP ; ROM area
MAIN
MOV.B TASK,A0
SHL.W #2,A0 ; Subroutine pointer
JSRI.A Vsubtbl[AO] ; Executes task
INC.B TASK ; Task + 1
CMP.B #2,TASK ; Greater than number of tasks?
JLEU L 1 :-->No
MOV.B #0,TASK ; Setstask =0
L_1:
JMP MAIN
; Processing of task 0
TASK_O:
STCTX TASK,Vcontext ; Saves registers in order of R0, R1, R2, R3, SB, and FB
(Processing)
LDCTX TASK,Vcontext ; Restores registers in order of FB, SB, R3, R2, R1, and RO
RTS
; Processing of task 1
TASK_1:
STCTX TASK,Vcontext ; Saves registers in order of RO, R2, SB, and FB
(Processing)
LDCTX TASK,Vcontext ;Restores registers in order of FB, SB, R2, and RO
RTS

170

Collection of General-purpose Programs

2.39 Saving and Restoring Context

; Processing of task 2

TASK_2:
STCTX TASK,Vcontext ; Saves registers in order of R1, R3, A1, and SB
(Processing)
LDCTX TASK,Vcontext ; Restores registers in order of SB, A1, R3, and R1
RTS
.SECTION BASE,ROMDATA
.ORG Vcontext ; Context save/restore table area
; Context information table
.BYTE 11001111B ; TASK = 0 Register information
.BYTE 12 ; SP correction value
.BYTE 10000101B ; TASK = 1 Register information
.BYTE 6 ; SP correction value
.BYTE 01101010B ; TASK = 2 Register information
.BYTE 8 ; SP correction value
.SECTION TABLE,ROMDATA
.ORG Vsubtbl ; Subroutine table area
; Subroutine table
.LWORD TASK 0 : TASK = 0 Subroutine
.LWORD TASK 1 : TASK = 1 Subroutine
.LWORD TASK 2 : TASK = 2 Subroutine

.END

171

2 Collection of General-purpose Programs

2.39 Saving and Restoring Context

MEMO

172

Chapter 3

Program Collection of Mathematic/Trigonometric Functions

Program Collection of Mathematic/Trigonometric Functions

Function list
Function list
Item No. Function Format Page
3.1 Single-precision, floating-point format - 175
3.2 Addition Library 178
3.3 Subtraction Library 180
3.4 Multiplication Library 182
35 Division Library 184
3.6 Sine function Library 186
3.7 Cosine function Library 188
3.8 Tangent function Library 190
3.9 Inverse sine function Library 192
3.10 Inverse cosine function Library 194
3.11 Inverse tangent function Library 196
3.12 Square root Library 198
3.13 Power Library 200
3.14 Exponential function Library 202
3.15 Natural logarithmic function Library 204
3.16 Common logarithmic function Library 206
3.17 Data comparison Library 208
3.18 Conversion from FLOAT type to WORD type Library 210
3.19 Conversion from WORD type to FLOAT type Library 212
3.20 Program list * - 214

*: This consists of a collection of the arithmetic library’s program lists.

174

3 Program Collection of Mathematic/Trigonometric Functions

3.1 Single-precision, Floating-point Format

3.1 Single-precision, Floating-point Format

3.1.1 Outline

The floating-point data used in this arithmetic library conforms to the single-precision (4-byte), floating-
point format in IEEE standards.

All calculations in this arithmetic library are performed by replacing or referencing register contents.
Please be sure to set the necessary data in registers before calling a subroutine. Note also that although
each subroutine uses the M16C/80-series’ CPU registers to implement its processing, no measures are
taken inside the subroutine to protect the registers. Therefore, take protective measures by, for example,
saving the registers in a stack area as necessary before calling a subroutine.

3.1.2 Representation of Single-precision, Floating-point Data
This arithmetic library uses the IEEE standards single-precision data format shown below to represent
floating-point binary numbers.

Bit 31 23 16 8 0
S| e ! f !

\ Exponent I~ Mantissa part in 23 bits
part in 8 bits f

Decimal position of mantissa part (A)

L Sign of mantissa part 0 : Positive
1 : Negative

Representation of floating-point data

3.1.3 Mantissa Part
The mantissa part (f) consists of 23 bits of fixed-point real number, with the decimal point placed at
position A. Since the floating-point numbers handled in this library are normalized, 1s in the most signifi-
cant bit are omitted. Consequently, significant digits are always “1 + f”. The range of ‘f'is0 £ f < 1.

MSB 2 -1 LSB 2 23
ITTTTTTTTTTTTTTTTTTTTI
Lttt el
-, DA AN
A High-order Mid-order Low-order
mantissa mantissa mantissa
~--—— Mantissa part data in 23 bits (f) ——»

mantissa part data representation A

Mantissa part data representation

175

Program Collection of Mathematic/Trigonometric Functions

3.1 Single-precision, Floating-point Format

3.1.4 Exponent Part
The exponent part uses an 8-bit unsigned binary number to express ‘e’ of 2127 to 27126, The data is
expressed by a value that is prebiased by adding 7F16. (However, e =0 and e = FF16 are used as special
numbers.) Consequently, the actual exponent value and the representation of the exponent part have
the following relationship.

Exponent value 127 + + =+« = v v s s v s e 1 0 B 126

Exponent part FE16 - =+« « 2o s e e e 8016 7F16 7E16 - - =+ =« « = r s o e e 0l16

Relationship between exponent value and representation of exponent part

3.1.5 Sign of Mantissa Part

The sign of the mantissa part (s) is located at the MSB (31st bit) position of the data area. Numeral O
denotes a positive number and numeral 1 denotes a negative number.

3.1.6 Types and Meanings of Data Representation
The table below shows the values represented by binary floating-point numbers in conformity with IEEE
standards.

Values represented by binary floating-point numbers

Represented Sign ‘s’ Exponent Mantissa Remarks
value part ‘e’ part ‘f’
11111111 All bits in exponent part are 1s
Non-numeral 0/1 11111111 to and any bit in mantissa part is
00000001
not O.
All bits in exponent part are 1s
Infinite 0/1 11111111 00000000 and all bits in mantissa part are
0s.
Normalized oL 11113110 111%3111 Maximum value 3.40 x 10%
number 00000001 00000000 minimum value 3.40 x 10738
Absolute 0 o1 00000000 00000000 AII b_|ts in e>_<p0nent part and all
bits in mantissa part are 0s.
Example of normalization
Sign 's’ Exponent part ‘e’ Mantissa part ‘f Value (decimal)
0 01111111 0000000 00000000 00000000 1
0 01111011 1001100 11001100 11001101 0.1
0 01111110 0000000 00000000 00000000 0.5
1 01111111 0000000 00000000 00000000 -1
1 01111011 1001100 11001100 11001101 0.1
1 01111110 0000000 00000000 00000000 -05

176

Program Collection of Mathematic/Trigonometric Functions

3.1 Single-precision, Floating-point Format

3.1.7 Arguments and Return Values

This section explains the floating-point arguments and return values used in this arithmetic library.

The first operand (or the number to be operated on) of an argument is assigned to registers (R2R0) and
the second operand (or the number operating on it) is assigned to registers (R3R1). Set values in these
registers before calling a library. The return values from a library are loaded into registers (R2R0). The
diagram below shows the structure of an argument and return value.

Bits 15 8 7 0
1 1 1. T T 1 1 1 1 1 1T T 11

RO or R1 Mantissa part, mid-order Mantissa part, low-order
I I R R [N (N A IR BN TN TN I TR

Bits 15 14 7 6 0
1 T T 1T T 1 1 T T T 1
IExptljnenlt parlt I\I/Iantilssa Part,lhighl—ord?r

R2 or R3 |

|— Sign of mantissa part

Structure of argument and return value

177

Program Collection of Mathematic/Trigonometric Functions

3.2 Addition

3.2 Addition
3.2.1 Outline

This program adds float-point numbers.
The first operand (R2R0) is added to the second operand (R3R1) and the result is stored in (R2R0).
Calculation result (R2R0) = first operand (R2R0) + second operand (R3R1)

Subroutine name: FADD

ROM capacity: 382 bytes

Interrupt during execution: Accepted

Number of stacks used: 18 bytes

Register/memory Input Output Remarks
RO Lower half of first operand |Lower half of calculation result| Mid and lower parts of mantissa
R1 Lower half of second operand Indeterminate Destroyed during processing
R2 Upper half of first operand |Upper half of calculation result | Sign, exponent, upper part of mantissa
R3 Upper half of second operand Indeterminate Destroyed during processing
AO — — Unused
Al — — Unused

Usage precautions

Since the contents of R3 and R1 are destroyed as a result of program execution, save the registers
before calling the subroutine as necessary.
Supplementary explanation

A + B =C A: First operand; B: Second operand; C: Calculation result

178

Program Collection of Mathematic/Trigonometric Functions

3.2 Addition

3.2.2 Explanation

Procedure:

(1) Store the first operand (normalized single-precision, floating-point number) in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa

(2) Store the second operand (normalized single-precision, floating-point number) in R3 and R1.
R3 = sign, exponent, upper part of mantissa
R1 = mid and lower parts of mantissa

(3) Call the subroutine (FADD).

Calculation result:
The calculation result is placed in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
If the operation resulted in an error, one of the following values is returned.

Contents of R2 and RO Meaning
Maximum value of normalized number * Overflow
Minimum value of normalized number * Underflow

Non-numeral * Faulty data
Absolute 0 * When calculation result = 0
First or second operand whichever larger Exponent underflow
(not changed)

* Refer to Section 3.1.5.

179

3.3 Subtraction
3.3.1 Outline

Program Collection of Mathematic/Trigonometric Functions

This program subtracts floating-point numbers.
The first operand (R2R0) and second operand (R3R1) are subtracted and the result is stored in (R2R0).
Calculation result (R2R0) = first operand (R2R0) — second operand (R3R1)

3.3 Subtraction

Subroutine name: FSUB

ROM capacity: 8 bytes

Interrupt during execution: Accepted

Number of stacks used: 21 bytes

Register/memory

Input

Output

Remarks

RO Lower half of first operand |Lower half of calculation result |Mid and lower parts of mantissa
R1 Lower half of second operand Indeterminate Destroyed during processing
R2 Upper half of first operand |Upper half of calculation result | Sign, exponent, upper part of mantissa
R3 Upper half of second operand Indeterminate Destroyed during processing
AO — — Unused
Al - — Unused

Usage precautions

Since the contents of R3 and R1 are destroyed as a result of program execution, save the registers
before calling the subroutine as necessary.
Supplementary explanation

A -B =C A: First operand; B: Second operand; C: Calculation result

180

Program Collection of Mathematic/Trigonometric Functions

3.3 Subtraction

3.3.2 Explanation

Procedure:

(1) Store the first operand (normalized single-precision, floating-point number) in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa

(2) Store the second operand (normalized single-precision, floating-point number) in R3 and R1.
R3 = sign, exponent, upper part of mantissa
R1 = mid and lower parts of mantissa

(3) Call the subroutine (FSUB).

Calculation result:
The calculation result is placed in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
If the operation resulted in an error, one of the following values is returned.

Contents of R2 and RO Meaning
Maximum value of normalized number * Overflow
Minimum value of normalized number * Underflow

Non-numeral * Faulty data
Absolute 0 * When calculation result =0
First or second operand whichever larger (not changed)| Exponent underflow

* Refer to Section 3.1.5.

181

3.4 Multiplication

3.4.1 Outline

Program Collection of Mathematic/Trigonometric Functions

This program multiplies floating-point numbers.
The first operand (R2R0) and second operand (R3R1) are multiplied and the result is stored in (R2R0).
Calculation result (R2R0) = first operand (R2R0) x second operand (R3R1)

3.4 Multiplication

Subroutine name: FMUL

ROM capacity: 193 bytes

Interrupt during execution: Accepted

Number of stacks used: 19 bytes

Register/memory Input Output Remarks
RO Lower half of first operand |Lower half of calculation result |Mid and lower parts of mantissa
R1 Lower half of second operand Indeterminate Destroyed during processing
R2 Upper half of first operand |Upper half of calculation result | Sign, exponent, upper part of mantissa
R3 Upper half of second operand Indeterminate Destroyed during processing
AO — — Unused
Al - - Unused

Usage precautions

Since the contents of R3 and R1 are destroyed as a result of program execution, save the registers
before calling the subroutine as necessary.
Supplementary explanation

A x B =C A: First operand; B: Second operand; C: Calculation result

182

Program Collection of Mathematic/Trigonometric Functions

3.4 Multiplication

3.4.2 Explanation

Procedure:

(1) Store the first operand (normalized single-precision, floating-point number) in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa

(2) Store the second operand (normalized single-precision, floating-point number) in R3 and R1.
R3 = sign, exponent, upper part of mantissa
R1 = mid and lower parts of mantissa

(3) Call the subroutine (FMUL).

Calculation result:
The calculation result is placed in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
If the operation resulted in an error, one of the following values is returned.

Contents of R2 and RO Meaning
Maximum value of normalized number * Overflow
Minimum value of normalized number * Underflow

Non-numeral * Faulty data
Absolute 0 * When calculation result =0

* Refer to Section 3.1.5.

183

3.5 Division
3.5.1 Outline

Program Collection of Mathematic/Trigonometric Functions

This program divides floating-point numbers.
The first operand (R2R0) and second operand (R3R1) are multiplied and the result is stored in (R2R0).
Calculation result (R2R0) = first operand (R2R0), second operand (R3R1)

3.5 Division

Subroutine name: FDIV

ROM capacity: 241 bytes

Interrupt during execution: Accepted

Number of stacks used: 18 bytes

Register/memory

Input

Output

Remarks

RO Lower half of first operand |Lower half of calculation result |Mid and lower parts of mantissa
R1 Lower half of second operand Indeterminate Destroyed during processing
R2 Upper half of first operand |Upper half of calculation result | Sign, exponent, upper part of mantissa
R3 Upper half of second operand Indeterminate Destroyed during processing
A0 — — Unused
Al - — Unused

Usage precautions

Since the contents of R3 and R1 are destroyed as a result of program execution, save the registers
before calling the subroutine as necessary.
Supplementary explanation

A, B=C A: First operand; B: Second operand; C: Calculation result

184

Program Collection of Mathematic/Trigonometric Functions

3.5 Division

3.5.2 Explanation

Procedure:

(1) Store the first operand (normalized single-precision, floating-point number) in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa

(2) Store the second operand (normalized single-precision, floating-point number) in R3 and R1.
R3 = sign, exponent, upper part of mantissa
R1 = mid and lower parts of mantissa

(3) Call the subroutine (FDIV).

Calculation result:
The calculation result is placed in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
If the operation resulted in an error, one of the following values is returned.

Contents of R2 and RO Meaning
Maximum value of normalized number * Overflow
Minimum value of normalized number * Underflow

Infinite * Division by zero
Non-numeral * Faulty data
Absolute 0 * When calculation result = 0
First or second operand whichever larger (not changed)| Exponent underflow

* Refer to Section 3.1.5.

185

3 Program Collection of Mathematic/Trigonometric Functions

3.6 Sine Function

3.6 Sine Function
3.6.1 Outline

This program finds a sine of the operand (R2R0) comprised of a single-precision, floating-point number
and stores the result in (R2RO0).

(R2R0) = SIN(R2R0)

The unit is radian.

Make sure the operand is smaller than 2p.

Subroutine name: FSIN ROM capacity: 185 bytes
Interrupt during execution: Accepted Number of stacks used: 34 bytes
Register/memory Input Output Remarks
RO Lower half of operand |Lower half of calculation result [Mid and lower parts of mantissa
R1 — Indeterminate Destroyed during processing
R2 Upper half of operand |Upper half of calculation result | Sign, exponent, upper part of mantissa
R3 — Indeterminate Destroyed during processing
A0 — Indeterminate Destroyed during processing
Al — — Unused
C flag — 0: Normal; 1: Erroneous | Status of calculation result
Usage precautions

Since the contents of R3, R1 and A0 are destroyed as a result of program execution, save the
registers before calling the subroutine as necessary.
Supplementary explanation

C = SIN(A) A: Operand; C: Calculation result

186

3 Program Collection of Mathematic/Trigonometric Functions

3.6 Sine Function

3.6.2 Explanation

Procedure:
(1) Store the operand (normalized single-precision, floating-point number) in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
(2) Call the subroutine (FSIN).

Calculation result:
The calculation result is placed in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
If the operation resulted in an error, one of the following values is returned.

Contents of R2 and RO Meaning

Maximum value of normalized number * Overflow

* Refer to Section 3.1.5.

The status of the calculation result is set in the C flag.

Content of C flag Meaning
1 Operation resulted in error
0 Operation completed normally

187

3 Program Collection of Mathematic/Trigonometric Functions

3.7 Cosine Function

3.7 Cosine Function
3.7.1 Outline

This program finds a cosine of the operand (R2R0) comprised of a single-precision, floating-point num-
ber and stores the result in (R2R0).

(R2R0) = COS(R2R0)

The unit is radian.

Make sure the operand is smaller than 2p.

Subroutine name: FCOS ROM capacity: 28 bytes
Interrupt during execution: Accepted Number of stacks used: 34 bytes
Register/memory Input Output Remarks
RO Lower half of operand |Lower half of calculation result |Mid and lower parts of mantissa
R1 — Indeterminate Destroyed during processing
R2 Upper half of operand |Upper half of calculation result | Sign, exponent, upper part of mantissa
R3 — Indeterminate Destroyed during processing
AO — Indeterminate Destroyed during processing
Al — — Unused
C flag — 0: Normal; 1: Erroneous | Status of calculation result
Usage precautions

Since the contents of R3, R1, and A0 are destroyed as a result of program execution, save the
registers before calling the subroutine as necessary.
Supplementary explanation

C =COS(A) A: Operand; C: Calculation result

188

3 Program Collection of Mathematic/Trigonometric Functions

3.7 Cosine Function

3.7.2 Explanation

Procedure:
(1) Store the operand (normalized single-precision, floating-point number) in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
(2) Call the subroutine (FCOS).

Calculation result:
The calculation result is placed in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
If the operation resulted in an error, one of the following values is returned.

Contents of R2 and RO Meaning

Maximum value of normalized number * Overflow

* Refer to Section 3.1.5.

The status of the calculation result is set in the C flag.

Content of C flag Meaning
1 Operation resulted in error
0 Operation completed normally

189

3 Program Collection of Mathematic/Trigonometric Functions

3.8 Tangent Function

3.8 Tangent Function
3.8.1 Outline

This program finds a tangent of the operand (R2R0) comprised of a single-precision, floating-point num-
ber and stores the result in (R2R0).

(R2R0) = TAN(R2RO0)

The unit is radian.

Make sure the operand is smaller than 2p.

Subroutine name: FTAN ROM capacity: 44 bytes
Interrupt during execution: Accepted Number of stacks used: 41 bytes
Register/memory Input Output Remarks
RO Lower half of operand |Lower half of calculation result | Mid and lower parts of mantissa
R1 — Indeterminate Destroyed during processing
R2 Upper half of operand |Upper half of calculation result | Sign, exponent, upper part of manissa
R3 — Indeterminate Destroyed during processing
A0 — Indeterminate Destroyed during processing
Al — — Unused
C flag — 0: Normal; 1: Erroneous | Status of calculation result
Usage precautions

Since the contents of R3, R1, and A0 are destroyed as a result of program execution, save the
registers before calling the subroutine as necessary.
Supplementary explanation

C =TAN(A) A: Operand; C: Calculation result

190

3 Program Collection of Mathematic/Trigonometric Functions

3.8 Tangent Function

3.8.2 Explanation

Procedure:
(1) Store the operand (normalized single-precision, floating-point number) in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
(2) Call the subroutine (FTAN).

Calculation result:
The calculation result is placed in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
If the operation resulted in an error, one of the following values is returned.

Contents of R2 and RO Meaning

Maximum value of normalized number * Overflow

* Refer to Section 3.1.5.

The status of the calculation result is set in the C flag.

Content of C flag Meaning
1 Operation resulted in error
0 Operation completed normally

191

Program Collection of Mathematic/Trigonometric Functions

3.9 Inverse Sine Function

3.9.1 Outline

3.9 Inverse Sine Function

This program finds an inverse sine of the operand (R2R0) comprised of a single-precision, floating-point
number and stores the result in (R2R0).
(R2R0) = SIN-1(R2R0)

The unit is radian.

Make sure the operand is smaller than 2p.

Subroutine name: FASN

ROM capacity: 124 bytes

Interrupt during execution: Accepted

Number of stacks used: 60 bytes

Register/memory

Input

Output

Remarks

RO Lower half of operand |Lower half of calculation result | Mid and lower parts of mantissa
R1 — Indeterminate Destroyed during processing
R2 Upper half of operand |Upper half of calculation result | Sign, exponent, upper part of manissa
R3 — Indeterminate Destroyed during processing
A0 — Indeterminate Destroyed during processing
Al — — Unused

C flag — 0: Normal; 1: Erroneous | Status of calculation result

Usage precautions

Since the contents of R3, R1, and A0 are destroyed as a result of program execution, save the
registers before calling the subroutine as necessary.
Supplementary explanation

C = SIN"1(A) A: Operand; C: Calculation result

192

3 Program Collection of Mathematic/Trigonometric Functions

3.9 Inverse Sine Function

3.9.2 Explanation

Procedure:
(1) Store the operand (normalized single-precision, floating-point number) in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
(2) Call the subroutine (FASN).

Calculation result:
The calculation result is placed in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
If the operation resulted in an error, one of the following values is returned.

Contents of R2 and RO Meaning
Maximum value of normalized number * Overflow
Non-numeral * Argument error

* Refer to Section 3.1.5.

The status of the calculation result is set in the C flag.

Content of C flag Meaning
1 Operation resulted in error
0 Operation completed normally

193

Program Collection of Mathematic/Trigonometric Functions

3.10 Inverse Cosine Function

3.10.1 Ouitline

3.10 Inverse Cosine Function

This program finds an inverse cosine of the operand (R2R0) consisting of a single-precision, floating-
point number and stores the result in (R2R0).
(R2R0) = COS™}(R2R0)

The unit is radian.

Make sure the operand is smaller than 2p.

Subroutine name: FACN

ROM capacity: 150 bytes

Interrupt during execution: Accepted

Number of stacks used: 60 bytes

Register/memory

Input

Output

Remarks

RO Lower half of operand |Lower half of calculation result | Mid and lower parts of mantissa
R1 — Indeterminate Destroyed during processing
R2 Upper half of operand |Upper half of calculation result | Sign, exponent, upper part of manissa
R3 — Indeterminate Destroyed during processing
A0 — Indeterminate Destroyed during processing
Al — — Unused

C flag — 0: Normal; 1: Erroneous | Status of calculation result

Usage precautions

Since the contents of R3, R1, and A0 are destroyed as a result of program execution, save the
registers before calling the subroutine as necessary.
Supplementary explanation

C =CO0S1(A) A: Operand; C: Calculation result

194

3 Program Collection of Mathematic/Trigonometric Functions

3.10 Inverse Cosine Function

3.10.2 Explanation

Procedure:
(1) Store the operand (normalized single-precision, floating-point number) in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
(2) Call the subroutine (FACN).

Calculation result:
The calculation result is placed in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
If the operation resulted in an error, one of the following values is returned.

Contents of R2 and RO Meaning
Maximum value of normalized number * Overflow
Non-numeral * Argument error

* Refer to Section 3.1.5.

The status of the calculation result is set in the C flag.

Content of C flag Meaning
1 Operation resulted in error
0 Operation completed normally

195

Program Collection of Mathematic/Trigonometric Functions

3.11 Inverse Tangent Function

3.11.1 Ouitline

3.11 Inverse Tangent Function

This program finds an inverse tangent of the operand (R2R0) consisting of a single-precision, floating-
point number and stores the result in (R2R0).
(R2R0) = TAN"1(R2R0)

The unit is radian.

Make sure the operand is smaller than 2p.

Subroutine name: FATN

ROM capacity: 152 bytes

Interrupt during execution: Accepted

Number of stacks used: 34 bytes

Register/memory

Input

Output

Remarks

RO Lower half of operand |Lower half of calculation result | Mid and lower parts of mantissa
R1 — Indeterminate Destroyed during processing
R2 Upper half of operand |Upper half of calculation result | Sign, exponent, upper part of manissa
R3 — Indeterminate Destroyed during processing
A0 — Indeterminate Destroyed during processing
Al — — Unused

C flag — 0: Normal; 1: Erroneous | Status of calculation result

Usage precautions

Since the contents of R3, R1, and A0 are destroyed as a result of program execution, save the
registers before calling the subroutine as necessary.
Supplementary explanation

C = TAN1(A) A: Operand; C: Calculation result

196

3 Program Collection of Mathematic/Trigonometric Functions

3.11 Inverse Tangent Function

3.11.2 Explanation

Procedure:
(1) Store the operand (normalized single-precision, floating-point number) in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
(2) Call the subroutine (FATN).

Calculation result:
The calculation result is placed in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
If the operation resulted in an error, one of the following values is returned.

Contents of R2 and RO Meaning

Maximum value of normalized number * Overflow

* Refer to Section 3.1.5.

The status of the calculation result is set in the C flag.

Content of C flag Meaning
1 Operation resulted in error
0 Operation completed normally

197

Program Collection of Mathematic/Trigonometric Functions

3.12 Square Root

3.12.1 Ouitline

3.12 Square Root

This program finds a square root of the operand (R2R0) consisting of a single-precision, floating-point
number and stores the result in (R2R0).

(R2R0) = (R2R0)

Subroutine name: FSQR

ROM capacity: 10 bytes

Interrupt during execution: Accepted

Number of stacks used: 53 bytes

Register/memory

Input

Output

Remarks

RO Lower half of operand |Lower half of calculation result | Mid and lower parts of mantissa
R1 — Indeterminate Destroyed during processing
R2 Upper half of operand |Upper half of calculation result | Sign, exponent, upper part of manissa
R3 — Indeterminate Destroyed during processing
A0 — Indeterminate Destroyed during processing
Al — — Unused

C flag — 0: Normal; 1: Erroneous | Status of calculation result

Usage precautions

Since the contents of R3, R1, and A0 are destroyed as a result of program execution, save the
registers before calling the subroutine as necessary.
Supplementary explanation

C= A A: Operand; C: Calculation result

198

3 Program Collection of Mathematic/Trigonometric Functions

3.12 Square Root

3.12.2 Explanation

Procedure:
(1) Store the operand (normalized single-precision, floating-point number) in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
(2) Call the subroutine (FSQR).

Calculation result:
The calculation result is placed in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
If the operation resulted in an error, one of the following values is returned.

Contents of R2 and RO Meaning
Non-numeral * Calculation error
Maximum value of normalized number * Overflow

* Refer to Section 3.1.5.

The status of the calculation result is set in the C flag.

Content of C flag Meaning
1 Operation resulted in error
0 Operation completed normally

199

3 Program Collection of Mathematic/Trigonometric Functions

3.13 Power

3.13 Power
3.13.1 Outline

This program finds a product of the operand (R2R0) consisting of a single-precision, floating-point num-
ber raised to the power of exponent data (R3R1) and stores the result in (R2RO0).
(R2R0) = (R2R0)(R3R1)

Subroutine name: FPOW ROM capacity: 176 bytes
Interrupt during execution: Accepted Number of stacks used: 50 bytes
Register/memory Input Output Remarks
RO Lower half of operand |Lower half of calculation result | Mid and lower parts of mantissa
R1 — Indeterminate Destroyed during processing
R2 Upper half of operand |Upper half of calculation result | Sign, exponent, upper part of manissa
R3 — Indeterminate Destroyed during processing
A0 — Indeterminate Destroyed during processing
Al — — Unused
C flag — 0: Normal; 1: Erroneous | Status of calculation result
Usage precautions

Since the contents of R3, R1, and A0 are destroyed as a result of program execution, save the
registers before calling the subroutine as necessary.
Supplementary explanation

C = AB A: Operand; B: Exponent data; C: Calculation result

200

3.13.2 Explanation
Procedure:

(1) Store the operand (normalized single-precision, floating-point number) in R2 and RO.

Program Collection of Mathematic/Trigonometric Functions

R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa

(2) Store the exponent data (normalized single-precision, floating-point number) in R3 and R1.
R3 = sign, exponent, upper part of mantissa
R1 = mid and lower parts of mantissa

(3) Call the subroutine (FPOW).

Calculation result:

The calculation result is placed in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa

If the operation resulted in an error, one of the following values is returned.

Contents of R2 and RO

Meaning

Non-numeral *

Calculation error

Maximum value of normalized number *

Overflow

* Refer to Section 3.1.5.

The status of the calculation result is set in the C flag.

Content of C flag Meaning
1 Operation resulted in error
0 Operation completed normally

201

3.13 Power

Program Collection of Mathematic/Trigonometric Functions

3.14 Exponential Function

3.14.1 Ouitline

3.14 Exponential Function

This program finds an exponential function of the operand (R2R0) consisting of a single-precision, float-

ing- point number and stores the result in (R2R0).

(R2R0) = e(R2R0)

Subroutine name:; FEXP

ROM capacity: 168 bytes

Interrupt during execution: Accepted

Number of stacks used: 38 bytes

Register/memory Input Output Remarks

RO Lower half of operand |Lower half of calculation result |Mid and lower parts of mantissa
R1 — Indeterminate Destroyed during processing
R2 Upper half of operand |Upper half of calculation result | Sign, exponent, upper part of mantissa
R3 — Indeterminate Destroyed during processing
A0 — Indeterminate Destroyed during processing
Al — — Unused

C flag — 0: Normal; 1: Erroneous | Status of calculation result

Usage precautions

Since the contents of R3, R1, and A0 are destroyed as a result of program execution, save the
registers before calling the subroutine as necessary.
Supplementary explanation

C =e” A: Operand; C: Calculation result

202

3 Program Collection of Mathematic/Trigonometric Functions

3.14 Exponential Function

3.14.2 Explanation

Procedure:
(1) Store the operand (normalized single-precision, floating-point number) in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
(2) Call the subroutine (FEXP).

Calculation result:
The calculation result is placed in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
If the operation resulted in an error, one of the following values is returned.

Contents of R2 and RO Meaning

Overflow or argument exceeds
the range of -87.3 to 87.3
including both ends

Maximum value of normalized number *

* Refer to Section 3.1.5.

The status of the calculation result is set in the C flag.

Content of C flag Meaning
1 Operation resulted in error
0 Operation completed normally

203

3 Program Collection of Mathematic/Trigonometric Functions

3.15 Natural Logarithmic Function

3.15 Natural Logarithmic Function
3.15.1 Ouitline

This program finds a natural logarithmic function of the operand (R2R0) consisting of a single-precision,
floating-point number and stores the result in (R2RO0).
(R2R0) = LN(R2R0)

Subroutine name: FLN ROM capacity: 6 bytes
Interrupt during execution: Accepted Number of stacks used: 41 bytes
Register/memory Input Output Remarks
RO Lower half of operand |Lower half of calculation result | Mid and lower parts of mantissa
R1 — Indeterminate Destroyed during processing
R2 Upper half of operand |Upper half of calculation result | Sign, exponent, upper part of manissa
R3 — Indeterminate Destroyed during processing
A0 — Indeterminate Destroyed during processing
Al — — Unused
C flag — 0: Normal; 1: Erroneous | Status of calculation result
Usage precautions

Since the contents of R3, R1, and A0 are destroyed as a result of program execution, save the
registers before calling the subroutine as necessary.
Supplementary explanation

C =LN(A) A: Operand; C: Calculation result

204

3 Program Collection of Mathematic/Trigonometric Functions

3.15 Natural Logarithmic Function

3.15.2 Explanation

Procedure:
(1) Store the operand (normalized single-precision, floating-point number) in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
(2) Call the subroutine (FLN).

Calculation result:
The calculation result is placed in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
If the operation resulted in an error, one of the following values is returned.

Contents of R2 and RO Meaning
Non-numeral * Calculation error
No change Overflow

* Refer to Section 3.1.5.

The status of the calculation result is set in the C flag.

Content of C flag Meaning
1 Operation resulted in error
0 Operation completed normally

205

3 Program Collection of Mathematic/Trigonometric Functions

3.16 Common Logarithmic Function

3.16 Common Logarithmic Function
3.16.1 Ouitline

This program finds a common logarithmic function of the operand (R2R0) consisting of a single-preci-
sion, floating- point number and stores the result in (R2R0).
(R2R0) = LOG(R2R0)

Subroutine name: FLOG ROM capacity: 204 bytes
Interrupt during execution: Accepted Number of stacks used: 33 bytes
Register/memory Input Output Remarks
RO Lower half of operand |Lower half of calculation result | Mid and lower parts of mantissa
R1 — Indeterminate Destroyed during processing
R2 Upper half of operand |Upper half of calculation result | Sign, exponent, upper part of manissa
R3 — Indeterminate Destroyed during processing
A0 — Indeterminate Destroyed during processing
Al — — Unused
C flag — 0: Normal; 1: Erroneous | Status of calculation result
Usage precautions

Since the contents of R3, R1, and A0 are destroyed as a result of program execution, save the
registers before calling the subroutine as necessary.
Supplementary explanation

C =LOG(A) A: Operand; C: Calculation result

206

3 Program Collection of Mathematic/Trigonometric Functions

3.16 Common Logarithmic Function

3.16.2 Explanation

Procedure:
(1) Store the operand (normalized single-precision, floating-point number) in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
(2) Call the subroutine (FLOG).

Calculation result:
The calculation result is placed in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
If the operation resulted in an error, one of the following values is returned.

Contents of R2 and RO Meaning
Non-numeral * Calculation error
No change Overflow

* Refer to Section 3.1.5.

The status of the calculation result is set in the C flag.

Content of C flag Meaning
1 Operation resulted in error
0 Operation completed normally

207

Program Collection of Mathematic/Trigonometric Functions

3.17 Data Comparison

3.17.1 Ouitline

3.17 Data Comparison

This program compares the operand (R2R0) consisting of a single-precision, floating-point number with
comparison data (R3R1) and sets the result in flags.
Flag = operand (R2R0): comparison data (R3R1)

Subroutine name: FCMP

ROM capacity: 35 bytes

Interrupt during execution: Accepted

Number of stacks used: 32 bytes

Register/memory Input Output Remarks
RO Lower half of operand| Does not change “—
R1 Lower half of comparisondata| Does not change “—
R2 Upper half of operand| Does not change —
R3 Upper half of comparison data| Does not change “—
AO — — Unused
Al — — Unused
C flag — 1:(R2R0) ¥ (R3R1) | Large/small result
Z flag — 1:(R2R0) = (R3R1) =/, result

Usage precautions

208

3 Program Collection of Mathematic/Trigonometric Functions

3.17 Data Comparison

3.17.2 Explanation
Procedure:

(1) Store the operand (normalized single-precision, floating-point number) in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa

(2) Store the comparison data (normalized single-precision, floating-point number) in R3 and R1.
R3 = sign, exponent, upper part of mantissa
R1 = mid and lower parts of mantissa

(3) Call the subroutine (FCMP).

Calculation result:
The comparison result is placed in flags.

C flag Z flag Meaning
1 0 (R2, RO) > (R3, R1)
1 1 (R2, RO) = (R3, R1)
0 0 (R2, RO) < (R3, R1)

209

Program Collection of Mathematic/Trigonometric Functions

3.18 Conversion from FLOAT Type to WORD Type

3.18 Conversion from FLOAT Type to WORD Type

3.18.1 Outline

This program converts the content of the registers (R2R0) consisting of a single-precision, floating-point
number into an integer of the WORD (16-bit) type and stores the result in (R3R1).

Subroutine name: FTOI

ROM capacity: 98 bytes

Interrupt during execution: Accepted

Number of stacks used: 1 bytes

Register/memory Input Output Remarks
RO Lower half of FLOAT type| WORD type data Integer
R1 — Indeterminate Destroyed during processing
R2 Upper half of FLOAT type| Does not change —
R3 — — Unused
AO — — Unused
Al — — Unused
C flag — 1: Overflow or underflow |Result overflowed or underflowed
Z flag — 1: Result is zero Result is zero
S flag — 1: Result is negative | Result is negative

Usage precautions

Since the content of R1 is destroyed as a result of program execution, save the register before
calling the subroutine as necessary.

210

3 Program Collection of Mathematic/Trigonometric Functions

3.18 Conversion from FLOAT Type to WORD Type

3.18.2 Explanation
Procedure:
(1) Store FLOAT data (normalized single-precision, floating-point number) in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
(2) Call the subroutine (FTOI).

Result:
The result is placed in RO. However, if the operation resulted in overflow or underflow, the content of RO
becomes as shown below.

Condition Content of RO
Positive overflow /FFF16
Negative overflow 800016

Underflow 000016

The status of the result is set in flags.

C flag Z flag S flag Meaning
1 0 0 Positive overflow
1 0 1 Negative overflow
1 1 0 Underflow
0 1 0 Result is zero
0 0 0 Result is positive
0 0 1 Result is negative

211

3.19 Conversion from WORD Type to FLOAT Type

3.19.1 Outline

Program Collection of Mathematic/Trigonometric Functions

3.19 Conversion from WORD Type to FLOAT Type

This program converts the content of a WORD (16-bit) type integer (RO) into a normalized single-preci-
sion, floating-point number and stores the result in (R2R0).

Subroutine name: ITOF

ROM capacity: 50 bytes

Interrupt during execution: Accepted

Number of stacks used: 4 bytes

Register/memory Input Output Remarks
RO WORD type data |Lower half of FLOAT type|Mid and lower parts of mantissa
R1 — Indeterminate Destroyed during processing
R2 — Upper half of FLOAT type | Sign, exponent, and upper part of mantssa
R3 — Indeterminate Destroyed during processing
A0 — — Unused
Al — — Unused
Z flag — 1: Result is zero Result is zero
S flag — 1: Result is negative | Result is negative
Usage precautions

Since the contents of R1 and R3 are destroyed as a result of program execution, save the registers
before calling the subroutine as necessary.

212

Program Collection of Mathematic/Trigonometric Functions

3.19 Conversion from WORD Type to FLOAT Type

3.19.2 Explanation
Procedure:
(1) Store a WORD type integer in RO.
(2) Call the subroutine (ITOF).

Result:
The result is placed in R2 and RO.
R2 = sign, exponent, upper part of mantissa
RO = mid and lower parts of mantissa
The status of the result is set in flags.

Z flag S flag Meaning
1 0 When result is 0
0 0 When result is positive
0 1 When result is negative

213

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

3.20 Program List

skkkkkkkkkkkkkkkkkkkhkkkkhkkkkhkkkkhkkkkkhkkkkkkkkhkkkkhkkhkkhkkkkkkkkkkhkkkkkkkkkkhkkkkkkkkkhkkkkkhkkkkkhkkkk
1

; M16C Program Collection of Mathematic/Trigonometric Functions No. 1 *
*

; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
rkkkkkkkkkkkkkkhkkkkkkkkkkkkkkhkkkkhkkhkkkkhkkkhkkkkhkkkkhkkkhkkkkhkkkkhkkkkkkkkhkkkkhkkkhkhkkhkkkkhkkkkhkkkkkkkhkkkhkkkkhkkkkkkk

.GLB FADD

.GLB CHKDATA ; Checks non-numeral and infinity
VromTOP .EQU OFEOOOOH ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
CALDAT .EQU -15 ; Calculation area (4 bytes)
SMALL .EQU -11 ; Compares magnitudes of first and second operand data
DEF .EQU -10 ; Difference between first and second operand data
SIGN .EQU -9 ; Sign of calculation result 0: plus; 1: minus
OPE .EQU -8 ; Second operand data (4 bytes)
CO_OPE .EQU -4 ; First operand data (4 bytes)

Title: Addition (single-precision, floating-point)

Content of processing:
This program adds first operand data (R2R0) and second operand data (R3R1) and
stores the result in R2, RO.
(R2RO0) = (first operand data) + (second operand data)

Procedure:

(1) First operand data (normalized single-precision, floating-point number)
Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
R2 and the mantissa (mid, lower) in register RO.

(2) Second operand data (normalized single-precision, floating-point number)
Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
R3 and the mantissa (mid, lower) in register R1.

(3) Call the subroutine.

(4) The calculation result is placed in R2, RO.

Result:
R2 (High) R2 (Low) ROH ROL
> > > >
Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)

If the operation resulted in an error, one of the following values is returned:

Contents of R2, RO Meaning

Maximum value Overflow

Minimum value Underflow
Non-numeral Erroneous data
Absolute 0 When result is 0

First or second operand whichever larger (no change) Underflow in exponent

214

Program Collection of Mathematic/Trigonometric Functions

; Input:

3.20 Program List

; RO (Lower half of first operand data)

; R1 (Lower half of second operand data)
; R2 (Upper half of first operand data)

; R3 (Upper half of second operand data)
; A0 ()

; Al ()

; Stack amount used: 18 bytes

>Qutput:

RO (Lower half of calculation result)
R1 (Indeterminate)

R2 (Upper half of calculation result)
R3 (Indeterminate)

A0 (Unused)

Al (Unused)

; Assumes FB register value

; Allocates internal variables
; Saves first operand data in variables
; Saves second operand data in variables

; Checks first operand data for non-numeral and infinity

; Sets second operand data
; Checks second operand data for non-numeral and infinity

; Checks for absolute 0
; Compares exponent parts

; Checks signs of first and second operand data
; Signs are same?

; --> Signs are different

; --> Signs are same

; Exponent parts differ more than 24?
; -->Yes (goes to set exponent part underflow information)

; No difference in exponent parts?

.SECTION PROGRAM,CODE
.ORG VromTOP
.FB FBcnst
FADD:
ENTER #15
MOV.L R2R0,CO_OPE[FB]
MOV.L R3R1,0PE[FB]
, JSR CHKDATA
MOV.L OPE[FB],R2R0
JSR CHKDATA
' JSR CHKZERO
JSR CMPEXP
MOV.W CO_OPE+2[FB],R0
XOR.W OPE+2[FB],R0
JN FADDNS
JMP FADDSAME
; Processing when signs are different
i:ADDNS:
CMP.B #24,DEF[FB]
JGEU UNDERSET
CMP.B #0,DEF[FB]
JNE FADDNS10

;=== N0

; No difference in exponent parts (mantissa parts are compared)

MOV.B CO_OPE+2[FB],ROH
AND.B #7FH,ROH
MOV.B OPE+2[FB],ROL
AND.B #7FH,ROL
CMP.B ROH,ROL

JLTU FADDNSOP
JGTU FADDNSCO
MOV.W CO_OPE[FB],R0
CMP.W RO,OPE[FB]
JLTU FADDNSOP
JMP FADDNSCO

; Compares mantissa (upper) parts
; --> Second operand data is larger
; --> First operand data is larger

; Compares mantissa (mid, lower) parts

; --> Second operand data is larger
; --> First operand data is larger

215

Program Collection of Mathematic/Trigonometric Functions

FADDNS10:
CMP.B #0,SMALL[FB]
JEQ FADDNSOP

; Aligning digits of first operand data

FADDNSCO:
BTST 7,0PE+3[FB]
STZX.B #0,#1,SIGN[FB]
JSR CO_OPESHF
JMP SUBCAL

; Aligning digits of second operand data
FADDNSOP:

BTST 7,CO_OPE+3[FB]
STZX.B #0,#1,SIGN[FB]
JSR OPESHF

3.20 Program List

; --> Exponent part of first operand data is larger

; Checks sign of second operand data
; Sets sign of calculation result

; Aligns digits of first operand data

; Subtraction

; Checks sign of first operand data
; Sets sign of calculation result
; Aligns digits of second operand data

: (R1R0) — CALDAT

,SUBCAL:

SUB.W CALDATI[FB],R0
SBB.B CALDAT+2[FB],R1L
JC FADDNOR
; Setting underflow information (minimum value)
MOV.W #0000H,RO
MOV.W #0100H,R2
SHL.B #-1,SIGN[FB]
RORC.W R2
EXITD
; Normalization processing
FADDNOR:
BTST 7,R1L
JNE CALSET
SHL.W #1,R0
ROLC.B R1L
SUB.B #1,R1H
JMP FADDNOR

; Subtracts mantissa (mid, lower) parts together
; Subtracts mantissa parts together including borrow
; --> No underflow in mantissa (goes to normalization processing)

; Sets minimum value in mantissa (mid, lower) part
; Sets minimum value in exponent part and mantissa part (upper)
; Places sign in C flag

; Sets sign

; --> Normalization completed

; Normalizes mantissa (mid, lower) part
; Normalizes mantissa (upper) part

; Normalizes exponent part

; --> Continues normalization processing

; Processing when signs are same

FADDSAME:

; Exponent parts differ more than 24?
; --> Difference in exponent parts is 23 or less

; Which data, first or second operand, is returned “not changed™?
; --> First operand data is returned “not changed”
; Second operand data is returned “not changed”

; Sets “no change” for second operand data

CMP.B #24,DEF[FB]

JLTU FADDSA10
;Setting exponent part underflow information (no change)
UNDERSET:

CMP.B #0,SMALL[FB]

JEQ FADDSACO

MOV.L OPE[FB],R2R0

EXITD

216

3 Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

FADDSACO:
MOV.L CO_OPE[FB],R2R0 ; Sets “no change” for first operand data
EXITD
FADDSA10:
BTST 7,CO_OPE+3[FB] ; Checks sign of first operand data
STZX.B #0,#1,SIGN[FB] ; Sets sign of calculation result
TST.B #0FFH,SMALL[FB]
JEQ FADDSA100 ; --> Exponent part of first operand data is larger

Aligning digits of first operand data

JSR CO_OPESHF ; Aligns digits of first operand data
JMP ADDCAL ; Addition

Aligning digits of second operand data

FADDSA100:
JSR OPESHF ; Aligns digits of second operand data

: (R1R0) + CALDAT

ADDCAL:

ADD.W CALDAT[FB],RO ; Adds mantissa (mid, lower) parts together
ADC.B CALDAT+2[FB],R1L ; Adds mantissa (upper) parts together including carry
JNC CALSET ; --> No overflow in mantissa part (goes to set

; calculation result)

;Overflow check

ADD.B #1,R1H ; Exponent + 1
CMP.B #0FFH,R1H ; Overflow?
JGEU OVERSET ; --> Overflow (goes to set overflow information)
: Aligning digits
, FSET C ; Sets overflow bit of mantissa
RORC.B RiL ; Borrows 1 from LSB in mantissa (upper) part
RORC.W RO ; Borrows 1 from LSB in mantissa (mid, lower) part

;Setting calculation result

CALSET:

SHL.B #1,R1L ; Discards economized form bit

SHL.B #-1,SIGN[FB] ; Places sign in C flag

RORC.W R1 ; Sets sign

MOV.W R1,R2 ; Sets sign, exponent part, and mantissa (upper) part in R2
EXITD

; Setting overflow information (maximum value)

bVERSET:

MOV.W #0FFFFH,RO ; Sets maximum value in mantissa (mid, lower) part

MOV.W CO_OPE+2[FB],R2 ; Reads exponent part and mantissa (upper) part

AND.W #8000H,R2 ; Clears exponent part and mantissa (upper) part

OR.W #7F7FH,R2 ; Sets maximum value in exponent and mantissa (upper) parts
; (without changing sign)

EXITD

217

3 Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

ST T T T]

Absolute 0 Check Subroutine

Function:

When the operation results is zero, this subroutine sets absolute 0 in R2 and RO before

returning to the previous program location (from which FADD was called). If the result is

other than the above, the subroutine returns to the program location from which it was called.
///

CHKZERO:
MOV.W CO_OPE+2[FB],R0
OR.W OPE+2[FB],RO
AND.W #7F80H,RO
JEQ ZEROSET
MOV.W CO_OPE+2[FB],R0
AND.W #7F80H,RO
JEQ OPE_ANS
MOV.W OPE+2[FB],RO
AND.W #7F80H,RO
JEQ CO_OPE_ANS
CMP.W OPE[FB],CO_OPE[FB]
INE CKZRET
MOV.W CO_OPE+2[FB],R0
XOR.W #8000H,RO
CMP.W OPE+2[FB],RO
JEQ ZEROSET
CKZRET:
RTS

;Setting second operand data

OPE_ANS:
MOV.L OPE[FB],R2R0
JMP ZERO_EXIT

;Setting first operand data

CO_OPE_ANS:
MOV.W CO_OPE[FB],R2R0
JMP ZERO_EXIT
;Setting absolute 0
ZEROSET:
MOV.W #0000H,RO
MOV.W #0000H,R2
ZERO_EXIT:
STC SP,R3R1
ADD.L #4,R3R1
LDC R3R1,SP
EXITD

; Reads exponent and mantissa (upper) parts of first operand data
; Checks exponent parts of first and second operand data
; Exponent parts of both are 0?

; --> Sets absolute 0

; Reads exponent and mantissa (upper) parts of first operand data
; Exponent part is 0?
; --> Returns second operand data as answer

Reads exponent and mantissa (upper) parts of second operand data
Exponent part is 0?
--> Returns first operand data as answer

; Compares mantissa parts (mid, lower) of first and second operand data
; --> Contents are different (not 0)

; Reads exponent and mantissa (upper) parts of first operand data
; Inverts sign (to make it matched to sign of second operand data)
; Compares exponent and mantissa (upper) parts

; --> Contents are same (goes to set absolute 0)

; Returns to the program location from which FADD was called

Sets “no change” for second operand data

; Sets “no change” for first operand data

; Sets absolute 0 in mantissa (mid, upper) part
; Sets absolute 0 in exponent and mantissa (upper) parts

; Reads stack
; Stack + 4 (for 2 returns)
; Sets stack back again

218

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

W

; Exponent Part Comparing Subroutine

; Function:

; This subroutine subtracts the exponent part of the second operand data from that of
the first operand data and returns the result indicating which operand data is larger.

; When SMALL [FB] = 0, the exponent part of the first operand data is larger

; When SMALL [FB] = 1, the exponent part of the second operand data is larger
Furthermore, the subroutine returns the difference. The difference is returned by DEF [FB].

//

CMPEXP:
MOV.W OPE+2[FB],R0 ; Loads exponent part of second operand data into DEF
SHL.W #1,R0
MOV.B ROH,DEF[FB]
, MOV.W CO_OPE+2[FB],R0 ; Reads exponent part of first operand data
SHL.W #1,R0
SUB.B DEF[FB],ROH ; Subtracts exponent part of second operand data
; from that of first operand data
JPz CMPPLUS ; --> Exponent part of first operand data 1 exponent

; part of second operand data

Exponent of first operand data £ exponent of second operand data

MOV.B #1,SMALL[FB] ; Sets information that second operand data is larger
XOR.B #0FFH,ROH ; Changes difference in exponent parts to positive
; number (2's complement)
INC.B ROH
MOV.B ROH,DEF[FB] ; Sets difference in exponent parts
RTS
CMPPLUS:
MOV.B #0,SMALL[FB] ; Sets information that first operand data is larger
MOV.B ROH,DEF[FB] ; Sets difference in exponent parts
RTS

//

; Second Operand Data Digit Adjusting Subroutine

; Function:

; This subroutine adds a economized form bit to the second operand data,
loads the sum into CALDAT to adjust digits, and returns the sum of the first
operand data plus economized form bit placed in RO and R1.

//

OPESHF:
; Converting second operand data into calculation-purpose data and loading it into register
MOV.W OPE[FB],R0 ; Mantissa (mid, lower) part of second operand data --> R0
MOV.W OPE+2[FB],R1 ; Exponent part of second operand data --> R1H,
; Mantissa part (upper) --> R1L
SHL.W #1,R1 ; Discards sign and adjusts R1H to exponent part
FSET C ; Sets economized form bit
RORC.B RiL ; Sets mantissa (upper) part including economized

; form bit in R1L
; Digit adjust processing

OPESHT:
DEC.B DEF[FB] ; Difference in exponent part - 1
JN OPESHTSET ; Digit adjustment finished? --> Yes
ADD.B #1,R1H ; Exponent part + 1
SHL.B #-1,R1L ; Shifts mantissa (upper) part down
RORC.W RO ; Shifts mantissa (mid, lower) part down
JMP OPESHT

219

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

; Loading digit-adjusted content into CALDAT

OPESHTSET:
MOV.W RO,CALDAT[FB] ; Loads mantissa (mid, lower) part
MOV.W R1,CALDAT+2[FB] ; Loads exponent and mantissa (upper) parts

Converting first operand data into calculation-purpose data and loading it into register

MOV.W CO_OPE[FB],R0 ; Mantissa (mid, lower) part of first operand data --> RO
MOV.W CO_OPE+2[FB],R1 ; Exponent part of first operand data --> R1H,

; Mantissa (upper) part --> R1L
SHL.W #1,R1 ; Discards sign and adjusts R1H to exponent part
FSET C ; Sets economized form bit
RORC.B RiL ; Sets mantissa (upper) part including economized

; form bitin R1L
RTS

//

; First Operand Data Digit Adjusting Subroutine

; Function:

; This subroutine adds a economized form bit to the first operand data, loads the

; sum into CALDAT to adjust digits, and returns the sum of the second operand data
plus economized form bit placed in RO and R1.

//

CO_OPESHF:

Converting first operand data into calculation-purpose data and loading it into register

MOV.W CO_OPE[FB],R0 ; Mantissa (mid, lower) part of first operand data --> RO
MOV.W CO_OPE+2[FB],R1 ; Exponent part of first operand data --> R1H,

; Mantissa (upper) part --> R1L
SHL.W #1,R1 ; Discards sign and adjusts R1H to exponent part
FSET C ; Sets economized form bit
RORC.B RiL ; Sets mantissa (upper) part including economized

; form bitin R1L

Digit adjust processing

COSHT:
DEC.B DEF[FB] ; Difference in exponent part - 1
JN COSHTSET ; Digit adjustment finished? --> Yes
ADD.B #1,R1H ; Exponent part + 1
SHL.B #-1,R1L ; Shifts mantissa (upper) part down
RORC.W RO ; Shifts mantissa (mid, lower) part down
JMP COSHT ;

Loading digit-adjusted content into CALDAT

COSHTSET:
MOV.W RO,CALDAT[FB] ; Loads mantissa (mid, lower) part
MOV.W R1,CALDAT+2[FB] ; Loads exponent and mantissa (upper) parts

Converting second operand data into calculation-purpose data and loading it into register

MOV.W OPE[FB],R0 ; Mantissa (mid, lower) part of second operand data --> RO
MOV.W OPE+2[FB],R1 ; Exponent part of second operand data --> R1H,
; Mantissa (upper) part --> R1L
SHL.W #1,R1 ; Discards sign and adjusts R1H to exponent part
FSET C ; Sets economized form bit
RORC.B RiL ; Sets mantissa (upper) part including economized
; form bitin R1L
RTS
.END

220

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

B Rt o s S R e R R e e e s s S S R R S R e e s R s S S S S S S 2 S 2 2 2 e i 2 2 2

: M16C Program Collection of Mathematic/Trigonometric Functions No. 2 *
*
; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
skkkkkkkkkhkkkkkhkkkhkkkhkkkhkhkkhkkkhkhkkhkhkkhkkkhkhkhkhkkkhkhkkhhkhhkkhkhkhkhkhkhhkkhkhkkhkkkhhkkhhhhhkhkhkkhkhkhkkhkhkkhkkkhhkkhhhhkkhkhkhkhkkhhkkhkhkhkkhhkkhkikkkik
.GLB FSUB
' .GLB FADD
VromTOP .EQU OFEOOOOH ; Declares start address of ROM

Title: Subtraction (single-precision, floating-point)
Content of processing:
This program subtracts first operand data (R2R0) and second operand data (R3R1)
and stores the result in R2, RO.
(R2RO0) = (first operand data) — (second operand data)
Procedure:
(1) First operand data (normalized single-precision, floating-point number)
Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
R2 and the mantissa (mid, lower) in register RO.
(2) Second operand data (normalized single-precision, floating-point number)
Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
R3 and the mantissa (mid, lower) in register R1.
(3) Call the subroutine.
(4) The calculation result is placed in R2, RO.
Result:
R2 (High) R2 (Low) ROH ROL
> > > >
Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)

If the operation resulted in an error, one of the following values is returned:

Contents of R2, RO Meaning
Maximum value Overflow
Minimum value Underflow
Non-numera Erroneous data
Absolute 0 When result is 0
First or second operand whichever larger (no change) Underflow in exponent

Input: > QOutput:

RO (Lower half of first operand data) RO (Lower half of calculation result)

R1 (Lower half of second operand data) R1 (Indeterminate)

R2 (Upper half of first operand data) R2 (Upper half of calculation result)

R3 (Upper half of second operand data) R3 (Indeterminate)

A0 () A0 (Unused)

Al () Al (Unused)

Stack amount used: 21 bytes

.SECTION PROGRAM,CODE
.ORG VromTOP

XOR.W #8000H,R3 ; Inverts sign of second operand data

JSR FADD ; Then, result is obtained by adding

RTS

.END

221

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

skkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkhkhkkkkkhkkkkkkkkkkkkkhkkkkkhkkkkkhkkkkkhkkhkkhkkhkkhkkkkkkkkkhkkkkkhkkkkkhkkkkk
1

; M16C Program Collection of Mathematic/Trigonometric Functions No. 3 *
*
; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
shkkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkkhkkhkhkhkhkhkhkkkkkhkhhkhhhhhhkhhhhkhhkhkhhhkkrhkkhkkhkhhhhhhhhhhhhhkhhrrrrhkrrkkkxkhhhhik
.GLB FMUL
.GLB CHKDATA ; Checks non-numeral and infinity
VromTOP .EQU OFEOOOQOH ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
CALDAT .EQU -16 ; Calculation area (6 bytes)
EXP .EQU -10 ; Calculation result of exponent part
SIGN .EQU -9 ; Sign of calculation result 0: plus; 1: minus
OPE .EQU -8 ; Second operand data (4 bytes)
CO_OPE .EQU -4 ; First operand data (4 bytes)

; Title: Multiplication (single-precision, floating-point)

; Content of processing:

; This program multiplies first operand data (R2R0) and second operand data (R3R1)

; and stores the result in R2, RO.

; (R2RO0) = (first operand data) x (second operand data)

; Procedure:

; (1) First operand data (normalized single-precision, floating-point number)

; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R2 and the mantissa (mid, lower) in register RO.

; (2) Second operand data (normalized single-precision, floating-point number)

; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R3 and the mantissa (mid, lower) in register R1.

; (3) Call the subroutine.

; (4) The calculation result is placed in R2, RO.

; Result:

; R2 (High) R2 (Low) ROH ROL

> > > >

; Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)

; If the operation resulted in an error, one of the following values is returned:

; Contents of R2, RO Meaning

Maximum value Overflow

Minimum value Underflow

: Non-numeral Erroneous data

; Absolute 0 When result is O

; Input: > Qutput:

; RO (Lower half of first operand data) RO (Lower half of calculation result)
; R1 (Lower half of second operand data) R1 (Indeterminate)

; R2 (Upper half of first operand data) R2 (Upper half of calculation result)
; R3 (Upper half of second operand data) R3 (Indeterminate)

; A0 () A0 (Unused)

; Al () Al (Unused)

; Stack amount used: 19 bytes

Program Collection of Mathematic/Trigonometric Functions

.SECTION
.ORG VromTOP
.FB FBcnst
FMUL:
ENTER #16
MOV.L R2R0,CO_OPE[FB]
MOV.L R3R1,0PE[FB]
JSR CHKDATA
MOV.L OPE[FB],R2R0
JSR CHKDATA
MOV.W CO_OPE+2[FB],R0
XOR.W OPE+2[FB],R0
JN FMUL1

; Signs are same (signs are made positive)
MOV.B
JMP

#0,SIGN[FB]
FMUL10

; Signs are different (signs are made negative)

FMULZ1:

MOV.B #1,SIGN[FB]

3.20 Program List

PROGRAM,CODE

; Assumes FB register value

; Allocates internal variables

; Saves first operand data in variables

; Saves second operand data in variables

; Checks first operand data for non-numeral and infinity

; Sets second operand data
; Checks second operand data for non-numeral and infinity

; Checks signs of first and second operand data
; Signs are same?
; --> Signs are different

; Turns signs positive

; Turns signs negative

; Absolute 0 check

FMUL10:

MOV.W CO_OPE+2[FB],R0
AND.W #7F80H,R0
JEQ FMULZERO
MOV.W OPE+2[FB],RO
AND.W #7F80H,RO
JNZ FMUL20

; Setting absolute 0

FMULZERO:
MOV.L #0,R2R0
SHL.B #-1,SIGN[FB]
RORC.W R2
EXITD

; Reads exponent part of first operand data

; Clears all but exponent part

; --> Sets absolute 0

; Reads exponent part of second operand data
; Clears all but exponent part

; --> Not absolute 0

; Sets absolute 0 in return value
; Loads sign into C flag
; Sets sign

; Adding exponent part

FMUL20:

MOV.W CO_OPE+2[FB],R0
SHL.W #-7,R0

AND.W #OOFFH,RO
MOV.W OPE+2[FB],R1
SHL.W #-7,R1

AND.W #OOFFH,R1

; Reads exponent part of first operand data

; Adjusts exponent part to low-order bits

; Clears all but exponent part

; Reads exponent part of second operand data
; Adjusts exponent part to low-order bits

; Clears all but exponent part

223

ADD.W
SUB.W

JC

; Setting underflow information (minimum value)

MOV.L

SHL.B
RORC.W
EXITD

Overflow check

FMUL30:
CMP.W
JLTU

; Setting overflow information (maximum value)

MOV.W
MOV.W

SHL.B
RORC.W
EXITD

Program Collection of Mathematic/Trigonometric Functions

R1,RO
#7FH-1,R0

FMUL30

#01000000H,R2R0

#-1,SIGN[FB]
R2

#00FFH,RO
FMUL40

#OFFFFH,RO
#OFEFEH,R2

#-1,SIGN[FB]
R2

3.20 Program List

; Adds exponent part
; Subtracts 7F from addition result
; (in effect, subtracted by 7E to adjust digits)

; --> Overflow check

; Sets minimum value in mantissa and

; LSB of exponent part

; Checks signs

; Sets minimum value in exponent part and sign

; Overflow?
; --> No overflow

; Sets maximum value in mantissa (mid, lower) part
; Sets maximum value in mantissa (upper) part and
; LSB of exponent part

; Checks signs

; Sets maximum value in exponent part and sign

; Multiplication of mantissa part

FMUL40:
MOV.B

MOV.W
AND.W
BSET

MOV.W

MOV.W
MULU.W
MOV.L

MOV.W
MULU.W
ADD.W
ADCF.W
MOV.W

MOV.W
AND.W
BSET
MULU.W
ADD.L

ROL,EXP[FB]

CO_OPE+2[FB],R0
#007FH,RO

7,ROL
R0,CO_OPE+2[FB]

OPE[FB],R0
CO_OPE[FB],R0
R2R0,CALDAT[FB]

OPE[FB],R0
CO_OPE+2[FB],R0
RO,CALDAT+2[FB]
R2
R2,CALDAT+4[FB]

OPE+2[FB],RO
#007FH,RO
7,ROL
CO_OPE[FB],R0

R2R0,CALDAT+2[FB]

; Stores calculation result of exponent part

; Reads mantissa (upper) part

; Clears exponent part

; Sets economized form bit

; Loads only mantissa (upper) part into first operand data

; Reads mantissa (mid, lower) part of second operand data
; Multiplies mantissa (mid, lower) part
; Stores calculation result

; Reads mantissa (mid, lower) part of second operand data
; Multiplies mantissa (mid, lower) and (upper) parts
; Adds and stores lower half of calculation result

; Adds upper half of calculation result

; Stores upper half of calculation result

; Reads mantissa (upper) part of second operand data
; Clears exponent part and sign

; Sets economized form bit

; Multiplies mantissa (upper) and (mid, lower) parts
; Adds and stores calculation result

224

MOV.W
AND.W
BSET
MULU.W
ADD.W

Program Collection of Mathematic/Trigonometric Functions

OPE+2[FB],R0
#007FH,RO

7,ROL
CO_OPE+2[FB],R0
RO,CALDAT+4[FB]

3.20 Program List

; Reads mantissa (upper) part of second operand data

; Clears exponent part and sign
; Sets economized form bit
; Multiplies mantissa (upper) parts

; Adds and stores upper half of calculation result

: Adjusting digits

BTST
INZ
SHL.W
ROLC.W
DEC.B

7,CALDAT+5[FB]
FMULSET
#1,CALDAT+2[FB]
CALDAT+4[FB]
EXP[FB]

; Setting calculation result in return value

FMULSET:
MOV.W
MOV.B
MOV.B
SHL.B
SHL.B
RORC.W
MOV.W

EXITD

.END

CALDAT+3[FB],RO
EXP[FB],R1H
CALDAT+5[FB],R1L
#1,R1L
#-1,SIGN[FB]

R1

R1,R2

; Digit adjustment finished?

; --> Finished

; Adjusts digits of calculation data

; Adjusts exponent (exponent part - 1)

; Sets calculation result of mantissa (mid, lower) part
; Reads calculation result of exponent part
; Reads calculation result of mantissa (upper) part

; Discards economized form bit
; Loads sign into C flag

; Sets sign

; Sets sign, exponent part, and mantissa (upper)

; calculation result

225

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

Bt o s e R e R R e e s s S e R R S R e i s R s S S S S S 2 2 2 2 2 e i 2

; M16C Program Collection of Mathematic/Trigonometric Functions No. 4 *
. *
: Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
skkkkkkkkkkkkkkhkkkhkkhkkkhkhkkhkkhkhkkhkhkhhhkkhhkhkhkkhkhkkhhkhkhkkhkhkkhkhkhkhhkhkhkkhkkhhkkhhhkkkhkhhhkhhkkhhhhkkhhkkhhhkhkkhkhkhkhhkhhkkhkhhkhkhhkkhkikkkxk
.GLB FDIV
.GLB CHKDATA ; Checks non-numeral and infinity
VromTOP .EQU OFEOOOOH ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
CALBUF .EQU -15 ; Calculation buffer
COUNT .EQU -11 ; Counter
EXP .EQU -10 ; Calculation result of exponent part
SIGN .EQU -9 ; Sign of calculation result 0: plus; 1: minus
OPE .EQU -8 ; Second operand data (4 bytes)
CO_OPE .EQU -4 ; First operand data (4 bytes)

; Title: Division (single-precision, floating-point)

; Content of processing:

; This program divides first operand data (R2R0) and second operand data (R3R1) and
; stores the result in R2, RO.

; (R2R0) = (first operand data) , (second operand data)

; Procedure:

; (1) First operand data (normalized single-precision, floating-point number)

; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R2 and the mantissa (mid, lower) in register RO.

; (2) Second operand data (normalized single-precision, floating-point number)

; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R3 and the mantissa (mid, lower) in register R1.

; (3) Call the subroutine.

; (4) The calculation result is placed in R2, RO.

; Result:

; R2 (High) R2 (Low) ROH ROL

> > > >

; Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)

; If the operation resulted in an error, one of the following values is returned:

; Contents of R2, RO Meaning
Maximum value Overflow
Minimum value Underflow
Infinite Zero division
Non-numeral Erroneous data
Absolute 0 When result is 0

; First or second operand whichever larger (no change) Underflow in exponent part

226

Program Collection of Mathematic/Trigonometric Functions

; Input:

3.20 Program List

: RO (Lower half of first operand data)

: R1 (Lower half of second operand data)
; R2 (Upper half of first operand data)

; R3 (Upper half of second operand data)
; AO ()

; Al ()

; Stack amount used: 18 bytes

> Qutput:

RO (Lower half of calculation result)
R1 (Indeterminate)

R2 (Upper half of calculation result)
R3 (Indeterminate)

AO (Unused)

Al (Unused)

; Assumes FB register value

; Allocates internal variables

; Saves first operand data in variables

; Saves second operand data in variables

; Checks first operand data for non-numeral and infinity

; Sets second operand data
; Checks second operand data for non-numeral and infinity

; Checks signs of first and second operand data
; Signs are same?

.SECTION PROGRAM,CODE
.ORG VromTOP
.FB FBcnst
FDIV:

ENTER #15

MOV.L R2R0,CO_OPE[FB]

MOV.L R3R1,0PE[FB]

JSR CHKDATA

MOV.L OPE[FB],R2R0

JSR CHKDATA

MOV.B CO_OPE+3[FB],ROH

XOR.B OPE+3[FB],ROH

JN FDIV1

; Signs are same (signs are made positive)
MOV.B
JMP

#0,SIGN[FB]
FDIV10

; Signs are different (signs are made negative)

FDIV1:

MOV.B #1,SIGN[FB]

; --> Signs are different

; Turns signs positive

; Turns signs negative

227

Program Collection of Mathematic/Trigonometric Functions

: Zero division check

FDIV10:

MOV.W OPE+2[FB],R0
BCLR 7,ROH

OR.W OPE[FB],R0
INE FDIV20

; Setting zero division (infinite value)

MOV.W #0,R0
MOV.W #OFFOOH,R2
SHL.B #-1,SIGN[FB]
RORC.W R2

EXITD

3.20 Program List

; Reads exponent and mantissa (upper) parts of

; second operand data

; Clears sign

; All bits in exponent and mantissa parts of second
; operand data are 0? (zero division?)

; --> No (not zero division)

; Sets infinite value in mantissa (mid, lower) part
; Sets infinite value in exponent and mantissa

; (upper) parts

; Loads sign into C flag

; Sets sign

; Absolute 0 check

FDIV20:

MOV.W CO_OPE+2[FB],R0
BCLR 7,ROH

OR.W CO_OPE[FB],R0
INE FDIV30

; Setting absolute 0

MOV.L #0,R2R0
SHL.B #-1,SIGN[FB]
RORC.W R2

EXITD

; Reads exponent and mantissa (upper) parts of

; first operand data
; Clears sign

; All bits in exponent and mantissa parts of first
; operand data are 0? (zero division?)

; --> No (not absolute 0)

; Sets absolute 0

; Loads sign into C flag

; Sets sign

228

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

Checking first operand data = second operand data

FDIV30:

MOV.W OPE[FB],R0
CMP.W CO_OPE[FB],R0 ; Mantissa (mid, lower) parts of first and second
; operand data are same?
JNE FDIV40 ;--> No
MOV.W OPE+2[FB],RO
BCLR 7,ROH ; Clears sign of second operand data
BCLR 7,CO_OPE+3[FB] ; Clears sign of first operand data
CMP.W CO_OPE+2[FB],R0 ; Exponent and mantissa (upper) parts of first and
; second operand data are same?
JNE FDIV40 ;--> No
; Setting calculation result 1
MOV.W #0,R0 ; Sets mantissa (mid, lower) part
MOV.W #7FO0H,R2 ; Sets exponent and mantissa (upper) parts
SHL.B #-1,SIGN[FB] ; Loads sign into C flag
RORC.W R2 ; Sets sign
EXITD
; Subtracting exponent parts
FDIV40:
MOV.W CO_OPE+2[FB],R0 ; Reads exponent part of first operand data
SHL.W #-7,R0 ; Adjusts exponent part to low-order bits
AND.W #00FFH,RO ; Clears all but exponent part
MOV.W OPE+2[FB],R1 ; Reads exponent part of second operand data
SHL.W #-7,R1 ; Adjusts exponent part to low-order bits
AND.W #00FFH,R1 ; Clears all but exponent part
SUB.W R1,RO ; Subtracts exponent parts

229

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

Checking underflow and overflow

; Setting

FDIV41:

JC FDIV41

CMP.B #83H,ROL

JC FDIV50

underflow information (minimum value)
MOV.L #01000000H,R2R0
SHL.B #-1,SIGN[FB]
RORC.W R2

EXITD

CMP.B #80H,ROL

JNC FDIV50

; Setting overflow information (maximum value)

MOV.W #OFEFFFFFFH,R2R0
SHL.B #-1,SIGN[FB]
RORC.W R2

EXITD

; Storing calculation result of exponent part

FDIV50:

ADD.B #80H-1,ROL

MOV.B ROL,EXP[FB]

; --> First operand t second operand
; Underflow occurred?
; --> No underflow

; Sets minimum value in exponent and mantissa parts
; Loads sign into C flag
; Sets sign

: Overflow occurred?
: --> No overflow

; Sets maximum value in exponent and mantissa part
; Loads sign into C flag
; Sets sign

; Adds 80H from subtraction result
; (in effect, added by 7F for digit adjustment)
; Stores calculation result of exponent part

230

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

; Converting first/second operand data into calculation-purpose data
; 4 bytes = mantissa + economized form bit + 8 low-order bits

MOV.L CO_OPE[FB],R2R0 ; Reads mantissa part of first operand data
AND.W #007FH,R2 ; Clears exponent and sign parts

OR.W #0080H,R2 ; Adds economized form bit

MOV.L OPE[FB],R3R1 ; Reads mantissa part of second operand data
AND.W #007FH,R3 ; Clears exponent and sign parts

OR.W #0080H,R3 ; Adds economized form bit

MOV.L #0,CALBUF[FB] ; Clears calculation result

; First operand data, second operand data

MOV.B #24,COUNTI[FB] ; Number of shifts performed
DIVCALC:

SHL.W #1,CALBUF[FB] ; Shifts calculation result

ROLC.W CALBUF+2[FB]

CMP.W R3,R2

JLTU DIVCALC2 ; --> First operand data is small

JGTU DIVCALC1 ; --> First operand data is large

CMP.W R1,RO

JLTU DIVCALC2 ; --> Second operand data is small
DIVCALC1:

SUB.L R3R1,R2R0

BSET 0,CALBUF[FB] ; Sets bit of calculation result
DIVCALC2:

SHL.W #1,R0 ; Shifts first operand

ROLC.W R2

ADJNZ.B #-1,COUNT[FB],DIVCALC ; --> During calculation

231

Program Collection of Mathematic/Trigonometric Functions

: Adjusting digits

BTST
JNE
SHL.W
ROLC.W
DEC.B

7,CALBUF+2[FB]
FDIVSET
#1,CALBUF[FB]
CALBUF+2[FB]
EXP[FB]

; Setting calculation result in return value

FDIVSET:
MOV.W
MOV.B
MOV.B
SHL.B
SHL.B
RORC.W
MOV.W

EXITD

.END

CALBUFI[FB],R0
EXP[FB],R1H
CALBUF+2[FB],R1L
#1,R1L
#-1,SIGN[FB]

R1

R1,R2

; --> Digit adjustment finished
; Adjusts digits of calculation data

3.20 Program List

; Adjusts exponent (exponent part — 1)

; Sets calculation result in mantissa (mid, lower)

; Calculation result of exponent

; Mantissa (upper)

: Discards economized form bit

; Sets sign in C flag
; Sets sign

; Sets sign, exponent part, and mantissa (upper)

; part calculation result

232

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

Bt o s e R e R R e e s s S e R R S R e i s R s S S S S S 2 2 2 2 2 e i 2

M16C Program Collection of Mathematic/Trigonometric Functions No. 5

Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION

*

*

*

B R e s s S R e R E e e o s S e R R S R e e e s S s S S S S S 2 2 2 2 e 2 e s 2 2
l

.GLB FSIN

.GLB FADD ; Floating-point addition

.GLB FSUB ; Floating-point subtraction

.GLB FMUL ; Floating-point multiplication

.GLB FDIV ; Floating-point division

.GLB FCMP ; Data comparison

.GLB FCAL ; Table data calculation

.GLB FOVERCHK ; Checks for overflow
VromTOP .EQU OFEOOOOH ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
F2PI_H .EQU 40C9H ; 2p upper 2-byte value
F2PI_L .EQU OFDBH ; lower 2-byte value
FPAI_H .EQU 4049H ; p upper 2-byte value
FPAI_L .EQU OFDBH ; lower 2-byte value
FPI2_H .EQU 3FC9H ; p/2 upper 2-byte value
FPI2_L .EQU OFDBH ; lower 2-byte value
FOVER_H .EQU 07F7FH ; Overflow upper 2-byte value
FOVER_L .EQU OFFFFH ; lower 2-byte value
FUNDER_H .EQU 0080H ; Underflow upper 2-byte value
FUNDER_L .EQU 0000H ; lower 2-byte value
SIGN .EQU -5 ; Sign of calculation result O: plus; 1: minus
CO_OPE .EQU -4 ; Operand data (4 bytes)

.SECTION PROGRAM,ROMDATA

.ORG VromTOP
FSIT:

.FLOAT 1.5148419E-4 ; 0.00015148419

.FLOAT —4.6737656E-3 ;—0.00467376557

.FLOAT 7.9689679E-2 ; 0.07968967928

.FLOAT —6.4596371E-1 ;—0.64596371106

.FLOAT 1.5707963 ; 1.57079631847

Title: Sine function [SIN] (single-precision, floating-point)

Content of processing:

This program finds a sine of operand data (R2R0) and stores the result in R2, RO.

(R2R0) = SIN (R2RO0)
The unit is radian.
Make sure the contents of R2 and RO are smaller than 2p.

233

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

; Procedure:

; (1) Operand data (normalized single-precision, floating- point number)

; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R2 and the mantissa (mid, lower) in register RO.

; (2) Call the subroutine.

; (3) The calculation result is placed in R2, RO.

; Result:

; Result normal:

: The C flag is reset to “0".

; The calculation result is stored in R2, RO.

; R2 (High) R2 (Low) ROH ROL

> > > >

; Sign, Exponent b7 to bl Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)

: Result erratic:
; The C flag is set to “1".
; The following value is returned in R2, RO.

; Contents of R2, RO Meaning

; Maximum value Overflow

; Input: > Qutput:

; RO (Lower half of operand data) RO (Lower half of calculation result)
; R1 () R1 (Indeterminate)

; R2 (Upper half of operand data) R2 (Upper half of calculation result)
; R3 () R3 (Indeterminate)

; A0 () A0 (Indeterminate)

; Al () Al (Indeterminate)

; Stack amount used: 34 bytes

.SECTION PROGRAM,CODE
.FB FBcnst ; Assumes FB register value
FSIN:
ENTER #6 ; Allocates internal variables
MOV.L R2R0,CO_OPEJ[FB] ; Saves operand data in variables

; Checking overflow

MOV.W CO_OPE+2[FB],R0 ; Reads exponent part

SHL.W #1,R0 ; Discards sign and align to ROH
CMP.B #98H,ROH ; Overflow?

JGEU SINOVER i -->Yes

; Checking sign

BTSTC 7,CO_OPE+3[FB] ; Sign is positive? (sign cleared)
STZX.B #0,#1,SIGN[FB] ; Sets sign

234

Program Collection of Mathematic/Trigonometric Functions

; Adjusting data to 21 or less

MOV.L
F2P_LOOP:
MOV.W
MOV.W
JSR
INC
INE
MOV.B
F2P_OVER:
JSR
JSR
INC

; Setting overflow information (maximum) value

SINOVER:
MOV.W
MOV.W
FSET
EXITD

CO_OPE[FB],R2R0

#F2P|_H,R3
#F2PI_L,R1
FCMP
FSIN10
F2P_OVER
#0,SIGN[FB]

FSUB
FOVERCHK
F2P_LOOP

#FOVER_H,R2
#FOVER_L,RO
C

3.20 Program List

; Reads exponent and mantissa parts of operand data
; Sets 21

; Operand data = 211?

; --> Operand data < 21

; --> Operand data > 21

; Sets sign positive

; (R2 RO) ~ operand data — 21t

; Checks for overflow
; Looped until 21t or less

; Sets maximum value in return value

: Sets “result erratic” information

; Inverting sign of 1tto 2mmand reducing it to below 1t

FSIN10:
MOV.W
MOV.W
JSR
JNC
JNE
MOV.B
FSIN15:
XOR.B
JSR
JSR
JC

#FPAI_H,R3
#FPAI_L,R1
FCMP

FSIN20
FSIN15
#01H,SIGN[FB]

#01H,SIGN[FB]
FSUB
FOVERCHK
SINOVER

; Converting 172 to 1tinto data 172 or less

FSIN20:
MOV.W
MOV.W
JSR
JNC

OR.B
MOV.W
MOV.W
JSR
JSR

JC

#FPI2_H,R3
#FPI2_L,R1
FCMP
FSIN30

#08000H,R2
#FPAI_H,R3
#FPAI_L,R1
FADD
FOVERCHK
SINOVER

; Sets 1T

; Operand data = 1?

; --> Operand < 1t

; --> Operand > 1t

; Changes sign negative (to make it positive)

; Inverts sign

; (R2 R0O) ~ operand data — 1t
; Checks for overflow

; --> Overflow

; Sets 112

; Operand data = 1?
; --> Operand < 172

; Changes data negative
; Sets 1t

; Adds 1tto get O to 102

: Checks for overflow
; --> Overflow

235

; Operand data, p/2

FSIN3O:
MOV.W
MOV.W
JSR
JSR
JC
MOV.L

MOV.L
JSR
JSR
JC

MOV.L
MOV.B
JSR
JC

MOV.L
JSR
JSR
JC

SHL.W
RORC.B
RORC.W
FCLR
EXITD

.END

Program Collection of Mathematic/Trigonometric Functions

#FPI2_H,R3
#FPI2_L,R1

FDIV

FOVERCHK
SINOVER
R2R0,CO_OPE[FB]

R2R0,R3R1
FMUL
FOVERCHK
SINOVER

#FSIT,AO
#5-1,R1L
FCAL
SINOVER

CO_OPE[FB],R3R1
FMUL
FOVERCHK
SINOVER

#1,R2
SIGN[FB]
R2

C

; Sets p/2

; Data, p/2
; Checks for overflow
; --> Overflow

; Saves calculation data

; Sets data

; Squares data

; Checks for overflow
; --> Overflow

; Sets data table address
; Sets number of tables
; Calculates table data

: --> Overflow

; Restores calculation data

3.20 Program List

; Table calculation data x calculation data

: Checks for overflow
: --> Overflow

; Sign inverting information fi C flag

; Sets sign

: Sets “result normal” information

236

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

Bt o s e R e R R e e s s S e R R S R e i s R s S S S S S 2 2 2 2 2 e i 2

; M16C Program Collection of Mathematic/Trigonometric Functions No. 6 *
. *
; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION :
skkkkkkkkkkkkkkhkkkhkkhkkkhkhkkhkkhkhkkhkhkhhhkkhhkhkhkkhkhkkhhkhkhkkhkhkkhkhkhkhhkhkhkkhkkhhkkhhhkkkhkhhhkhhkkhhhhkkhhkkhhhkhkkhkhkhkhhkhhkkhkhhkhkhhkkhkikkkxk

.GLB FCOS

.GLB FSIN ; Sine function [SIN]

.GLB FADD ; Floating-point addition

.GLB FOVERCHK ; Checks for overflow
VromTOP .EQU OFEOOOOH ; Declares start address of ROM
FPI2_H .EQU 3FC9H ; p/2 upper 2-byte value
FPI2_L .EQU OFDBH ; lower 2-byte value
FOVER_H .EQU 07F7FH ; Overflow upper-2 byte value
FOVER_L .EQU OFFFFH ; lower-2 byte value

Title: Cosine [COS] (single-precision, floating-point)

Content of processing:
This program finds a cosine of operand data (R2R0) and stores the result in R2, RO.
(R2R0) = COS (R2R0)
The unit is radian.
Make sure the contents of R2 and RO are smaller than 2p

Procedure:
(1) Operand data (normalized single-precision, floating- point number)
Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
R2 and the mantissa (mid, lower) in register RO.
(2) Call the subroutine.
(3) The calculation result is placed in R2, RO.

Result:
Result normal:
The C flag is reset to “0".
The calculation result is stored in R2, RO.
R2 (High) R2 (Low) ROH ROL
> > > >
Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)

Result erratic:
The C flag is set to “1".
The following value is returned in R2, RO.

Contents of R2, RO Meaning

Maximum value Overflow

237

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

; Input: > Output:

; RO (Lower half of operand data) RO (Lower half of calculation result)
; R1 () R1 (Indeterminate)

; R2 (Upper half of operand data) R2 (Upper half of calculation result)
; R3 () R3 (Indeterminate)

; A0 () A0 (Indeterminate)

; Al () Al (Indeterminate)

; Stack amount used: 34 bytes

.SECTION PROGRAM,CODE
.ORG VromTOP
FCOS:
MOV.W #FPI2_H,R3 ; Sets p/2
MOV.W #FPI12_L,R1
JSR FADD ; Data (R2 RO) + p/2
JSR FOVERCHK ; Checks for overflow
JC COSOVER ; --> Overflow
JMP FSIN ; Calculates SIN by advancing p/2 from COS

; Calculated value is returned as COS data

; Setting overflow information (maximum value)

COSOVER:

MOV.W #FOVER_H,R2 ; Sets maximum value in return value
MOV.W #FOVER_L,RO

FSET C ; Sets “result erratic” information
RTS

.END

238

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

Bt o s e R e R R e e s s S e R R S R e i s R s S S S S S 2 2 2 2 2 e i 2

; M16C Program Collection of Mathematic/Trigonometric Functions No. 7 *
. *
; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION :
skkkkkkkkkkkkkkhkkkhkkhkkkhkhkkhkkhkhkkhkhkhhhkkhhkhkhkkhkhkkhhkhkhkkhkhkkhkhkhkhhkhkhkkhkkhhkkhhhkkkhkhhhkhhkkhhhhkkhhkkhhhkhkkhkhkhkhhkhhkkhkhhkhkhhkkhkikkkxk

.GLB FTAN

.GLB FDIV ; Floating-point division

.GLB FSIN ; Sine function [SIN]

.GLB FCOS ; Cosine function [COS]

.GLB FOVERCHK ; Checks for overflow
VromTOP .EQU OFEOOOOH ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
FOVER_H .EQU 07F7FH ; Overflow upper-2 byte value
FOVER_L .EQU OFFFFH ; lower-2 byte value
COSDAT .EQU -8 ; COS calculation result
CO_OPE .EQU -4 ; Operand data (4 bytes)

Title: Tangent [TAN] (single-precision, floating-point)

Content of processing:
This program finds a tangent of operand data (R2R0) and stores the result in R2, RO.
(R2R0) = TAN (R2R0)
The unit is radian.
Make sure the contents of R2 and RO are smaller than 2p.

Procedure:
(1) Operand data (normalized single-precision, floating- point number)
Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
R2 and the mantissa (mid, lower) in register RO.
(2) Call the subroutine.
(3) The calculation result is placed in R2, RO.

Result:
Result normal:
The C flag is reset to “0".
The calculation result is stored in R2, RO.
R2 (High) R2 (Low) ROH ROL
> > > >
Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)

Result erratic:
The C flag is set to “1".
The following value is returned in R2, RO.

Contents of R2, RO Meaning

Maximum value Overflow

239

Program Collection of Mathematic/Trigonometric Functions

; Input:

: RO (Lower half of operand data)
; R1()
: R2 (Upper half of operand data)
; R3 ()
; A0 ()
; Al ()

; Stack amount used: 41 bytes

3.20 Program List

> Output:

RO (Lower half of calculation result)
R1 (Indeterminate)
R2 (Upper half of calculation result)
R3 (Indeterminate)
A0 (Indeterminate)
Al (Indeterminate)

.SECTION PROGRAM,CODE

.ORG VromTOP

.FB FBcnst ; Assumes FB register value

FTAN:

ENTER #8 ; Allocates internal variables
MOV.L R2R0,CO_OPEJ[FB] ; Saves operand data in variables
JSR FCOS ; COS calculation
JC TANERR ; --> Overflow
MOV.L R2R0,COSDAT[FB] ; Stores COS calculation result
MOV.L CO_OPE[FB],R2R0 ; Sets operand data
JSR FSIN ; SIN calculation
JC TANERR ; --> Overflow
MOV.L COSDAT[FB],R3R1 ; Sets COS calculation result in operand data
JSR FDIV ; TAN = SIN/COS
JSR FOVERCHK ; Overflow check
JC TANERR ; --> Overflow
FCLR C ; Sets “result normal” information
EXITD

; Setting overflow information (maximum value)

TANERR:

; Sets maximum value in return value

: Sets “result erratic” information

MOV.W #FOVER_H,R2
MOV.W #FOVER_L,RO
FSET C

EXITD

.END

240

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

Bt o s e R e R R e e s s S e R R S R e i s R s S S S S S 2 2 2 2 2 e i 2

; M16C Program Collection of Mathematic/Trigonometric Functions No. 8 *
. *
: Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
skkkkkkkkkkkkkkhkkkhkkhkkkhkhkkhkkhkhkkhkhkhhhkkhhkhkhkkhkhkkhhkhkhkkhkhkkhkhkhkhhkhkhkkhkkhhkkhhhkkkhkhhhkhhkkhhhhkkhhkkhhhkhkkhkhkhkhhkhhkkhkhhkhkhhkkhkikkkxk

.GLB FASN

.GLB FOVERCHK ; Overflow check

.GLB FADD ; Floating-point addition

.GLB FMUL ; Floating-point multiplication

.GLB FDIV ; Floating-point division

.GLB FSQR ; Square root

.GLB FATN ; Inverse tangent
VromTOP .EQU OFEOOOOH ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
FNO1 H .EQU 3F80H ; Numeral 1 upper 2-byte value
FNO1 L .EQU 0000H ; lower 2-byte value
FPI2_H .EQU 3FC9H ; p/2 upper 2-byte value
FPI2_L .EQU OFDBH ; lower 2-byte value
FOVER_H .EQU 07F7FH ; Overflow upper-2 byte value
FOVER_L .EQU OFFFFH ; lower-2 byte value
CO_OPE .EQU -4 ; Operand data (4 bytes)

; Title: Inverse sine function [SIN (raised to power of -1) (single-precision, floating-point)

; Content of processing:

; Result:

This program finds an inverse sine of operand data (R2R0) and stores the result in R2, RO.
(R2R0) = SIN -1 (R2R0)
; Procedure:
(1) Operand data (normalized single-precision, floating- point number)
Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
R2 and the mantissa (mid, lower) in register RO.
(2) Call the subroutine.
(3) The calculation result is placed in R2, RO.

The unit is radian.

Result normal:
The C flag is reset to “0".
The calculation result is stored in R2, RO.
R2 (High)
>

; Sign, Exponent b7 to b1

Result erratic:
The C flag is set to “1".
The following value is returned in R2, RO.

R2 (Low) ROH ROL

> > >
Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)

Contents of R2, RO Meaning

Maximum value

Overflow

Non-numeral

Argument error

241

Program Collection of Mathematic/Trigonometric Functions

Input:

> QOutpu

RO (Lower half of operand data)

; R1() R1 (In
; R2 (Upper half of operand data) R2 (U
; R3 () R3 (In
; A0 () A0 (In
; Al () Al (In

Stack amount used: 60 bytes

3.20 Program List

t:

RO (Lower half of calculation result)

determinate)
pper half of calculation result)
determinate)
determinate)
determinate)

; Assumes FB register value

; Allocates internal variables

.SECTION PROGRAM,CODE
.ORG VromTOP
.FB FBcnst
FASN:
ENTER #4
MOV.L R2R0,CO_OPE[FB]

; Checking argument error (check of 1 or less)

AND.W #07FFFH,R2
CMP.W #3F80H,R2
JLTU FASN10
JGTU FASNERR
CMP.W #0,R0O

JEQ FASN1SET

; Setting argument error information (non-numeral)
FASNERR:

; Saves operand data in variables

; Clears sign

; Operand data less than 1?
; --> Less than 1 (no error)

; --> Larger than 1 (error)

; Exactly 1?

; --> Yes (no error)

MOV.W CO_OPE+2[FB],R2 ; Sets overflow in return value
OR.W #7FFFH,R2 ; Returns same sign as that of argument
MOV.W #OFFFFH,RO
FSET C ; Sets “result erratic” information
EXITD

; Setting p/2

FASN1SET:
MOV.W #FPI2_L,RO ; Sets p/2 lower 2-byte value
MOV.W #FPI2_H,R2 ; Sets p/2 upper 2-byte value
SHL.W #1,R2
MOV.B CO_OPE+3[FB],R1L
SHL.B #1,R1L ; Sign fi C flag
RORC.W R2 ; Sets sign
FCLR C ; Sets “result normal” information
EXITD

; Calculation formula Operand data, (1 — square of operand data)

FASN10:
MOV.L R2R0,R3R1
JSR FMUL
JSR FOVERCHK
JC ASNOVER

; Operand data fi calculation data
; Squares operand data

; Checks for overflow

; --> Overflow

242

OR.W
MOV.W
MOV.W
JSR
JSR

JC

JSR

JC

MOV.L
MOV.L
JSR
JSR
JC
JSR
JSR
JC
FCLR
EXITD

Program Collection of Mathematic/Trigonometric Functions

#08000H,R2
#FNO1_H,R3
#FNO1_L,R1
FADD
FOVERCHK
ASNOVER
FSQR
ASNOVER

R2R0,R3R1
CO_OPE[FB],R2R0
FDIV

FOVERCHK
ASNOVER

FATN

FOVERCHK
ASNOVER

C

; Setting overflow information (maximum)

ASNOVER:
MOV.W
AND.W
OR.W
MOV.W
FSET
EXITD

.END

CO_OPE[FB],R2
#8000H,R2
#FOVER_H,R2
#FOVER_L,RO
C

; Changes sign negative
; Sets numeral 1 in operand data

3.20 Program List

; R2, RO = 1 — (square of operand data)

: Checks for overflow
: --> Overflow

; Square root of calculation result

: --> Overflow

; Calculation result fi operand data
; Reads operand data

; Divides operand data by calculation result

: Checks for overflow
: --> Overflow

; Inverse tangent of calculation result

: Checks for overflow
: --> Overflow

: Sets “result normal” information

; Clears all but sign

; Sets maximum data in return value

: Sets “result erratic” information

243

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

skkkkkkkkkkkkkkkkkkhkkkkkkkkkkkkhkhkkkkkhkkkkkkkkkkkkkhkkkkkhkkkkkhkkkkkhkkhkkhkkhkkhkkkkkkkkkhkkkkkhkkkkkhkkkkk
1

; M16C Program Collection of Mathematic/Trigonometric Functions No. 9 *
*

; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
shkkkkkkkkkkkkkkkkkkkhkhkkkkkkkkkkhkkhkhkhkhkhkhkkkkkhkhhkhhhhhhkhhhhkhhkhkhhhkkrhkkhkkhkhhhhhhhhhhhhhkhhrrrrhkrrkkkxkhhhhik

.GLB FACN

.GLB FOVERCHK ; Overflow check

.GLB FADD ; Floating-point addition

.GLB FMUL ; Floating-point multiplication

.GLB FDIV ; Floating-point division

.GLB FSQR ; Square root

.GLB FATN ; Inverse tangent
VromTOP .EQU OFEOOQOQOH ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
FNO1 H .EQU 3F80H ; Numeral 1 upper-2 byte value
FNO1 L .EQU 0000H ; lower-2 byte value
FPAI_H .EQU 4049H ; p upper 2-byte value
FPAI_L .EQU OFDBH ; lower 2-byte value
FPI2_H .EQU 3FC9H ; p/2 upper 2-byte value
FPI2_L .EQU OFDBH ; lower 2-byte value
FOVER_H .EQU 07F7FH ; Overflow upper 2-byte value
FOVER_L .EQU OFFFFH ; lower 2-byte value
CO_OPE .EQU -4 ; Operand data (4 bytes)

Title: Inverse cosine function [COS (raised to power of —1) (single-precision, floating-point)

Content of processing:

This program finds an inverse cosine of operand data (R2R0) and stores the result in R2, RO.

(R2R0) = COS ~1 (R2R0)
Procedure:

(1) Operand data (normalized single-precision, floating- point number)
Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register

R2 and the mantissa (mid, lower) in register RO.
(2) Call the subroutine.
(3) The calculation result is placed in R2, RO.
Result:

The unit is radian.

Result normal:
The C flag is reset to “0".
The calculation result is stored in R2, RO.

R2 (High) R2 (Low) ROH
> > >

Sign, Exponent b7 to bl Exponent b0, Mantissa (upper) Mantissa (mid)

Result erratic:
The C flag is set to “1".
The following value is returned in R2, RO.

Contents of R2, RO Meaning
Maximum value Overflow
Non-numeral Argument error

244

ROL

>
Mantissa (lower)

Program Collection of Mathematic/Trigonometric Functions

; Input:

: RO (Lower half of operand data)
; R1()
: R2 (Upper half of operand data)
; R3 ()
; A0 ()
; Al ()

; Stack amount used: 60 bytes

3.20 Program List

> Output:

RO (Lower half of calculation result)
R1 (Indeterminate)
R2 (Upper half of calculation result)
R3 (Indeterminate)
A0 (Indeterminate)
Al (Indeterminate)

.SECTION PROGRAM,CODE
.ORG VromTOP
.FB FBcnst ; Assumes FB register value
FACN:
ENTER #4 ; Allocates internal variables
MOV.L R2R0,CO_OPEJ[FB] ; Saves operand data in variables

; Checking argument error (check of 1 or less)

AND.W #07FFFh,R2 ; Clears sign
CMP.W #3F80H,R2 ; Operand data less than 1?
JLTU FACN10 ; --> Smaller than 1
JGTU FACNERR ; --> Larger than 1 (error)
CMP.W #0,R0O ; Exactly 1?
JGTU FACNERR ; --> Larger than 1 (error)
FACN10:
OR.W R2,R0O ; Data 07
JNE FACN20 ;--> No
; Setting p/2
MOV.W #FPI2_L,RO ; Sets p/2 lower 2-byte value
MOV.W #FPI2_H,R1 ; Sets p/2 upper 2-byte value
BTST 7,CO_OPE+3[FB] ; Sign is negative?
BMNZ 7,R1H ; Changes sign negative
MOV.W R1,R2
FCLR C ; Sets “result normal” information
EXITD

; Setting argument error information (non-numeral)

FACNERR:

MOV.W CO_OPE+2[FB],R2
OR.W #7FFFH,R2
MOV.W #OFFFFH,RO

FSET C

EXITD

; Sets overflow in return value
; Returns same sign as that of argument

: Sets “result erratic” information

245

; Calculation formula fi (1 — square of operand data) , operand data

FACN20:
MOV.L

MOV.L
JSR
JSR
JC

OR.W
MOV.W
MOV.W
JSR
JSR

JC

JSR

JC

MOV.L
JSR
JSR
JC
JSR
JSR
JC

BTST
JEQ

; Calculation result + p
MOV.W
MOV.W
JSR
JSR
JC
FACN_OK:
FCLR
EXITD

; Setting overflow information (maximum value)

ACNOVER:
MOV.W
AND.W
OR.W
MOV.W
FSET
EXITD

.END

Program Collection of Mathematic/Trigonometric Functions

CO_OPE[FB],R2R0

R2R0,R3R1
FMUL
FOVERCHK
ACNOVER

#08000H,R2
#FNO1_H,R3
#FNO1_L,R1
FADD
FOVERCHK
ACNOVER
FSQR
ACNOVER

CO_OPE[FB],R3R1
FDIV

FOVERCHK
ACNOVER

FATN

FOVERCHK
ACNOVER

7,CO_OPE+3[FB]
FACN_OK

#FPAI_H,R3
#FPAI_L,R1
FADD
FOVERCHK
ACNOVER

Cc

CO_OPE[FB],R2
#8000H,R2
#FOVER_H,R2
#FOVER_L,RO
C

; Changes sign negative
; Sets numeral 1 in calculation data

; Reads operand data

3.20 Program List

; Operand data fi calculation data
; Squares operand data
; Checks for overflow
; --> Overflow

; R2, RO = 1 — (square of operand data)

; Checks for overflow

; --> Overflow

; Square root of calculation result
; --> Overflow

; Reads operand data

; Divides calculation result by operand data

: Checks for overflow
: --> Overflow

; Inverse tangent of calculation result

: Checks for overflow
: --> Overflow

; Sign is negative?
:--> No

; Sets p

; Calculation result + p
; Checks for overflow
; --> Overflow

: Sets “result normal” information

; Clears all but sign

; Sets maximum value in return value

: Sets “result erratic” information

246

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

Bt o s e R e R R e e s s S e R R S R e i s R s S S S S S 2 2 2 2 2 e i 2

; M16C Program Collection of Mathematic/Trigonometric Functions No. 10 *
: Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
.GLB FATN
.GLB FCMP ; Large/small comparison
.GLB FOVERCHK ; Overflow check
.GLB FCAL ; Table data calculation
.GLB FADD ; Floating-point addition
.GLB FMUL ; Floating-point multiplication
.GLB FDIV ; Floating-point division
VromTOP .EQU OFEOOOOH ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
FNO1 H .EQU 3F80H ; Numeral 1 upper 2-byte value
FNO1 L .EQU 0000H ; lower 2-byte value
FPI2_H .EQU 3FC9H ; p/2 upper 2-byte value
FPI2_L .EQU OFDBH ; lower 2-byte value
FOVER_H .EQU 07F7FH ; Overflow upper 2-byte value
FOVER_L .EQU OFFFFH ; lower 2-byte value
OVER1 .EQU -7 ; 0: Lorless; 1: greater than 1
SIGN .EQU -6 ; 0: plus ; 1: minus
CO_OPE .EQU -4 ; Operand data (4 bytes)
.SECTION PROGRAM,ROMDATA
.ORG VromTOP
FATT:
.FLOAT 6.812411E-3 ; 0.006812411 (C13)
.FLOAT —3.3606269E-2 ;—0.033606269 (C11)
.FLOAT 7.9626318E-2 ; 0.079626318 (C9)
.FLOAT -1.3233510E-1 ;-0.132335096 (C7)
.FLOAT 1.9807869E-1 ; 0.198078690 (C5)
.FLOAT -3.3317376E-1 ;-0.333173758 (C3)
.FLOAT 9.9999612E-1 ; 0.999996115 (C1)
; .LWORD 03BDF3AA4H ; 0.006812411 (C13)
; .LWORD 0BD0O9A6BAH ; -0.033606269 (C11)
; .LWORD 03DA3131EH ; 0.079626318 (C9)
; .LWORD 0BE0782D8H ; —0.132335096 (C7)
: .LWORD 03E4AD522H ; 0.198078690 (C5)
; .LWORD OBEAA95COH ;-0.333173758 (C3)
: .LWORD O03F7FFFBEH ; 0.999996115 (C1)

; Title: Inverse tangent function [TAN (raised to power of —1) (single-precision, floating-point)

; Content of processing:

This program finds an inverse tangent of operand data (R2R0) and stores the result in R2, RO.
(R2R0) = TAN1 (R2R0)

247

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

Procedure:
(1) Operand data (normalized single-precision, floating- point number)
Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
R2 and the mantissa (mid, lower) in register RO.
(2) Call the subroutine.
(3) The calculation result is placed in R2, RO.

Result:
The unit is radian.
Result normal:
The C flag is reset to “0".
The calculation result is stored in R2, RO.
R2 (High) R2 (Low) ROH ROL
> > > >
Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)

Result erratic:
The C flag is set to “1".
The following value is returned in R2, RO.

Contents of R2, RO Meaning
Maximum value Overflow
Input: > Output:
RO (Lower half of operand data) RO (Lower half of calculation result)
R1 () R1 (Indeterminate)
R2 (Upper half of operand data) R2 (Upper half of calculation result)
R3 () R3 (Indeterminate)
A0 () A0 (Indeterminate)
Al () Al (Indeterminate)

Stack amount used: 34 bytes

FATN:

; Checking sign

.SECTION PROGRAM,CODE

.FB FBcnst ; Assumes FB register value
ENTER #7 ; Allocates internal variables
MOV.L R2R0,CO_OPEJ[FB] ; Saves operand data in variables
TST.W #08000H,R2 ; Checks sign
STZX.W #0,#08000H,SIGN[FB] ; Sets sign information
AND.W #07FFFH,R2 ; Clear sign

; Checking for unsigned data equal to or less than 1

MOV.B #0,0VER1[FB] ; Sets “equal to or less than 1” information
MOV.W #FNO1_H,R3 ; Sets floating-point number 1

MOV.W #FNO1_L,R1

JSR FCMP ; Compares

JLTU FATN20 ;-->1orless

INC.B OVERL1[FB] ; Sets “greater than 1” information

248

; Checking absolute 0

FATN20:
CMP.W
JNE

Program Collection of Mathematic/Trigonometric Functions

R2,RO
FATN30

; Returning absolute 0 information

MOV.L
EXITD

FATN3O0:
MOV.W

CMP.B

JEQ

XCHG.W

XCHG.W

JSR

JSR

Jc

MOV.L
FATN40:

MOV.L

JSR

JSR

Jc

MOV.L
MOV.B
JSR
JC

MOV.L
JSR
JSR
JC

CMP.B
JEQ

OR.W
MOV.W
MOV.W
JSR
JSR
JC
FATN50:
AND.W
OR.W
FCLR
EXITD

CO_OPE[FB],R2R0

R2,CO_OPE+2[FB]

#0,0VER1[FB]
FATN40
R2,R3

RO,R1

FDIV
FOVERCHK
ATNOVER

R2R0,CO_OPE[FB]

R2R0,R3R1
FMUL
FOVERCHK
ATNOVER

#FATT,AOQ
#7-1,R1L
FCAL
ATNOVER

CO_OPE[FB],R3R1
FMUL
FOVERCHK
ATNOVER

#0,0VER1[FB]
FATN50

#08000H,R2
#FPI2_H,R3
#FPI2_L,R1
FADD
FOVERCHK
ATNOVER

#O7FFFH,R2
SIGN[FB],R2
C

; Absolute 0?
:--> No

; Returns data that was input

; Saves unsigned operand data

3.20 Program List

; Unsigned data is equal to or less than 1?

i -->Yes

; Floating-point number 1 fi (R2, R0)
; Unsigned operand data fi (R3, R1)
; Divides 1 by unsigned operand data

: Checks for overflow
: --> Overflow

; Saves calculation result

; Calculation result fi (R3, R1)
; Squares calculation result

: Checks for overflow
: --> Overflow

; Sets data table address
; Sets number of tables
; Calculates table data

: --> Overflow

; Reads saved data

; Multiplies result by saved data

: Checks for overflow
: --> Overflow

; “Equal to or less than 1" information?

i -->Yes

; Changes calculation result negative

; Sets p/2

; Subtracts calculation result from (p/2)

: Checks for overflow
: --> Overflow

; Inverts sign if sign information is negative

: Sets “result normal” information

249

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

; Setting overflow information (maximum value)

ATNOVER:
MOV.W
AND.W
OR.W
MOV.W
FSET
EXITD

.END

CO_OPE[FB],R2

#8000H,R2 ; Clears all but sign

#FOVER_H,R2 ; Sets maximum value in return value
#FOVER_L,RO

C ; Sets “result erratic” information

250

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

rkkkkkkkkkkkkkkkkkkkhkkkkhkkkkhkkkkhkkkhkkkkhkkkkkhkkkhkhkkkhkhkkkkhkkkkkhkkkkkhkkkkkhkkkkkhkkkhkhkkkkhkkkkkhkkkk
’

M16C Program Collection of Mathematic/Trigonometric Functions No. 11

Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION

*

*

*

rkkkkkkkkkkkkkkkkkkkhkkkkhkkkkhkkkkkkkkhkkkkhkkkkkhkkkkhkhkkkkhkhkkkkhkkkkkhhkkkkhkkkkkkhkkkkkhkkkhkhkkkkhkkkkkhkkkk
’

.GLB FSQR
, .GLB FPOW ; Power calculation
,VromTOP .EQU OFEOOOOH ; Declares start address of ROM
i:PS_H .EQU 3FO0H ; 0.5 upper 2-byte value
FP5 L .EQU 0000H ; lower 2-byte value

Title: Square root (single-precision, floating-point)

Content of processing:

This program finds a square root of operand data (R2R0) and stores the result in R2, RO.

(R2R0) = (R2R0)

Procedure:

(1) Operand data (normalized single-precision, floating- point number)
Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register

R2 and the mantissa (mid, lower) in register RO.
(2) Call the subroutine.
(3) The calculation result is placed in R2, RO.

Result:
Result normal:
The C flag is reset to “0”.
The calculation result is stored in R2, RO.
R2 (High) R2 (Low) ROH
> > >

Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid)

Result erratic:
The C flag is set to “1".
The following value is returned in R2, RO.

Contents of R2, RO Meaning
Non-numeral Calculation error
Maximum value Overflow

251

ROL

>
Mantissa (lower)

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

; Input: > Output:

; RO (Lower half of operand data) RO (Lower half of calculation result)
; R1 () R1 (Indeterminate)

; R2 (Upper half of operand data) R2 (Upper half of calculation result)
; R3 () R3 (Indeterminate)

; A0 () AO (Indeterminate)

; Al () Al (Indeterminate)

; Stack amount used: 53 bytes

.SECTION PROGRAM,CODE
.ORG VromTOP
FSQR:
MOV.W #FP5_H,R3 ; Sets 0.5
MOV.W #FP5_L,R1
JSR FPOW ; Calculates a product of the operand data raised to
; the power of 0.5
RTS
.END

252

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

Bt o s e R e R R e e s s S e R R S R e i s R s S S S S S 2 2 2 2 2 e i 2

; M16C Program Collection of Mathematic/Trigonometric Functions No. 12 *
. *
: Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
skkkkkkkkkkkkkkhkkkhkkhkkkhkhkkhkkhkhkkhkhkhhhkkhhkhkhkkhkhkkhhkhkhkkhkhkkhkhkhkhhkhkhkkhkkhhkkhhhkkkhkhhhkhhkkhhhhkkhhkkhhhkhkkhkhkhkhhkhhkkhkhhkhkhhkkhkikkkxk
.GLB FPOW
.GLB FOVERCHK ; Overflow check
.GLB FIXI ; Floating data fi integer conversion processing
.GLB FLN ; Natural logarithmic calculation
.GLB FEXP ; Exponential function calculation
.GLB FMUL ; Floating-point multiplication
VromTOP .EQU OFEOOOOH ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
FP5 H .EQU 3FO0H ; 0.5 upper 2-byte value
FP5 L .EQU 0000H ; lower 2-byte value
SIGN .EQU -9 ; Sign of calculation result 0: plus; 1: minus
POWER .EQU -8 ; Multiplication data (4 bytes)
CO_OPE .EQU -4 ; Operand data (4 bytes)

; Title: Power (single-precision, floating-point)

; Content of processing:

; This program finds a product of operand data (R2R0) raised to the power (R3R1) and
; stores the result in R2, RO.

; (R2R0) = (R2R0) (R3R1)

; Procedure:

; (1) Operand data (normalized single-precision, floating- point number)

; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R2 and the mantissa (mid, lower) in register RO.

; (2) Exponent data (normalized single-precision, floating-point number)

; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R3 and the mantissa (mid, lower) in register R1.

; (3) Call the subroutine.

; (4) The calculation result is placed in R2, RO.

; Result:

; Result normal:

: The C flag is reset to “0".

; The calculation result is stored in R2, RO.

; R2 (High) R2 (Low) ROH ROL

; > > > >

; Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)

: Result erratic:
; The C flag is set to “1".
; The following value is returned in R2, RO.

; Contents of R2, RO Meaning
; Non-numeral Calculation error
; Maximum value Overflow

253

Program Collection of Mathematic/Trigonometric Functions

; Input:

: RO (Lower half of operand data)

: R1 (Lower half of exponent data)
; R2 (Upper half of operand data)

; R3 (Upper half of exponent data)
; A0 ()

; Al ()

; Stack amount used: 50 bytes

3.20 Program List

> Output:

RO (Lower half of calculation result)
R1 (Indeterminate)
R2 (Upper half of calculation result)
R3 (Indeterminate)
A0 (Indeterminate)
Al (Indeterminate)

.SECTION PROGRAM,CODE
.ORG VromTOP
.FB FBcnst ; Assumes FB register value
FPOW:
ENTER #9 ; Allocates internal variables
MOV.L R2R0,CO_OPEJ[FB] ; Saves operand data in variables
MOV.L R3R1,POWERI[FB] ; Saves exponent data

; Checking exponent data =0

CMP.W #0,R1 ; Exponent data is 0?
JNE FPOWO ;. --> No
AND.W #7FFFH,R3 ; Exponent data is 0?
JNE FPOWO ;. --> No
; Setting result =1
MOV.W #0,R0O ; Sets 1 in return value
MOV.W #3F80H,R2
FCLR C ; Sets “result normal” information
EXITD

; Checking error & result =0

FPOWO:

CMP.W #0,R0 ; Operand data is 0?

JNE FPOW1 ;. --> No

AND.W #7FFFH,R2 ; Operand data is 0?

JNE FPOW1 ;. --> No

BTST 7,POWER+3[FB] ; Power is minus?

JEQ POWZERO ; --> No (goes to set result = 0)

; Setting calculation error information (non-numeral)

: Sets non-numeral in return value

: Sets “result erratic” information

POW_ERR:
MOV.W #OFFFFH,RO
MOV.W CO_OPE+2[FB],R2
OR.W #7FFFH,R2
FSET C
EXITD

254

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

; Setting result =0

POWZERO:
MOV.L
FCLR
EXITD

#0,R2R0O
C

; Setsresult =0
: Sets “result normal” information

rhkkkkkkkkhkkkkkkkkkkkkhhhhhhhhhhhhhkhhhkhkrhkrkhkkrdhrhhrhhhhhhhhhhhhhkrkhkrkrkkrrrkrkrhrrhrhhhis

FPOW1:
BTST
JEQ

MOV.W
MOV.W
SHL.W
ROLC.W

CMP.B
JLTU

FPOW2:
CMP.B
JEQ
SHL.W

ROLC.B

SUB.B
JMP
FPOWS:

AND.W

OR.W
INE
FPOW4:
BTST
JEQ
FPOWS:
XOR.B

MOV.L

JSR

MOV.B

BTST

JNE
FPOWG:

MOV.B

7,CO_OPE+3[FB]
FPOW6
POWER[FB],R3
POWER+2[FB],R1
#1,R3

R1
#7FH,R1H
POW_ERR

#7FH,R1H
FPOWS3
#1,R3
R1L
#1,R1H
FPOW2

#0OFFH,R1
R3,R1
POW_ERR

7,CO_OPE+3[FB]
FPOW6

#80H,CO_OPE+3[FB]

POWER[FB],R2R0
FIXI

#1,SIGN[FB]
0,ROL

FPOW?

#0,SIGN[FB]

; Operand data is minus?
;--> No
; Reads power

; Shifts data up (to adjust type of exponent part)
; Power is less than 1?

; --> Yes (error)

; Conversion of power into integer completed?
;> Yes
; Shifts mantissa part data up

; Subtracts 1 from exponent part
; Clears exponent part
; No decimal fraction?

; --> No (error)

; Operand data is minus?
;--> No

; Inverts sign of operand data

; Reads power

; Converts floating data of power into integer
; Sets minus in sign information

; LSB of integer is 0?

:--> No

; Sets plus in sign information

255

FPOWT:
MOV.L
JSR
JC

MOV.L
JSR
JSR
JC

JSR
JSR
JC

CMP.B
JEQ
XOR.W
FPOW_EXT:
FCLR
EXITD

Program Collection of Mathematic/Trigonometric Functions

CO_OPE[FB],R2R0
FLN
POWOVER

POWER[FB],R3R1
FMUL
FOVERCHK
POWOVER

FEXP
FOVERCHK
POWOVER

#0,SIGN[FB]
FPOW_EXT
#8000H,R2

Cc

; Setting overflow information (maximum value)

POWOVER:
AND.W
OR.W
MOV.W
FSET
EXITD

.END

#8000H,R2
#7F7FH,R2
#0FFFFH,RO
C

; Reads operand data (inverted)
; Natural logarithmic calculation

: --> Overflow

; Reads power

3.20 Program List

; Multiplies calculation result by power

: Checks for overflow
: --> Overflow

; Exponential function calculation

: Checks for overflow
: --> Overflow

; Sign inverted?
;--> No

; Inverts sign of calculation result

: Sets “result normal” information

; Clears all but sign

; Sets maximum value in return value

: Sets “result erratic” information

256

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

Bt o s e R e R R e e s s S e R R S R e i s R s S S S S S 2 2 2 2 2 e i 2
l

; M16C Program Collection of Mathematic/Trigonometric Functions No. 13 *
: Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *

.GLB FEXP

.GLB FOVERCHK ; Overflow check

.GLB FSUB ; Floating-point addition

.GLB FDIV ; Floating-point division

.GLB FCAL ; Table data calculation

.GLB FLOT ; Integer data fi floating data conversion processing

.GLB FIXI ; Floating data fi integer conversion processing
VromTOP .EQU OFEOOOOH ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
F87 H .EQU 042AEH ; 87.33654475 upper 2-byte value
F87 L .EQU OAC50H ; lower 2-byte value
FP5 H .EQU 03FO0H ; 0.5 upper 2-byte value
FP5 L .EQU 00000H ; lower 2-byte value
FL2C H .EQU 03F31H LN(2) upper 2-byte value
FL2C L .EQU 07218H ; lower 2-byte value
FOVER_H .EQU 07F7FH Overflow upper 2-byte value
FOVER_L .EQU OFFFFH ; lower 2-byte value
BUFA .EQU -9 ; Used for saving Q data
SIGN .EQU -5 ; Sign of calculation result 0: plus; 1: minus
CO_OPE .EQU -4 ; Operand data (4 bytes)

.SECTION PROGRAM,ROMDATA

.ORG VromTOP
FEXT:

.FLOAT 1.0939E-4 ; 0.00010939 (C7)

FLOAT 9.4755E-4 : 0.00094755 (C6)

.FLOAT 6.80097E-3 ; 0.00680097 (C5)

.FLOAT 3.9246744E-2 ; 0.039246744 (C4)

.FLOAT 1.6986580E-1 ; 0.169865796 (C3)

.FLOAT 4.9012909E-1 ; 0.490129090 (C2)

.FLOAT 7.0710678E-1 ; 0.707106781 (C1)

; Title: Exponential function (single-precision, floating-point)

; Content of processing:

This program finds an exponential function of operand data (R2R0) and stores the

result in R2, RO.
(R2R0) = e(R2R0)

257

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

Procedure:
(1) Operand data (normalized single-precision, floating- point number)
Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
R2 and the mantissa (mid, lower) in register RO.
(2) Call the subroutine.
(3) The calculation result is placed in R2, RO.

Result:
Result normal:
The C flag is reset to “0".
The calculation result is stored in R2, RO.
R2 (High) R2 (Low) ROH ROL
> > > >
Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)

Result erratic:
The C flag is set to “1".
The following value is returned in R2, RO.

Contents of R2, RO Meaning

Maximum value Overflow or argument exceeds the range
of —87.3 to 87.3 including both ends

Input: > Output:

RO (Lower half of operand data) RO (Lower half of calculation result)
R1 () R1 (Indeterminate)

R2 (Upper half of operand data) R2 (Upper half of calculation result)
R3 () R3 (Indeterminate)

A0 () A0 (Indeterminate)

Al () Al (Indeterminate)

Stack amount used: 38 bytes

FEXP:

.SECTION PROGRAM,CODE

.FB FBcnst ; Assumes FB register value
ENTER #10 ; Allocates internal variables
MOV.L R2R0,CO_OPEJ[FB] ; Saves operand data in variables

; Checking argument = 0

CMP.W #0,R0O ; Argument is 0?
JNE FEXP1 . --> No
AND.W #7FFFH,R2 ; Argument is 0?
JNE FEXP1 . --> No

Setting result =1

MOV.W #3F80H,R2 ; Sets 1 in return value
FCLR C : Sets “result normal” information
EXITD

258

Program Collection of Mathematic/Trigonometric Functions

; Checking overflow (exceeding the range of —-87.3 to 87.3)

FEXP1:

; Calculation processing

FEXP2:

FEXPS3:

MOV.W
AND.W

CMP.W
JGTU
JLTU
CMP.W
JGEU

MOV.W
MOV.W
MOV.W

JSR
JSR
JC
MOV.L

JSR

TST.W
JEQ

XOR.W
XOR.W
ADD.L

MOV.L
JSR

MOV.L
MOV.L

JSR
JSR
JC

MOV.W
MOV.W
JSR
JSR

JC

MOV.L
MOV.B
JSR
JC

CO_OPE+2[FB],R2
#O7FFFH,R2

#F87_H,R2
EXPOVER
FEXP2
#F87_L,RO
EXPOVER

CO_OPE+2[FB],R2
#FL2C_H,R3
#FL2C_L,R1

FDIV
FOVERCHK
EXPOVER
R2R0,CO_OPE[FB]

FIXI

#8000H,R2
FEXP3

#OFFFFH,RO
#O7FFFH,R2
#1,R2R0

R2R0,BUFA[FB]
FLOT

R2R0,R3R1
CO_OPE[FB],R2R0

FSUB
FOVERCHK
EXPOVER

#FP5_H,R3
#FP5_L,R1
FSUB
FOVERCHK
EXPOVER

#FEXT,AQ
#7-1,R1L
FCAL
EXPOVER

; Reads operand data
; Clears sign of operand data

3.20 Program List

; Less than —87.3 or greater than 87.3 including both ends?

; --> Yes (overflow)
:--> No

; Less than —87.3 or greater than 87.3 including both ends?

; --> Yes (overflow)

; Reads operand data

; Sets LN(2) data

; Divides operand by LN(2)

: Checks for overflow
; --> Overflow

; Saves calculation result

; Converts data into integer (Q data)

; Checks sign
; --> Plus

; Takes 2’'s complement

; Saves Q data

; Converts Q data into floating data
; Modifies Q data register

; Reads (operand divided by LN(2))

; Divides operand by LN(2) and subtracts Q

: Checks for overflow
; --> Overflow

; Sets 0.5

: Subtracts 0.5 from calculation result

: Checks for overflow
: --> Overflow

; Sets data table address
; Sets number of tables
; Calculates table data

; --> Overflow

259

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

MOV.W R2,R1 ; Modifies calculation result register (exponent part)
MOV.B #0,SIGN[FB] ; Initializes sign information
SHL.W #1,R1 ; Sign fi C flag

ROLC.B SIGN[FB] ; Sets sign information

FSET C ; Sets Cflag =1

ADC.B BUFA[FB],R1H : Adds exponent + Q + 1

SHL.B #-1,SIGN[FB] ; Sign fi C flag

RORC.W R1 ; Sets sign

MOV.W R1,R2 ; Restores register

FCLR C ; Sets “result normal” information
EXITD

; Setting overflow information (maximum value)

EXPOVER:

MOV.L #0FEFEFFFFH,R2R0 ; Sets maximum value in mantissa part and
; LSB of exponent part
SHL.B #-1,SIGN[FB] ; Checks sign
RORC.W R2 ; Sets maximum value in exponent part and sign
FSET C ; Sets “result erratic” information
EXITD
.END

260

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

B Rt e s S R S R R e e e s s S e R R S R e e s R s S S S S S 2 2 2 2 2 s 22

; M16C Program Collection of Mathematic/Trigonometric Functions No. 14 *
*

; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *

skkkkkkkkkkkkkkkkkkhkkkkkkkhkhkkkhkhkkkhkhkkkhkkkkhkhkkkhkkkkkhkkkkkhkkkkkkhkkhkkhkkhkkhkkkkkhkkkkhkkkkkhkkkkkhkkkkk
1

.GLB FLN

.GLB FLN_CAL ; Natural logarithmic calculation

VromTOP .EQU OFEOOOOH ; Declares start address of ROM

; Title: Natural logarithmic calculation (single-precision, floating-point)

; Content of processing:

; This program finds a natural logarithmic of operand data (R2R0) and stores the result in R2, RO.
; (R2R0) = LN (R2R0)

; Procedure:

; (1) Operand data (normalized single-precision, floating- point number)

; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R2 and the mantissa (mid, lower) in register RO.

; (2) Call the subroutine.

; (3) The calculation result is placed in R2, RO.

; Result:

; Result normal:

: The C flag is reset to “0".

; The calculation result is stored in R2, RO.

; R2 (High) R2 (Low) ROH ROL

> > > >

; Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)
; Result erratic:

; The C flag is set to “1".

; The following value is returned in R2, RO.

; Contents of R2, RO Meaning

Non-numeral Calculation error

No change Overflow

; Input: > Output:

; RO (Lower half of operand data) RO (Lower half of calculation result)
; R1() R1 (Indeterminate)

; R2 (Upper half of operand data) R2 (Upper half of calculation result)
; R3 () R3 (Indeterminate)

; A0 () A0 (Indeterminate)

; Al () Al (Indeterminate)

; Stack amount used: 41 bytes

.SECTION PROGRAM,CODE
.ORG VromTOP
FLN:
FSET 4 ; Sets LN information
JSR FLN_CAL ; Natural logarithmic calculation
RTS
.END

261

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

Bt o s e R e R R e e s s S e R R S R e i s R s S S S S S 2 2 2 2 2 e i 2

; M16C Program Collection of Mathematic/Trigonometric Functions No. 15 *
: Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *

.GLB FLOG

.GLB FOVERCHK ; Overflow check

.GLB FCAL ; Table data calculation

.GLB FADD ; Floating-point addition

.GLB FSUB ; Floating-point subtraction

.GLB FMUL ; Floating-point multiplication

.GLB FDIV ; Floating-point division

.GLB FLOT ; Integer data fi floating data conversion processing
VromTOP .EQU OFEOOOOH ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
FNO1 H .EQU 3F80H ; Numeral 1 upper 2-byte value
FNO1 L .EQU 0000H ; lower 2-byte value
FL2C_H .EQU 3F31H ; LN(2) upper 2-byte value
FL2C L .EQU 7218H ; lower 2-byte value
FL10 H .EQU 4013H ; LN(10) upper 2-byte value
FL10 L .EQU 5D8EH ; lower 2-byte value
EXP .EQU -10 ; Used for saving exponent part
MODE .EQU -9 ; 0: FLOG; 1: FLN
BUFA .EQU -8 ; General-purpose buffer
CO_OPE .EQU -4 ; Operand data (4 bytes)

.SECTION PROGRAM,ROMDATA

.ORG VromTOP
FLGT:

.FLOAT 1.0757369E-2 ; 0.010757369 (C7)

.FLOAT —5.5119959E-2 ;—0.055119959 (C6)

.FLOAT 1.3463927E-1 ; 0.134639267 (C5)

.FLOAT —2.2587328E-1 ;-0.225873284 (C4)

.FLOAT 3.2823312E-1 ; 0.328233122 (C3)

FLOAT —-4.9947015E-1 ;-0.499470150 (C2)

.FLOAT 9.9998103E-1 ; 0.999981028 (C1)

; Title: Common logarithmic calculation (single-precision, floating-point)

; Content of processing:
; This program finds a common logarithmic of operand data (R2R0) and stores the result in R2, RO.
; (R2R0) = LOG (R2R0)

; Procedure:

; (1) Operand data (normalized single-precision, floating- point number)

; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R2 and the mantissa (mid, lower) in register RO.

; (2) Call the subroutine.

; (3) The calculation result is placed in R2, RO.

262

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

Result:
Result normal:
The C flag is reset to “0".
The calculation result is stored in R2, RO.
R2 (High) R2 (Low) ROH ROL
> > > >
Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)

Result erratic:
The C flag is set to “1".
The following value is returned in R2, RO.

Contents of R2, RO Meaning

Non-numeral Calculation error

No change Overflow

Input: > Qutput:

RO (Lower half of operand data) RO (Lower half of calculation result)

R1 () R1 (Indeterminate)
R2 (Upper half of operand data) R2 (Upper half of calculation result)
R3 () R3 (Indeterminate)
A0 () A0 (Indeterminate)
Al () Al (Indeterminate)

Stack amount used: 33 bytes

.SECTION PROGRAM,CODE
.FB FBcnst ; Assumes FB register value

FLOG:

FCLR C ; Sets LOG information
FLN_CAL:

ENTER #10 ; Allocates internal variables

STZX.B #0,#1,MODE[FB] ; Sets LOG/LN mode

MOV.L R2R0,CO_OPE[FB] ; Saves operand data

TST.W #08000H,R2 ; Checks sign

JNE LOG_ERR2 ; --> Operand data minus (error)

AND.W #07FFFH,R2 ; Clears sign

OR.W RO,R2 ; Absolute 07

JNE FLOG2 :--> No
LOG_ERR2:

JMP LOG_ERR ; Sets non-numeral
FLOG2:

MOV.W CO_OPE+2[FB],R2 ; Reads exponent and mantissa (upper) parts

AND.W #07FFFH,R2 ; Clears sign

CMP.W #FNO1_H,R2 ; Logic 17

JNE FLOG3 :--> No

MOV.W CO_OPE[FB],R0 ; Logic 1?

JNE FLOG3 :--> No

JMP LOG_ZERO ; --> Yes (returns absolute zero)

263

FLOG3:
MOV.W
SHL.W
CMP.B
JNE
JMP

FLOG31:
MOV.B
MOV.W
AND.W
OR.W

MOV.W
MOV.W
JSR
JSR

JC
MOV.L

MOV.L
MOV.B
JSR
JC

MOV.L
JSR
JSR
JC
MOV.L

MOV.B
SUB.B
JNC

MOV.W

MOV.B

JMP
FLOG4:

MOV.W

MOV.B
FLOGS:

JSR

MOV.W

Program Collection of Mathematic/Trigonometric Functions

R2,R1
#1,R1
#1,R1H
FLOG31
LOG_NON

R1H,EXP[FB]

CO_OPE+2[FB],R2

#807FH,R2
#3F80H,R2

#FNO1_H,R3
#FNO1_L,R1
FSUB
FOVERCHK
LOGOVER
R2R0,BUFA[FB]

#FLGT,AO
#7-1,R1L
FCAL
LOGOVER

BUFA[FB],R3R1
FMUL
FOVERCHK
LOGOVER
R2R0,BUFA[FB]

EXP[FB],ROL
#7FH,ROL
FLOG4
#0,R2
#0,ROH
FLOG5

#OFFFFH,R2
#OFFH,ROH

FLOT

#FL2C_H,R3

3.20 Program List

; Exponent part fi R1H

; Exponent part is 1?
:--> No
; --> Yes (conversion unnecessary)

; Saves exponent part

; Reads exponent and mantissa (upper) parts
; Clears exponent part.

; Sets 7F in exponent part

; Sets numeral 1

; Subtracts 1 from operand
; Checks for overflow

; --> Overflow

; Saves calculation result

; Sets data table address
; Sets number of tables

; Calculates table data

; --> Overflow

; Restores calculation result

; Multiplies table calculation result by restored result
; Checks for overflow

; --> Overflow

; Saves table calculation result

; Restores exponent part

; Subtracts 7F from exponent part

; --> Decimal

; Sets integer Q

; Sets decimal Q

; Converts integer data into floating data

; Sets LN(2)

264

Program Collection of Mathematic/Trigonometric Functions

MOV.W #FL2C_L,R1

JSR FMUL

JSR FOVERCHK

Jc LOGOVER

MOV.L BUFA[FB],R3R1

JSR FADD

JSR FOVERCHK

Jc LOGOVER

MOV.B MODE[FB],R1L

JEQ FLOG_EXT

MOV.W #FL10_H,R3

MOV.W #FL10_L,R1

JSR FDIV

JSR FOVERCHK

Jc LOGOVER
FLOG_EXT:

FCLR C

EXITD

3.20 Program List

; Multiplies LN(2) by floating data
; Checks for overflow
; --> Overflow

; Restores table calculation result

; Adds calculation result and table calculation result
; Checks for overflow

; --> Overflow

; LOG mode?
; --> No (LN mode)

; Sets LN(10)
; Divides calculation result by LN(10)
; Checks for overflow

: --> Overflow

: Sets “result normal” information

; Setting calculation error (non-numeral) or overflow (no change)

LOG_ERR:
MOV.W CO_OPE+2[FB],R2
OR.W #7FFFH,R2
MOV.W #OFFFFH,RO
LOGOVER:
FSET C
EXITD

; Reads sign
; Sets non-numeral in return value

: Sets “result erratic” information

; Setting absolute 0 (normal)

LOG_ZERO:
MOV.L #0,R2R0

; Sets absolute 0

; Conversion unnecessary (normal)

LOG_NON:
FCLR C
EXITD

.END

: Sets “result normal” information

265

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

Bt o s e R e R R e e s s S e R R S R e i s R s S S S S S 2 2 2 2 2 e i 2

; M16C Program Collection of Mathematic/Trigonometric Functions No. 16 *
. *
: Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
skkkkkkkkkkkkkkhkkkhkkhkkkhkhkkhkkhkhkkhkhkhhhkkhhkhkhkkhkhkkhhkhkhkkhkhkkhkhkhkhhkhkhkkhkkhhkkhhhkkkhkhhhkhhkkhhhhkkhhkkhhhkhkkhkhkhkhhkhhkkhkhhkhkhhkkhkikkkxk
.GLB FCMP
.GLB FSUB ; Floating-point subtraction
VromTOP .EQU OFEOOOOH ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value
OPE .EQU -8 ; Comparison data (4 bytes)
CO_OPE .EQU -4 ; Operand data (4 bytes)

; Title: Data comparison (single-precision, floating-point)

; Content of processing:
; This program compares the contents of (R2R0) and (R3R1) and sets the result in FLG bits.
; FLG = (R2R0) : (R3R1)

; Procedure:

; (1) Operand data (normalized single-precision, floating- point number)

; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R2 and the mantissa (mid, lower) in register RO.

; (2) Comparison data (normalized single-precision, floating-point number)

; Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
; R3 and the mantissa (mid, lower) in register R1.

; (3) Call the subroutine.

; (4) The result is placed in FLG bits.

; Result:

; c Zz Meaning

; 1 0 (R2 RO) > (R3 R1)

: 1 1 (R2 RO) = (R3 R1)

; 0 0 (R2 RO) < (R3 R1)

; Input: > Qutput:

; RO (Lower half of operand data) RO (Does not change)
; R1 (Lower half of comparison data) R1 (Does not change)
; R2 (Upper half of operand data) R2 (Does not change)
; R3 (Upper half of comparison data) R3 (Does not change)
; A0 () AO (Unused)

; Al () Al (Unused)

; Stack amount used: 32 bytes

266

Program Collection of Mathematic/Trigonometric Functions

.SECTION
.ORG VromTOP
.FB FBcnst
FCMP:
ENTER #8
MOV.L R2R0,CO_OPE[FB]
MOV.L R3R1,0PE[FB]
JSR FSUB
; Checking absolute 0
MOV.W R2,R1
SHL.W #1,R2
CMP.W RO,R2
JEQ FCMP_END
BNTST 7,R1H
FCLR Z
FCMP_END:
PUSHC FLG
MOV.L CO_OPEJ[FB],R2R0
MOV.L OPE[FB],R3R1
POPC FLG
EXITD
.END

PROGRAM,CODE
; Assumes FB register value

; Allocates internal variables

; Saves (R2 R0)
; Saves (R3 R1)

' (R2,R0) = (R2,R0) — (R3,R1)

; Moves result to R1
; Clears sign
; Absolute 0?

;—->Yes(C=1,Z2=1)

; Sets resultin C flag
; Clears Z flag

; Saves FLG
; Restores register

; Restores FLG

267

3.20 Program List

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

Bt o s e R e R R e e s s S e R R S R e i s R s S S S S S 2 2 2 2 2 e i 2

; M16C Program Collection of Mathematic/Trigonometric Functions No. 17 *

. *

; Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION :

skkkkkkkkkkkkkkhkkkhkkhkkkhkhkkhkkhkhkkhkhkhhhkkhhkhkhkkhkhkkhhkhkhkkhkhkkhkhkhkhhkhkhkkhkkhhkkhhhkkkhkhhhkhhkkhhhhkkhhkkhhhkhkkhkhkhkhhkhhkkhkhhkhkhhkkhkikkkxk
.GLB FTOI

VromTOP .EQU OFEOOOOH ; Declares start address of ROM

FBcnst .EQU 001000H ; Assumed FB register value

SIGN .EQU -1 ; 0: plus; 1: minus

Title: Conversion from FLOAT type to WORD type

Content of processing:

This program converts the content of FLOAT data (R2R0) into WORD (16-bit) type and
stores the result in RO.

Procedure:

(1) FLOAT data (normalized single-precision, floating-point number)

Store the sign, exponent b7 to b1, exponent b0, and mantissas (upper) in register
R2 and the mantissa (mid, lower) in register RO.

(2) Call the subroutine.
(3) The result is placed in RO.

Result:
The result is placed in RO.
If an overflow occurs, RO is 7FFFH when positive or 8000H when negative.
If an underflow occurs, RO is cleared to O000H.
The following shows the contents of flags.
cC zZz S Meaning
1 0 O Positive overflow (RO = 7FFFH)
1 0 1 Negative overflow (RO = 8000H)
1 1 0 Underflow (RO = 0000H)
0 1 0 Resultis 0
0 0 O Result is positive
0 0 1 Result is negative
Input: > Qutput:
RO (Lower half of FLOAT type data) RO (WORD type data)
R1 () R1 (Indeterminate)
R2 (Upper half of FLOAT type data) R2 (Does not change)
R3 () R3 (Unused)
A0 () AO (Unused)
Al () Al (Unused)

Stack amount used: 1 byte

268

Program Collection of Mathematic/Trigonometric Functions

; Assumes FB register value
; Allocates internal variables

; Changes registers
; Initializes WORD type

; Checks sign (sign cleared)
; Sets sign of calculation result

; Input 0?

:--> No

; Input 0?

:--> No

; Sets “without flow” information

: Sets “with flow” information

; Sets integer 0 in return value

; Sets LSB of exponent part in C flag
; Adds 1.0 to mantissa part

; Creates exponent

; Less than 1?

; —-> Yes (sets 0)

; Within representation range?

i -->Yes

3.20 Program List

; Sets maximum value of the same sign

; --> Out of representation range
; Sign plus?
; --> Yes (out of range)

; --> Out of representation range
; --> Out of representation range

; Sets “without flow”
; --> Sets maximum negative value

; Sign plus?

.SECTION PROGRAM,CODE
.ORG VromTOP
.FB FBcnst
FTOI:
ENTER #1
XCHG.W RO,R2
MOV.W #0,R1
BTSTC 7,ROH
STZX.B #0,#1,SIGN[FB]
CMP.W #0,R0O
JNE FTOI_10
CMP.W #0,R2
JNE FTOI_10
FCLR C
JMP IOSET
IOUNDER:
FSET C
; Setting integer 0
IOSET:
MOV.W #0,R0O
EXITD
FTOI_10:
BTSTS 7,ROL
ROLC.B ROH
SUB.B #7FH,ROH
JNC IOUNDER
CMP.B #15,ROH
JLTU FTOI_20
BSET 7,R1H
JNE FTOI_15
CMP.B #0,SIGN[FB]
JEQ FTOI_PLS
; Checking maximum negative value
CMP.W #0,R2
JNE FTOI_MIS
CMP.B #80H,ROL
JNE FTOI_MIS
FCLR C
JMP FTOI_MIMAX
FTOI_15:
CMP.B #0,SIGN[FB]
JNE FTOI_MIS

; --> Negative number (8000H)

269

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

: Positive overflow

FTOI_PLS:
NOT.W R1 ; Positive number (7FFF)

; Negative overflow

FTOI_MIS:
FSET C ; Sets “with flow”
FTOI_MIMAX:
MOV.W R1,R0O ; Sets return value
EXITD

; FLOAT fi integer conversion

FTOI_20:

INC.B ROH ; Adjusts loop count
FTOI_LOOP:

SHL.W #1,R2 ; Shifts mantissa data up

ROLC.B ROL

ROLC.W R1 ; Gets result

ADJINZ.B #-1,ROH,FTOI_LOOP ; Loop finished? --> No

CMP.B #0,SIGN[FB] : Sign plus?

JEQ FTOI_30 i -->Yes

NEG.W R1 ; Turns data into 2's complement
FTOI_30:

MOV.W R1,RO ; Sets return value

FCLR C ; Sets “without flow”

EXITD

.END

270

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

Bt o s e R e R R e e s s S e R R S R e i s R s S S S S S 2 2 2 2 2 e i 2

; M16C Program Collection of Mathematic/Trigonometric Functions No. 18 *
. *
: Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
rkkkkkkkkkkkkkkhkkkkkkkkkkkkkkkkkkhkkhkkhkkkkhkhkkhkkkkhkkkhkkkkhkkkkhkkkkkkkhkkhkkhkkkkkkkhkkkkhkkkkhkhkkhkkhkkkkhkhkkkhkkkkhkkkkhkkkkkkkk
.GLB ITOF
.GLB FNOR ; Normalization processing
VromTOP .EQU OFEOOOOH ; Declares start address of ROM

; Title: Conversion from WORD type to FLOAT type

; Content of processing:
; This program converts the content of WORD (16-bit) type (RO) into FLOAT data and
; stores the result in R2RO0.

; Procedure:

; (1) Store WORD (16-bit) type data in register RO.
; (2) Call the subroutine.

; (3) The result is placed in R2, RO.

; Result: The result is placed in R2, RO.
: R2 (High) R2 (Low) ROH ROL
> > > >

; Sign, Exponent b7 to b1 Exponent b0, Mantissa (upper) Mantissa (mid) Mantissa (lower)

; The following shows the contents of flags.

; Z S Meaning

: 1 0 When resultis 0

; 0 O When result is positive

; 0 1 When result is negative

; Input: --------mmmemee - > QOutput:

; RO (WORD type data) RO (Lower half of FLOAT type data)
; R1 () R1 (Indeterminate)

: R2 () R2 (Upper half of FLOAT type data)
; R3 () R3 (Indeterminate)

; A0 () A0 (Unused)

; Al () Al (Unused)

; Stack amount used: 4 bytes

271

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

.SECTION PROGRAM,CODE
.ORG VromTOP
ITOF:
ENTER #1 ; Allocates internal variables
MOV.W RO,R1 ; Integer data fi R1
MOV.L #0,R2R0 ; Sets 0 in floating-point data
CMP.W #0,R1 ; Integer data is 0?
JNE ITOF10 . --> No
EXITD
ITOF10:
BTST 7,R1H ; Sign is minus?
JEQ ITOF20 ; --> No (plus)
OR.W #8000H,R2 ; Changes floating-point sign negative
CMP.W #8000H,R1 ; Maximum value?
JEQ ITOF_MAX ;> Yes
ITOF11:
NEG.W R1 ; Takes 2's complement
ITOF20:
MOV.B R1L,ROH ; Lower half of integer fi Mid part of floating-point
; humber
SHL.W #-8,R1 ; Upper half of integer fi Upper part of floating-
; point number
OR.W #4700H,R1 ; Sets 8E in exponent part
OR.W R1,R2 ; Sets sign
PUSHC FLG ; Saves flags
JSR FNOR ; Normalization processing
POPC FLG ; Restores flags
EXITD
ITOF_MAX:
MOV.W #0C700H,R2 ; Sets maximum value
EXITD
.END

272

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

rhkkkkkhkhkhkhkhkkhkkkkkkkkhhhhhhhhhhhkhkhhhkhhkrkhkkrkrkrrhhhhhhhhhhhhkhhhkhkhkrkrkkkrrrrhhhhhhhhhhhrkhkrkkrkrkxx
l

; M16C Floating-point Library Subroutine *
. *
: Copyright (C) 1999 MITSUBISHI ELECTRIC CORPORATION *
skkkkkkkkkkkkkkhkkkhkkkhkkkhkhkkhkhkkhkhkkhkhkkkhhkkhhkkhkkkhkhkkhkhkhhkkhhhkhkkhhkkhhhkkhkkhhhkhkkhhkhhhkhkkhkhhhhkhhkkhkhhkhkhhkhhhkkhkkhikhkixkx

.GLB CHKDATA

.GLB FOVERCHK

.GLB FCAL

.GLB FLOT

.GLB FIXI

.GLB FNOR

.GLB FADD ; Floating-point addition

.GLB FMUL ; Floating-point multiplication
VromTOP .EQU OFEOOOOH ; Declares start address of ROM
FBcnst .EQU 001000H ; Assumed FB register value

.SECTION PROGRAM,CODE

.ORG VromTOP

///
; Non-numeral and Infinity Check Subroutine

; Function:

; If the data input with (R2R0) is non-numeral or infinite, this subroutine sets

; non-numeral and infinite data in R2 and RO before returning to the previous

; program location (e.g., a location from which FADD was called).

; If the data is other than the above, it returns to the location from which it was called.

; Input: > Output:

; RO (Lower half of operand data) RO (Lower half of calculation result)
; R1 () R1 (Indeterminate)

; R2 (Upper half of operand data) R2 (Upper half of calculation result)
; R3 () R3 (Indeterminate)

; A0 () A0 (Unused)

; Al () Al (Unused)

Stack amount used: None
///
CHKDATA:

MOV.L R2R0,R3R1 ; Saves input data
XCHG.W R2,R0O ; Changes registers

; Checking operand data

SHL.W #1,R0 ; Places exponent part of operand data in ROH
CMP.B #0FFH,ROH ; Exponent part is non-numeral or infinite data?
JEQ CHKDATAL10 i -->Yes

MOV.L R3R1,R2R0 ; Sets data that was input

RTS

273

CHKDATAZ10:

CMP.B

JNE

CMP.W

JEQ

Program Collection of Mathematic/Trigonometric Functions

#0,ROL
CKDTNON
#0,R2
CKDTINF

; Setting non-numeral value

CKDTNON:

MOV.W
MOV.W

OR.W

BASERET:
STC

ADD.L

LDC

EXITD

; Setting infinite value

CKDTINF:

MOV.W
MOV.W
AND.W

OR.W
JMP

#OFFFFH,RO
R3,R2
#7FFFH,R2

SP,R3R1
#4,R3R1
R3R1,SP

#0000H,RO
R3,R2
#0FF80H,R2
#07F80H,R2
BASERET

3.20 Program List

; Mantissa (upper) part is infinite?

; --> Non-numeral

; Mantissa (mid, lower) part is infinite?
: --> Infinite

; Sets non-numeral in mantissa (mid, lower) part

; Reads operand data sign, exponent, and mantissa (upper)
; Sets non-numeral in exponent and mantissa

; (upper) parts (with sign unchanged)

; Reads stack
; Stack + 4 (for two returns)
; Sets stack back again

; Sets infinity in mantissa (mid, lower) part

; Reads operand data sign, exponent, and mantissa (upper)
; Sets infinity in mantissa (upper) part

; Sets infinity in exponent part (with sign unchanged)

; Returns to location from which FADD was called

;///
; Data Over/Underflow Check Subroutine

; Function:
This subroutine checks to see if the data input in (R2R0) is in overflow or underflow or else.
If the data is in overflow or underflow,

; Input:

: RO (Lower half of operand data)

; R1()

; R2 (Upper half of operand data)

; R3 ()
; A0 ()
; Al ()

the C flag is set to 1.

Otherwise,

the C flag is reset to 0.

; Stack amount used: None
ST T T T T

FOVER_H
FOVER_L
FUNDER_H
FUNDER_L

FOVERCHK:

.EQU
.EQU
.EQU
.EQU

> Output:

RO (Does not change)
R1 (Unused)
R2 (Does not change)
R3 (Unused)
A0 (Unused)
Al (Unused)

07F7FH ; Overflow upper 2-byte value
OFFFFH ; lower 2-byte value
0080H ; Underflow upper 2-byte value
0000H ; lower 2-byte value

274

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

: Overflow check

CMP.W #FOVER_H,R2 ; Overflow value?

JNE FUNDERCHK . --> No

CMP.W #FOVER_L,RO ; Overflow value?

JNE FOVER_O ; --> No (without flow)
FOVER_1:

FSET C ; With flow (C flag is set)

RTS

: Underflow check

FUNDERCHK:

CMP.W #FUNDER_H,R2 ; Underflow value?
JNE FOVER_O ; --> No (without flow)
CMP.W #FUNDER_L,RO ; Underflow value?
JEQ FOVER_1 ; --> Yes (with flow)
FOVER_0:
FCLR C ; Without flow (C flag is cleared)
RTS

;///
; Table Data Calculation Subroutine

; Function:

; This subroutine calculates the data input in (R2R0) by the double-word table data at
; address indicated by A1AO0 as many time as the count of R1L. The calculation result
; is placed in R2, RO and the C flag is reset to 0. However, if an overflow occurs, the

; C flag is set to 1.

; Input: > Output:

; RO (Lower half of operand data) RO (Lower half of calculation result)
; R1 (R1L = count) R1 (Indeterminate)

; R2 (Upper half of operand data) R2 (Upper half of calculation result)
; R3 () R3 (Indeterminate)

; A0 (Table address) A0 (Indeterminate)

; Al () Al (Indeterminate)

; Stack amount used: 24 bytes
Wt

CO_OPE .EQU -5 ; Area for storing floating data when input
COUNT .EQU -1 ; Counter (used in internal processing)
.FB FBcnst ; Assumes FB register value
FCAL:
ENTER #5 ; Allocates internal variables
MOV.B R1L,COUNTI[FB] ; Calculation count fi internal variable
MOV.L R2R0,CO_OPE[FB] ; Saves input data
MOV.L [AO],R3R1 ; Sets calculation data
ADD.L #4,A0 ; Sets next table pointer
FCAL_LOOP:
JSR FMUL ; Multiplies calculation result by data
JSR FOVERCHK ; Checks for overflow

275

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

JC FCALOVER ; --> Overflow

MOV.L [AO],R3R1 ; Sets calculation data

ADD.L #4,A0 ; Sets next table pointer

JSR FADD ; Adds calculation result and table data
JSR FOVERCHK ; Checks for overflow

JC FCALOVER ; --> Overflow

MOV.L CO_OPEJ[FB],R3R1

DEC.B COUNTIFB] ; Decrements counter by 1

JNE FCAL_LOOP ; --> Continues calculation

; Calculation terminated normally

FCLR C ; Without flow (C flag is cleared)
EXITD

Overflow occurred

FCALOVER:
FSET C ; With flow (C flag is set)
EXITD

;///
; Integer Data fi Floating Data Conversion Processing

; Function:
This program converts the integer data input in (R2R0) into floating-point numbers
; and returns the converted data placed in R2, RO.

; Input: > Output:

; RO (Lower half of operand data) RO (Lower half of calculation result)
; R1 () R1 (Indeterminate)

; R2 (Upper half of operand data) R2 (Upper half of calculation result)
; R3 () R3 (Unused)

; A0 () A0 (Unused)

; Al () Al (Unused)

; Stack amount used: None
ST T T L T T
FLOT:

MOV.W R2,R1 ; Changes exponent and mantissa (upper) parts to R1
BTST 7,R1H

JNE FLOT_MI ; --> Sign minus

CMP.W #0,R0 ; Absolute 0?

JNE FLOT1 :-->No

CMP.W #0,R1 ; Absolute 0?

JNE FLOT1 :-->No

Setting absolute 0

MOV.L #0,R2R0

276

Program Collection of Mathematic/Trigonometric Functions

RTS

; Setting 96H in exponent part

FLOT1:

3.20 Program List

ROLC.W R1 ; Exponent part fi R1H, signfi C flag
MOV.B #96H,R1H ; Sets 96H in exponent part
RORC.W R1 ; Cflag fi sign, exponent part position adjusted
MOV.W R1,R2 ; Returns exponent and mantissa (upper) parts to R2
JSR FNOR ; Normalization
RTS
FLOT_MI:
XOR.W #0FFFFH,RO ; Inverts data
ADD.W #1,R0 ; Takes 2's complement
XOR.W #0FFFFH,R1 ; Inverts data
ADCF.W R1 ; Takes 2's complement
BSET 7,R1H ; Sets negative sign
JMP FLOT1
ST T
; Floating Data fi Integer Conversion Processing
Function:
; This program converts the floating data input in (R2R0) into integral numbers and
returns the converted data placed in R2, RO.
Input: > Output:
RO (Lower half of operand data) RO (Lower half of calculation result)
R1() R1 (Indeterminate)
; R2 (Upper half of operand data) R2 (Upper half of calculation result)
; R3 () R3 (Indeterminate)
, A0 () A0 ()
; Al () Al()
Stack amount used: 1 byte
W
FIXI:
MOV.W RO,R1 ; Changes mantissa (mid, lower) part to R1
MOV.W R2,RO ; Changes exponent and mantissa (upper) parts to RO
SHL.W #1,R1
ROLC.W RO ; Adjusts exponent part to high-order bit
PUSHC FLG ; Saves sign (sign = C flag)
, CMP.B #7FH,ROH ; Data is less than 1?
JGEU FIXI10 : --> No

; Integer O returned when less than 1 & exponent 97H or greater

FIXI0O0:

POPC FLG ; Adjusts stacks
MOV.L #0,R2R0 ; Sets integer 0
RTS
FIXI110:
FSET C ; Economized form bit

277

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

RORC.B ROL ; Shifts mantissa part down
RORC.W R1
ADD.B #69H,ROH ; Exponent + 69H
JGEU FI1X100 ; --> Exponent 97H or greater (data over)
FIXI20:
ADD.B #1,ROH ; Exponent + 1
JGEU FIXI30 ; --> Conversion into integer finished (exponent part 0)
SHL.B #-1,ROL ; Shifts mantissa part down
; (Os inserted in high-order bits)
RORC.W R1
JMP FIXI20
FIXI30:
POPC FLG ; Restores sign (sign = C flag)
JNC FI1X140 ; --> Sign plus
BSET 7,ROH ; Sets negative sign
FIX140:
MOV.W RO,R2 ; Sets integer-converted data
MOV.W R1,R0O
RTS
///
; Normalization Processing
; Function:
; This program normalizes the floating-point data input in (R2R0) and returns the result
; placed in R2, RO.
; Input: > Qutput:
; RO (Lower half of operand data) RO (Lower half of calculation result)
; R1 () R1 (Indeterminate)
; R2 (Upper half of operand data) R2 (Upper half of calculation result)
; R3 () R3 (Indeterminate)
; A0 () A0 (Unused)
; Al () Al (Unused)
; Stack amount used: None
///
FNOR:
MOV.L R2R0,R3R1 ; Saves operand data in registers
XCHG.W RO,R2 ; Changes registers for each other
SHL.W #1,R0 ; Discards sign and adjusts exponent
SHL.B #-1,ROL ; Restores mantissa (upper) part
FNORO:
CMP.B #1,ROH ; Underflow?
JEQ FNOR_SML ; --> Yes (goes to set minimum value)
BTST 6,ROL ; MSB of mantissa part is 1?
JNE FNOR2 i -->Yes
CMP.W #0,R2 ; Mantissa part is 0?
JNE FNOR1 ;. --> No
CMP.B #0,ROL ; Mantissa part is 0?
JEQ FNOR_NON ; --> Yes (“no change” returned)
FNORL1:

278

SHL.W
ROLC.B
DEC.B
JMP

#1,R2
ROL
ROH
FNORO

; Economized form bit processing

FNORZ2:
SHL.W
ROLC.B
DEC.B
SHL.B
SHL.W
RORC.W

XCHG.W
RTS

; Setting minimum value

FNOR_SML:
MOV.W
AND.W
OR.W
MOV.W
RTS
; Returning “no change”
FNOR_NON:
MOV.L
RTS

.END

#1,R2
ROL
ROH
#1,ROL
#1,R3
RO

RO,R2

R3,R2
#8000H,R2
#0080H,R2
#0,R0O

R3R1,R2R0

Program Collection of Mathematic/Trigonometric Functions

3.20 Program List

; Shifts mantissa part up

; Exponent —1

; Shifts mantissa part up
; Discards economized form bit
; Sets — 1 in exponent part

; Sign fi C flag

; Sets sign (types of exponent and mantissa (upper)
; parts adjusted)

; Changes registers for each other

; Clears all but sign
; Sets 1 in exponent part
; Sets minimum value in mantissa part

; Restores operand data

279

MITSUBISHI SINGLE-CHIP MICROCOMPUTERS
M16C/80 Series
Sample Programs Collection Rev.A

September. First Edition 1999

Editioned by

Committee of editing of Mitsubishi Semiconductor
Published by

Mitsubishi Electric Corp., Kitaitami Works

This book, or parts thereof, may not be reproduced in any form without
permission of Mitsubishi Electric Corporation.
1999 MITSUBISHI ELECTRIC CORPORATION

	Chapter 1 Guide to Using This Manual
	1. Guide to Using This Manual
	1.1 Program Configuration
	1.1.1 Outline
	1.1.2 Explanation
	1.1.3 Flowchart
	1.1.4 Program list

	1.2 Guide to Using Programs

	Chapter 2 Collection of General-purpuse Programs
	2.1 Clearing RAM
	2.2 Transferring Blocks
	2.3 Transferring strings
	2.4 Comparing strings
	2.5 Changing Blocks
	2.6 Indirect Subroutine Call
	2.7 Compressing BCD
	2.8 Selecting maximum
	2.9 Selecting minimum
	2.10 Selecting maximum or minimum
	2.11 Calculating Sum-of-Products
	2.12 Processing Bits
	2.13 Comparing 32 Bits
	2.14 Adding 32 Bits
	2.15 Subtracting 32 Bits
	2.16 Multiplying 32 Bits
	2.17 Dividing 32 Bits
	2.18 Dividing 64 Bits
	2.19 Adding BCD
	2.20 Subtracting BCD
	2.21 Multiplying BCD
	2.22 Dividing BCD
	2.23 Converting from HEX Code to BCD Code
	2.24 Converting from HEX Code to BCD Code
	2.25 Converting from BCD Code to HEX Code
	2.26 Converting from BCD Code to HEX Code
	2.27 Converting from Floating-point Number to Binary Number
	2.28 Converting from Binary Number to Floating-point Number
	2.29 Sorting
	2.30 Searching Array
	2.31 Converting from Lowercase Alphabet to Uppercase Alphabet
	2.32 Converting from Uppercase Alphabet to Lowercase Alphabet
	2.33 Converting from ASCII to Hexadecimal Data
	2.34 Converting from Hexadecimal Data to ASCII Code
	2.35 Example for Initial Setting Assembler
	2.36 Special Page Subroutine
	2.37 Special Page Jump
	2.38 Variable Vector Table
	2.39 Saving and Restoring Context

	Chapter 3 Program Collection of Mathematic/Trigonometric Functions
	3.1 Single-precision, Floating-point Format
	3.2 Addition
	3.3 Subtraction
	3.4 Multiplication
	3.5 Division
	3.6 Sine Function
	3.7 Cosine Function
	3.8 Tangent Function
	3.9 Inverse Sine Function
	3.10 Inverse Cosine Function
	3.11 Inverse Tangent Function
	3.12 Square Root
	3.13 Power
	3.14 Exponential Function
	3.15 Natural Logarithmic Function
	3.16 Common Logarithmic Function
	3.17 Data Comparison
	3.18 Conversion from FLOAT Type to WORD Type
	3.19 Conversion from WORD Type to FLOAT Type
	3.20 Program List

